
CPTS 455 Project 1
TCP/IP Socket Programming
Assigned Sept. 16, 2013
Due: Oct 7, 2013, 11:59PM (turnin using Angel Dropbox)

In this project you will develop a client and server that interact over a TCP
connection. The specified protocol involves use of several different kinds of
serialization of protocol data so that you become familiar with the programming
techniques used to deal with each of them.

Specifically, the client and server are C programs that need to meet the following
requirements:

1. The client program needs to take two command-line arguments that specify
the name (or IP address) of the server and the port on which the server is
listening. The server program needs to take a command-line argument that
specifies the port on which it is to listen.

2. You will start the server first. Once started, it should not quit until exited
using a “Ctrl-C” signal (implementing this takes no code on your part). When
the client starts it will connect to the server.

3. Once the client has connected, the server will send a welcome message
“Welcome to The Server” to the client as a new-line-terminated (\n) string
(the 1st communication of our little application protocol). Note that a null
terminating character should not be sent when a newline-terminated
string is specified. Remember that the client code must be prepared for
the server to say something other than this; if so it should close the
connection, print an error message, and exit.

4. After receiving the welcome message from the server, the client will prompt
the user to enter 8-digit ID number and a name (maximum 20 characters)
using the keyboard – i.e. from standard input. This ID and the name will then
be sent in that order to the server as 2 newline-terminated strings (2nd

communication of the application protocol).
5. The server, after receiving the ID number and name from the client, will look

up the pair of them in a table (which may be created and stored as part of
your program code – don't do anything fancy, just make an array of a few ID
numbers and names in your code) and send a validation message “Success”
if the pair is found in the table, or send “Failure” otherwise, to the client (3rd

communication of the protocol) – whichever one is sent is sent as a
newline-terminated string.

6. If failure occurs the server will allow steps 4 and 5 to be repeated, up to a
total of 3 tries. After 3 denials the server closes the socket. The client
should take advantage of this server behavior by detecting the
closed socket and giving up.

7. After receiving a Success message from the server, the client will prompt the
user with a message asking for a password (maximum 512 characters). This
password will be sent to the server by first sending the length as a 2-byte
binary number in network byte order (remember to use htons() on the
sending side and ntohs() on the receiving side) followed by the string (not
null terminated). Note that this is a different way of sending a string

than used previously in steps. And again, no null character is sent at
the end of the string.

8. The server, after receiving the password from the client, will verify that the
password matches the previously received name and ID number in the table
in your program code. The server will either send the message
“Congratulations <name>; you've just revealed the password for <ID
number> to the world!” or the message “Password incorrect” as in step 7
depending on whether the password was correct or not. As before, the server
will allow steps 7 and 8 to be tried at most three times and the client should
take advantage of this behavior and then close the connection.

9. The client, after receiving the result message, will print out the result and
close the socket (if it is success message) and exit. If it is a failure message,
the client will allow 2 more chances to send the password to the server by
prompting the user to enter password using keyword. After 3 trials, in case of
failure message, the client will close the socket and exit.

10.When the server closes its communication socket it resumes listening for
client connections.

Additional requirements, hints, etc.
11.Check the return values of all system calls, print an appropriate message and

exit if an error occurs. Also, remember that send and recv on TCP sockets do
not necessarily send and receive as much data as was requested to be
sent/received.

12.Make sure that buffers are big enough for the values that may be stored in
them.

13.To go from a hostname or an IP address expressed in dotted decimal notation
as a string to a value suitable for storing in a struct sockaddr_in for use in a
call to connect you use the library function getaddrinfo(). Its use is described
in Donahoo and Calvert second edition. If you have the first edition of the
book it describes the gethostbyname() function which it is also possible to
use – or just read the man page for getaddrinfo().

