
CptS/EE 455
Fall 2011
Project 2

Assigned: Oct 19, 2011
Due: Friday, Nov. 11, 2011 (11/11/11) at 11:59:59PM

Summary
In this project you will create a network of simulated routers implementing a distance-
vector routing algorithm.

The purposes of this project: to become familiar with the dynamic behavior of the
distance-vector algorithm; to learn about programming with datagram sockets; to learn
about socket demultiplexing using the select() system call; to learn about managing time
using the select() system call.

Logistics
You may write this program in C, C++, or Python. If you want to use a different language
supporting demultiplexing using select, please ask me first. You may NOT use a
multi-threaded solution.

What to turn in
Turn in a zip (or tar) file named project2.zip (project2.tar) containing:

1. README.txt file - containing complete instructions for creating your router from
source and for running it on the supplied test cases.

2. Makefile or equivalent
3. COMMENTS.{doc,odf,txt,pdf} file – only one required. See below.
4. OUTPUT.txt - Test case output
5. Program code files

Specifications
You are to create a program that implements a distance-vector routing algorithm like the
one section 4.5.2 of the text. You will implement it on multiple, communicating routers.
For this project we will define infinity to be 64.

Each router instance will read the configuration of its local links from files at the
beginning of the run. The supplied C files readrouters.{h,c} read these files and
construct a data-structure representation. One configuration file, testdir/routers, contains a
list of all the routers in the system along with the hostname on which they run and the
beginning port number that they use. Each of the other files, testdir/<routername>.cfg,
contains the link information for router <routername>. The predefined test cases use
localhost for the hostname and a fixed set of port numbers. You are free to edit this file to
allow different routers to run on different hosts or to use different port numbers. (Note: in
each testdir/ there is another file named links. This file is not used directly by
your program but can be used with the generateTest script described below to create the
other files in the directory; let me repeat that: the file named links is NOT used by
your program)

The files are in the zip file in which you found this assignment.

Your program should be invoked like this:

router testdir routername

Where testdir is the name of a directory containing the configuration files and
routername is a single-letter router name corresponding to an entry in the list of routers.
You must run your routers against the test{1,2} directories (provided) and turn in the
output in file OUTPUT.

Your router should initialize its routing table with entries for all directly-connected
neighbors. Non-neighbors can either be added dynamically or entered initially with
infinite cost.

Messages
Router update messages

Each instance of your router will learn of better paths to other routers by receiving
routing table updates from its neighbors. The neighbors send datagram messages that
look like:

U d cost

That is, the letter U followed by a space, followed by a single-letter destination name,
followed by a space, followed by the cost of reaching the destination from the neighbor
expressed as a sequence of ascii decimal digits.

Link cost messages

Your router may receive link-cost changes as well. These look like:

L n cost

Where n is a neighbor and cost is the new cost of reaching that neighbor directly. (Link
cost messages will only be received for existing links – you do not have to deal with new
links coming into existence, but the cost of a link may change to infinity – and back).

Upon receiving either of these messages your router should make the appropriate changes
to its routing table, and if there are changes, send the changed entries immediately to its
neighbors using U-messages. Sending updates immediately like this is called “Triggered
Update”. Do not implement poison-reverse. Whenever a routing table entry is added or
changed your program should print on standard output a message like this:

(<r> – dest: <d> cost: <c> nexthop: <n>)

Where <r> is the name of the router making the change, <d>, <c>, and <n> are the
destination name, cost, and nexthop name, and the remainder of the pattern is literal
characters. That is, you might use something like

printf(“(%s – dest: %s cost: %d nexthop: %s)\n”, r, d,
c, n)

to print these messages.

In addition to sending triggered updates, your router should send U-messages for all its
routing table entries to each of its neighbors every 30 seconds.

Print messages

Finally, your router should respond to an incoming datagram consisting of:

P d

by printing its routing table entry for destination d. Use the above format but without the
surrounding parentheses. If the d is omitted print all the entries in the routing table.

Implementation Notes
The links between neighboring routers are to be simulated using connected datagram
sockets. A connected datagram socket sends to and receives from only its connected peer.
For those using C, the function createConnections in readrouters.c will construct
the connected datagram sockets for talking to neighbors and provide you with an array of
(neighbor,socket) pairs. Your code will consult this array when sending to a neighbor to
find out what socket to use. When receiving a message this array is consulted to
determine from which neighbor the message came.

In addition to these connected sockets you will also create an unconnected socket bound
to the local baseport to receive L and P messages (never U messages – those come only
from neighbors).

C implementation using select: the “next message” may arrive on any of these sockets
(the connected ones or the unconnected one) and each router has to send its entire routing
table to its neighbors, even in the absence of incoming messages, every 30 seconds.
Therefore, you will need to use the select() system call to find out which socket
descriptor(s) have available messages and issue recv() calls only for those descriptors.
select() also provides the mechanism you need for determining when 30 seconds
have passed. In addition to reading the relevant sections of “The Pocket Guide” book, I
strongly suggest that you look at the unix man page for select().

Since you will need to start and stop multiple processes each time you change your code,
I suggest that you develop shell scripts for this purpose. Please, please, please do not
leave programs running unattended on the lab machines. And be alert to programs that
are looping without doing useful work.

Additional resources
RFC 1058 describes RIP, which is an internet routing protocol very much along these
lines.
I’ve provided programs in the zip file to send the P and L control messages. These are
python scripts so they will work on any machine where the python interpreter is installed
as /usr/bin/python.

To send print messages use the printtables script:
printtables testdir r
printtables testdir

triggers printing of router r’s table or all routers’ tables, respectively by sending P
messages.

To update the cost of a link use the changelink script:
changelink testdir r1 r2 c

sends the appropriate L messages to r1 and r2.

The testdir argument is needed because the programs read the router configuration file to
find the appropriate host and port destination for the messages that they send.

Another handy program is generateTest, which you can use to make up your own test
networks.

generateTest testdir
Remember the links file that was mentioned previously as not being used by your
program. GenerateTest reads the file testdir/links and produces the files
testdir/routers along with testdir/<routername>.cfg for each router.
testdir/links is just a list of links, one per line, consisting of the names of the two
endpoints and the cost of the link. Note that if any node of the graph has degree greater
than 9 this program will work but the generated configuration will have problems. You
can fix it by changing port = port + 10 near the bottom to port = port + 20.

Grading
• 75% of the grade will be for working code, defined as your routers computing the

correct routing table for input test cases and responding correctly when link costs
change.Your demonstration of your server to the TAs will be part of this grade.

• 5% for the README file
• If your program will not compile or core-dumps when run the maximum credit is

50% for the project.
• The remaining 20% of the grade will be for your COMMENTS file

COMMENTS file
The COMMENTS file for this project will be a mini-paper about routing and your
implementation of it. Another way of looking at it is as a lab write-up. In your paper:

• Describe the routing problem
• Describe the solution implemented in your program.
• For each of the two test cases.

o Describe the test case
o What routing tables did your algorithm converge to? Are they correct?
o In test1, what happens when link cost BE changes to 2, the algorithm is

allowed to converge, and then BE changes back to 8.
• Describe any additional experiments you have performed with your router and the

results of those experiments.
• Point out decisions that either I or you have made that could significantly affect

the behavior of this distributed routing algorithm.

• Point out any discrepancies between the behavior you observe in your program
and the behavior of D-V routing described in the textbook.

• In your conclusion, assess how realistically your router models the function of a
real internet router? What simplifying assumptions have we made? What aspects
of the environment are different and might have significant influence on the
performance of a real router? Again, I encourage you to read RFC 1058 as
background.

• Finally, please tell me how long you spent on this project.

