WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Where were we?

* Fundamental idea: compute new values rather than
assigning repeatedly to variables

* Write-once variables
* Lists
* Pattern matching

World Class. Face to Face.

Today

* Goal: ability to read Erlang code and know what it means —
or how to find out

* Modules and compilation

* Function definitions; the idea of arity
* Higher-order functions

* List comprehensions

* Pattern matching with guards

* (read about records, section 3.9)

* Exceptions

* Next time: concurrency

World Class. Face to Face.

Modules and Compilation

* A module lives in a file named modulename.erl

-module (geometry) . e)‘\:)

—export() . % only exported functions can
be referenced fr&n& another module

—— = . . Dody
area ({rectangle, Width, Height}) ::&hdth
7 Heigh@

area({_gj_.;_cli R}) -—> 3.14159 * R * @

* Compile a module before use
c (geometry) .

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Using functions from modules

modulename : functionname (..) % oOr

—import (modulename, [functionname/arity, ..])

functionname (...)

= For python programmers: don’t have to import
the module itself
BX\““

Q/—
S;COW\ cnodude ok MG& e (?

bt = PR

\N\QN‘

WASHINGTON STATE
EgumwmmY

World Class. Face to Face.

Arity

* Arity refers to the number of arguments of a
function (in other languages arity may refer to the
number and types of the function arguments).

* Two functions in the same module with the same
name but different arity are different functions.

—export ([sum/1]) .
sum([], S) —> S;

sum([H|T], S) —> sum(T, S4H). % tail
recursion

Egum(L) -> sum(L, 0).

World Class. Face to Face.

Anonymous functions

* Functions as seen so far can only be defined in
modules

* Anonymous functions can be defined in the shell
or in modules Cooste doss yluas .

fun (X)-> 2*X end.

* Assign it or pass it as an argument

Double = fun(X) -> 2*X end.

Doublelist = (w,
[1,2,3]. % or

DoublelList = map (Double, [1,2,3]).

[

(VRN 315

(eG‘o&uLSC (Y/

List processing (review 355)

* Processing one element at a time

squares ([1) —> [1()

squares ([H|T]) —-> [H*H|foo(T)]@%_ use map
* Combining all the elements

product ([]) -> 1; e

product ([H|T]) -> H * S@(T) . % use fold
* Combining using an accumulator
product ([], @ -> A;

product ([H|T])A}—> product (T, H*é) .

@coé\mt‘k LLX ~ \?(‘oc\)«c}f LL) L\ .

WASHINGTON STATE
@aUWWMMY

World Class. Face to Face.

Higher-order functions

* Functions taking functions as arguments or
returning functions as results

% erl —-man lists

° map/2

squares (L) -> map(fun (X) -> X*X end, L).
* foldr/3, foldl/3

product (L) -> foldl (fun (Elem, Acc) -—>
Elem*Acc end, 1, L).

WASHINGTON STATE
@[MVERSITY

World Class. Face to Face.

Functions as results ,, T
Cnult (N) —> (fun (M) => N*M end. > «

Test your understanding: what’s different between
the above and

Mult = fun (N) => (fun(M) -> N*M end) end.
Nalblp = (W)
Al o = otk (G

\v\ (V\\w‘(@ k7§ (‘o‘kgm LQ &’l}

WASHINGTON STATE
EgumwmmY

World Class. Face to Face.

List Comprehensions

* Even more convenient way to write map-ish things

squares (L) —> [X*X || X <—- L]. % read X*X
for X in L

e Similarly, if L is a list of numeric tuples, to compute
the list of products

products (L) -—> [X*Y || {X,Y¥} <- L].

* Can make inclusion dependent on the data values
with filters

sqrts (L) -—> [sqrt(X) || X <- L, X>=0].

WASHINGTON STATE
@;wmwwmv

World Class. Face to Face.

Pythagorean Triples

pythag(N) ->
[{A,B,C} ||
A <- lists:seq(l,N),
B <- lists:seq(1,N),
C <- lists:seq(1l,N),
A+B+C =< N,
A*A+B*B =:= C*C

Permutations

perms ([1) —-> [[1];
perms (L) ->
[[HIT] |
H <- L,
T <- perms (L-——[H])

WASHINGTON STATE

EgUﬁﬁﬁﬁT_

World Class. Face to Face.

Pattern matching with guards

* List comprehensions combined generators and
filters

* In function definitions can use guards to further
limit matching

max (X,Y) when X>Y -> X;
max (X,Y) —> Y.

* Guards may be conjunctive (and) — combine with ,
or

* disjunctive(or) — combine with ;
* Side-effects in guards are not allowed

WASHINGTON STATE
@UMVERSITY

World Class. Face to Face.

Raising Exceptions

* exit(Why) % current process exits
* throw(Why) %
* erlang:error(Why)

* Have to go to extra effort to handle an exit() or
erlang:error(). Otherwise similar.

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Catching Exceptions

try FuncOrExpressionSequence of

Patternl [when Guardl] -> Expressionsl;

catch

ExType: ExPatternl [when exGuardl] ->
ExExpressionsl;

after
AfterExpressions
end

WASHINGTON STATE
@UMVERSIW

World Class. Face to Face.

Try notes

* You can omit the “of Patterni -> Expressionsi” part
entirely

* You can omit the “after After” part entirely

* Questions
* Do the catch phrases handle exceptions occuring
during the Expressionsi?
» What is retry ?

