
Mid-term Sample Exam #2 CptS/EE 455 October 28, 2013

This is a **closed book, closed neighbor** exam. One page of notes (8 $\frac{1}{2}$ x 11 front and back) and calculators are allowed. Answer the questions in the space provided. This is a **50 minute** exam, 10:10 - 11:00. Exams will be collected promptly at 11:00.

For best chance at partial credit, show all calculations.

3a) **[10 pts]** Complete the table below to show how Dijkstra's link-state algorithm would build a routing table at node D for the following network. Note: the first row is **not** complete—be sure to fill in the missing entries.

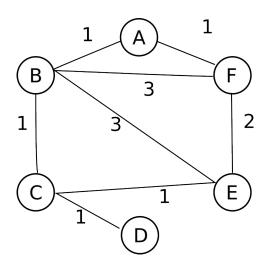


Table I: compute the distance and predecessor of each destination. At each step the N' column should contain the list of nodes whose final distance is known at that step.

Step	N'	D(A), p(A)	D(B), p(B)	D(C), p(C)	D(E) , p(E)	D(F), p(F)
0	D			1,D		
1						
2						
3						
4						
5						

3b) **[5 pts]** Based on your Table I, what path would be used for a packet traveling from node D to node F? (No credit if your answer is not correctly derived from the table you computed in part a of this question.)

4. **[10 pts]** Suppose that a router using a distance-vector algorithm currently holds the following routing table (note that this is NOT the same network as used in the previous problem!):

Destination	Next-hop	Cost	
A	E	6	
В	В	4	
С	С	3	
D	E	7	
E	E	1	

This router now receives the following from its neighbor, B, to which it is attached by a cost 4 link.

Destination	Cost	
Α	1	
С	1	
D	2	
E	2	

Fill in the table below to reflect this router's routing table after processing the update above.

Destination	Next-hop	Cost	
Α			
В			
С			
D			
E			

What specific additional action(s) will this router take after computing its new routing table?

- 5. Question about VC-routing table
- 6 Question about Datagram (connectionless) routing table; longest-prefix matching, etc.
- 7. Question about NAT routing tables
- 8. Multicast flooding, controlled flooding, spanning tree,
- 9. IPv4 header/IPv6 header differences
- 10. Tunneling (IPv6 and multicast)
- 11. Reason for organizing int Ass
- 12. Connection-oriented service model advantages and disadvantages
- 13. Connection-oriented service (TCP) vs Connection Service at the Network layer
- 14. Router architectures: memory, bus, cross-bar. Input and output queueing. Head of line blocking.
- 15. Fragmentation in IPv4 and IPv6