Overview

- What is an agent?
- Rational agent
- Types of environments
- Types of agents
Agent perceives its environment through sensors and acts on its environment through actuators.

- Percepts: Perceptual inputs to the agent.
- Percept sequence: Complete history of the agent’s percepts.
Vacuum Agent

- Input: Percept = [location, state]
 - Location ∈ {A, B}
 - State ∈ {Clean, Dirty}
- Return: Action ∈ {Left, Right, Suction}

```
Action VacuumAgent (Percept p)
{
    if (p = [?, Dirty])
    then return Suction
    if (p = [A, Clean])
    then return Right
    if (p = [B, Clean])
    then return Left
}
```
Rational Agent

- Rational Agent takes actions that maximize the **performance measure** given the percept sequence and any **prior knowledge**
 - Performance measures?

- Prior knowledge?

- Is VacuumAgent rational?
Self-Driving Car

CES 2019: www.youtube.com/watch?v=gfWjsKsEry0
Rational Agent

- Should a rational agent:
 - Know everything?
 - Explore?
 - Learn?
Taxicab Agent

Johnny Cab from “Total Recall” (1990)
Task Environment

- **PEAS**
 - Performance
 - Environment
 - Actuators
 - Sensors

<table>
<thead>
<tr>
<th>Agent Type</th>
<th>Performance</th>
<th>Environment</th>
<th>Actuators</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi Driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task Environment Examples

<table>
<thead>
<tr>
<th>Agent Type</th>
<th>Performance</th>
<th>Environment</th>
<th>Actuators</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puzzle solver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part picker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task Environment Properties

- Fully observable vs. partially observable
 - Do sensors give complete state of environment

- Single agent vs. multiagent
 - Are there other agents in the environment whose performance is affected by this agent

- Puzzle solver?

- Part picker?
Task Environment Properties

- Deterministic vs. stochastic
 - Next state of environment completely determined by current state and agent’s action

- Episodic vs. sequential
 - Future percepts and actions do not depend on past percepts and actions

- Puzzle solver?

- Part picker?
Task Environment Properties

- Static vs. dynamic
 - Can the environment change while the agent is deliberating

- Discrete vs. continuous
 - Are there a fixed number of environment states

- Known vs. unknown
 - Are the effects of actions known

- Puzzle solver?

- Part picker?
Hunt the Wumpus game
 ◦ Written in BASIC, 1972
 ◦ First available on the TI-99/4A
Wumpus World (PEAS)

- Performance measure
 - +1000 for leaving cave with gold
 - −1000 for falling in pit or being eaten by wumpus
 - −1 for each action taken
 - −10 for using the arrow
 - Game ends when agent dies or leaves cave
Wumpus World (PEAS)

- **Environment**
 - 4x4 grid of rooms
 - Agent starts in square [1,1] facing right with 1 arrow
 - Location of wumpus and gold chosen at random other than [1,1]
 - Each square other than [1,1] has a 0.2 probability of containing a pit
Wumpus World (PEAS)

- **Actuators**
 - **Forward**
 - **TurnLeft by 90°**
 - **TurnRight by 90°**
 - **Grab** picks up gold if agent in gold location
 - **Shoot** shoots arrow in direction agent is facing
 - Arrow continues until hits wumpus or wall
 - **Climb** leaves cave if agent in [1,1]
Wumpus World (PEAS)

- Sensors (Boolean)
 - **Stench** if wumpus in directly (not diagonally) adjacent square
 - **Breeze** if pit in directly adjacent square
 - **Glitter** if gold in agent’s current square
 - **Bump** if agent walks into a wall
 - **Scream** if wumpus is killed
Wumpus Environment

- Fully or partially observable?
- Discrete or continuous?
- Static or dynamic?
- Deterministic or stochastic?
- Single or multi-agent?
- Episodic or sequential?
- Known or unknown?
Basic Agent Program

- Details of design based on task (PEAS) and properties of environment

```
Action Agent (Percept percept)
{
    Process percept
    Choose action
    return action
}
```
Table-driven Agent

- Table: Percepts \rightarrow Actions
- Where does table come from?
- How large is table?

```plaintext
Action TableDrivenAgent (Percept percept)
{
  PerceptSequence percepts
  Table T

  Append percept to end of percepts
  action = Lookup (percepts, T)
  return action
}
```
Simple Reflex Agent

- Where do rules come from?
- Random component to avoid repetitive behavior

Action `SimpleReflexAgent` (Percept percept)
```java
{ 
    RuleSet rules
    
    state = InterpretInput (percept) 
    rule = RuleMatch (state, rules) 
    action = rule.action 
    return action 
}
```
Model describes how world evolves and effects of actions

Where do model and rules come from?

How to represent state and model?

Action `ModelBasedReflexAgent` (Percept percept)

```plaintext
{
    RuleSet rules
    Model model

    state = UpdateState (state, action, percept, model)
    rule = RuleMatch (state, rules)
    action = rule.action
    return action
}
```
Goal-based Agent

- Search for sequence of actions to achieve goals
- Model, state, goals
 - Source?
 - Representation?
Utility–based Agent

- Search for sequence of actions to reach a high utility state
- Maximize expected utility
- Model, state, utility
 - Source?
 - Representation?

![Diagram](image-url)
Learning Agent

- **Learning element** changes agent to improve performance
 - Models, rules, goals
- **Performance element** one of previous agents
- **Critic** provides feedback on agent’s performance
- **Problem generator** drives agent to explore

[Diagram of an agent with learning and performance elements, critic, and problem generator]
Summary

- Rational agent seeks to maximize performance
- Agent’s task defined in terms of Performance, Environment, Actuators and Sensors
- Agent’s environment defined in terms of multiple dimensions (observability, …)
- Agent’s type defined in terms of reflexes, rules, models, goals and/or utilities
- All agents can benefit from learning