
CptS/EE 455
Fall 2013

Proxy Project
Assigned: Friday Nov 15, 2013

Due: 11:59:59PM Fri Dec 6, 2013

Summary
In this project you will create an HTTP proxy server. A proxy server plays the “server”
role with respect to a web browser and the “client” role with the respect to a web server,
passing along requests from the client to the server. Proxy servers in common use
typically add value by acquiring a set of pages in a cache which they can serve to their
clients faster than by going to the real server (textbook section 2.2.5). Other uses include
filtering out advertising, animations, images, etc. from web pages. Your proxy server will
simply pass every request along to the appropriate server and pass every response back to
the client; but it will also log all the HTTP headers that it sees in both requests and
responses, making this part of the HTTP protocol more visible to you.

The purposes of this project: to become familiar with basic programming techniques and
patterns used in a multi-process or multi-threaded web server; to further practice skills in
creating TCP-based clients and servers; to develop your skills at creating programs that
simultaneously play the “client” and “server” role.

Additional skills: you will also gain experience using string processing functions to parse
and alter HTTP headers.

Alternate Project
If you would like to do an alternate project please give me a proposal: suggested
acceptable alternates are 1) an implementation of a network application (game, chat
system, … the next facebook or twitter, etc.) 2) an implementation of an illustration of
some aspect of networking – e.g. equal TCP link sharing, routing, … 3) a more
research-oriented project leading to a paper and/or implementation of some developing
topic in networking (e.g. SCTP, IPv6, real-time, VOIP, streaming media, etc.) The
alternate project needs to represent about as much work and learning as this project (and
the other ones done for this class).

Logistics
You may write this program in C, C++, Python or Java. You must not use
language-supplied or 3rd party libraries for protocol and server creation but must write all
of the necessary protocol processing code yourself. (The point is to become familiar with
the details of the protocols and how servers are constructed – using language or 3rd party
libraries eliminates this benefit.)

If you want to use a different language, please ask me first.

What to turn in:

• Your code, your Makefile (if needed), the output from the test cases, and your
COMMENTS and README files are be placed in proxy.zip and submitted using
the Proxy Project Dropbox on Angel. The README file should contain complete
instructions for creating your server from source and for running it. You will need
to include instructions for configuring a browser to use your server. In the
COMMENTS file you will report on some experiments that you run using your
proxy server.

Specifications
You are to create an HTTP proxy server that

1. accepts connections from web clients (i.e. Firefox or Internet Explorer) on a port
of your choosing.

2. Upon accepting a connection creates a separate process (or thread) to handle
communication for that request using the forking TCP Server pattern discussed in
class.

3. Cleans up after any completed child processes using the wait3() system call (if
using C/C++). See the man page. You will want to use the WNOHANG option to
clean up completed children without blocking in the case that none are complete.

The separate process for a particular request

1. reads an HTTP request from the socket connected to the client and returned by
accept()

2. creates a new socket connected to the server specified in the client’s request

3. passes an optionally-modified (see below) version of the client’s request to the
server

4. reads the server’s response and passes an optionally-modified version of it to the
client.

While doing steps 1 through 4, the process handling a request will print the request and
response messages, along with all HTTP headers found in both the request and the
response (before any alterations performed by your proxy server), on the standard output
of the proxy server.

Test URLs: www.eecs.wsu.edu/~hauser/cs455/lectures/calendar.html, www.cnn.com,
and one other of your choice. Explain in your COMMENTS file the meaning of each of
the headers that your proxy server prints while connecting to these sites. Does your proxy
cause or have any difficulties with any of these sites? Do you notice anything interesting
or different between the sites?

Optional Header Modifications
The specification allows the proxy server to modify the request and response headers.
The purpose for doing the modification is to simplify your implementation’s task at
finding boundaries in the data streams. As we have talked about, one of the problems
facing a protocol designer or implementor is deciding how to delimit the boundaries

http://www.eecs.wsu.edu/~hauser/cs455/calendar.html
http://www.cnn.com/

between various parts of a message. In HTTP this delimiting is done in several ways. By
altering the headers we can make most of these ways not happen.

We will alter the HTTP headers so that in almost all the cases that we care about, the
boundaries will be marked by an “end-of-stream” condition. In order to accomplish this
you need to make the following modifications to both the request and response headers:

1. delete any Connection: xxx headers (xxx can be any value).

2. delete any Proxy-Connection: xxx headers

3. Insert a Connection: close header.

Using Connection: close ensures that only one request and its response are ever
passed over a single TCP connection, so the end-of-stream condition is the indicator you
can follow to stop copying, close the connections, and exit the process (or thread) that is
handing a particular request.

Another important boundary is the one between the headers and the content. This
boundary is always marked by a blank line (look for a pair of carriage-return line-feeds in
the input). The C escape sequence for this sequence is “\r\n\r\n”.

Finally, in order to process POST requests you will need be able to read exactly the right
amount of data following the POST header. The length that you need is contained in the
Content-Length: header of the POST request.

Development Hints
I suggest starting by getting code working for a simpler problem first: develop a forking
server that reads HTTP requests and prints them, sending back to the browser (client) a
page that contains content of your choosing (a copy of the request might be interesting).
Set up a web browser to use your server as its proxy server and try requesting some
pages. Look at the output of your proxy to see what sort of input it is getting. That will
help you with completing the assignment.

Once your basic server is working you will need to process GET, POST, and HEAD
messages from the client to find out what web server to connect to. Remember that the
format of these messages is

OP /path/to/file HTTP/1.x
A host: header will follow that identifies the server from which the file is to be
retrieved. You will need to open a connection to the server and pass along the the request
message on the new connection to the server.

Advice
1. The work YOU submit MUST be the result of your own efforts. Do not copy code

from other students or from the Internet. Any violations of this rule will result
penalties ranging from an automatic zero grade on the project to an F in the
course.

2. Start early. This project can be quite time consuming. Remember that you are
probably learning quite a number of new things in the course of the project such
as use of wait() and fork(), how to organize programs that read data from one

socket and write it to another, and so forth. As calibration points: it took me about
10 hours to do this project and while working out the details of the specification.
It took a TA about 8 hours in a previous semester. You can expect to spend two or
three times as long.

3. Ask questions EARLY. I am available to help you several hours per week, but I
am not available for extensive help at the last minute.

Grading
• 65% of the grade will be for working code, defined as being able to use your

proxy server with a browser to successfully handle web requests and responses. If
everything except POST works you will lose 10%.

• 5% for the README file
• 5% for the Makefile or other build automation technique
• If your program will not compile or core-dumps when run the maximum credit is

50% for the project.
•

The remaining 25% of the grade will be for your COMMENTS file including its analysis
of the HTTP headers that you find.

