Search

Larry Holder
School of EECS
Washington State University
Overview

- Problem-solving agent
- Formulating problems
- Search
 - Uninformed search
 - Informed (heuristic) search
 - Heuristics
 - Admissibility
Type: Goal-based

Feature-based state representation
 - Agent location, orientation, ...

Assume solution is a fixed sequence of actions

Rationality: Achieve goal (minimize cost)

Search for sequence of actions achieving goal

Which solution: A, B or C?
Wumpus World Example

- Initial state →
- Goal state
 - Any state where agent has gold and not in cave
- Solution?
Problem–Solving Agent

function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
 persistent: seq, an action sequence initially empty
 state, some description of the current world state
 goal, a goal, initially null
 problem, a problem formulation
 state ← UPDATE-STATE (state, percept)
 if seq is empty then
 goal = FORMULATE-GOAL (state)
 problem = FORMULATE-PROBLEM (state, goal)
 seq = SEARCH (problem)
 if seq = failure then return a null action
 action = FIRST (seq) // action = seq[0]
 seq = REST (seq) // seq = seq[1…]
 return action
Well–Defined Problems (5 parts)

1. **Initial state**
 - **State**: relevant features of the problem

2. **Actions**
 - **Action**: state \rightarrow state
 - $\text{ACTIONS}(s)$ returns set of actions applicable to state s

3. **Transition model**
 - $\text{RESULT}(s,a)$ returns state after taking action a in state s

4. **Goal test**
 - True for any state satisfying goal

5. **Path cost**
 - Sum of costs of individual actions along a path
 - **Path**: sequence of states connected by actions
 - **Step cost** $c(s,a,s')$: cost of taking action a in state s to reach state s'
Well-Defined Problems: Terminology

- **State space**: set of all states reachable from the initial state by any sequence of actions
 - State space forms a directed graph of nodes (states) and edges (actions)
- **Solution**: sequence of actions leading from the initial state to a goal state
- **Optimal solution**: solution with minimal path cost
Vacuum World Problem

- **State representation**
 - Location: A, B
 - Cleanliness of rooms: Clean, Dirty
 - Example state: (A,Clean,Clean)
 - How many unique states?
- **Initial state**: Any state
- **Actions**: Left, Right, Suction
- **Transition model**
 - E.g., Result((A,Dirty,Clean), Suction) = ?
- **Goal test**: State = (?,Clean,Clean)
- **Path cost**
 - Number of actions in solution (step cost = 1)
Vacuum World State Space
8-Puzzle

- **State**: Location of each tile (and blank)
 - E.g., (B,1,2,3,4,5,6,7,8)
 - How many states?
- **Initial state**: Any state
- **Actions**: Move blank tile Up, Down, Left or Right
- **Transition model**
- **Goal test**: State matches Goal State
- **Path cost**: Number of steps in path (step cost = 1)
Search

- **Search tree**
 - Root node is *initial state*
 - Node branches for each applicable move from node’s state
 - **Frontier** consists of the leaf nodes that can be expanded
 - Repeated states (*)
 - **Goal state**
Nice 8–puzzle search web app

- http://tristanpenman.com/demos/n-puzzle

Caution: This app may not produce answers consistent with algorithms used in this class.

Initial State

```
1 2 3
4 5
7 8 6
```

Goal State

```
1 2 3
4 5 6
7 8
```
Real-World Search Problems

- Route finding
- Robot navigation
- Factory assembly
- Circuit layout
- Chemical design
- Mathematical proofs
- Game playing

Most of AI can be cast as a search problem
Route Finding Example

- Romania road map
- Initial state: Arad
- Goal state: Bucharest
Route Finding Example
Search Tree

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Duplicate

Bucharest
Tree Search

function **Tree-Search** *(problem)* returns a solution, or failure
initialize the frontier using the initial state of *problem*

loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 expand the node, adding the resulting nodes to the frontier

- **Search strategy** determines how nodes are chosen for expansion
- Suffers from repeated state generation
Graph Search

function Graph-Search (problem) returns a solution, or failure
 initialize the frontier using the initial state of problem
 initialize the explored set to be empty
loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 add the node to the explored set
 expand the node, adding the resulting nodes to the frontier
 only if not in the frontier or explored set

- Keep track of explored set to avoid repeated states
- Changes from Tree-Search highlighted
Measuring Performance

- Completeness
 - Is the search algorithm guaranteed to find a solution if one exists?

- Optimality
 - Does the search algorithm find the optimal solution?

- Time and space complexity
 - Branching factor b (maximum successors of a node)
 - Depth d of shallowest goal node
 - Maximum path length m
 - Complexity $O(b^d)$ to $O(b^m)$
Uninformed Search Strategies

- No preference over states based on “closeness” to goal
- Strategies
 - Breadth-first search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search
Breadth-First Search

- Expand shallowest nodes in frontier
- Frontier is a simple queue
 - Dequeue nodes from front, enqueue nodes to back
 - First-In, First-Out (FIFO)
function **BREADTH-FIRST-SEARCH** \((\text{problem})\) **returns** a solution, or failure
node ← a node with \(\text{STATE} = \text{problem.}\text{INITIAL-STATE} \), \(\text{PATH-COST} = 0\)
if \(\text{problem.GOAL-TEST(node.STATE)}\) then return **SOLUTION(node)**
frontier ← FIFO queue with \(\text{node}\) as only element
explored ← empty set

loop do
 if \(\text{EMPTY(frontier)}\) then return failure
 node ← \(\text{DEQUEUE(frontier)}\) // choose shallowest node in frontier
 add \(\text{node.STATE}\) to \(\text{explored}\)
 for each \(\text{action}\) in \(\text{problem.ACTIONS(node.STATE)}\) do
 child = \(\text{CHILD-NODE(problem, node, action)}\)
 if \(\text{child.STATE}\) is not in \(\text{explored}\) or \(\text{frontier}\) then
 if \(\text{problem.GOAL-TEST(child.STATE)}\) then return **SOLUTION(child)**
 frontier ← \(\text{ENQUEUE(child, frontier)}\)
Breadth-First Search

8-puzzle demo

Initial State

Goal State
Breadth-First Search

- Complete?
- Optimal?
- Time complexity
 - Number of nodes generated (worst case)
 \[\sum_{i=0}^{d} b^i = \frac{b^{d+1} - 1}{b - 1} = O(b^d) \]
- Space complexity
 - \(O(b^{d-1}) \) nodes in explored set
 - \(O(b^d) \) nodes in frontier
 - Total \(O(b^d) \)
Breadth-First Search

- Exponential complexity $O(b^d)$
- For $b=4$, 1KB/node, 1M nodes/sec

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>0.02 ms</td>
<td>16 KB (10^3)</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>0.26 ms</td>
<td>256 KB (10^3)</td>
</tr>
<tr>
<td>8</td>
<td>65,536</td>
<td>0.07 sec</td>
<td>65 MB (10^6)</td>
</tr>
<tr>
<td>16</td>
<td>4.3B</td>
<td>71.6 min</td>
<td>4.3 TB (10^{12})</td>
</tr>
<tr>
<td>20</td>
<td>10^{12}</td>
<td>12.7 days</td>
<td>1 PetaByte (10^{15})</td>
</tr>
<tr>
<td>30</td>
<td>10^{18}</td>
<td>366 centuries</td>
<td>1 ZettaByte (10^{21})</td>
</tr>
</tbody>
</table>
Depth–First Search

- Always expand the deepest node
- Frontier is a simple stack
 - Push nodes to front, pop nodes from front
 - Last–In, First–Out (LIFO)
- Otherwise, same code as BFS
- Or, implement recursively
Depth-First Search
Depth–First Search

- Tree–Search version
 - Not complete (infinite loops)
 - Not optimal

- Graph–Search version
 - Complete
 - Not optimal

- Time complexity \((m = \text{max depth})\): \(O(b^m)\)

- Space complexity
 - Tree–search: \(O(bm)\)
 - Graph–search: \(O(b^m)\)
function **DEPTH-LIMITED-SEARCH** (*problem, limit*) returns a solution, or failure/cutoff
return **RECURSIVE-DLS** (**MAKE-NODE** (*problem*.**INITIAL-STATE*), *problem*, *limit*)

function **RECURSIVE-DLS** (*node, problem, limit*) returns a solution, or failure/cutoff
if *problem*.**GOAL-TEST**(*node*.**STATE**) then return **SOLUTION**(*node*)
else if *limit* = 0 then return **cutoff**
else
cutoff_occurred ← false
for each action in *problem*.**ACTIONS**(*node*.**STATE**) do
 child = **CHILD-NODE**(*problem*, *node*, action)
 result ← **RECURSIVE-DLS** (*child, problem, limit – 1*)
 if result = cutoff then cutoff_occurred ← true
 else if result ≠ failure then return result
if cutoff_occurred then return cutoff else return failure
Depth-Limited Search

- Limit DFS depth to l
- Still incomplete, if $l < d$
- Non-optimal if $l > d$
- Time complexity: $O(b^l)$
- Space complexity: $O(b^l)$
Iterative–Deepening Search

- Run `DEPTH-LIMITED-SEARCH` iteratively with increasing depth limit

```plaintext
function Iterative-Deepening-Search (problem) returns a solution, or failure
    for depth = 0 to ∞ do
        result = Depth-Limited-Search (problem, depth)
        if result ≠ cutoff then return result
```
Iterative–Deepening Search
Iterative–Deepening Search

- Complete?
- Optimal?
- Space complexity: \(O(bd) \)
- Time complexity

\[
\sum_{i=0}^{d-1} (d-i)b^{i+1} = (d)b + (d-1)b^2 + \ldots + (1)b^d = O(b^d)
\]

- \#Nodes at depth \(d = \#\text{Nodes at depths 1 to (d-1)} \)
- Iterative deepening best uninformed search when solution depth unknown
Uninformed Search Strategies

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>Yes*</td>
<td>No</td>
<td>No</td>
<td>Yes*</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^d)$</td>
<td>$O(b^m)$</td>
<td>$O(b^c)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^d)$</td>
<td>$O(bm)$</td>
<td>$O(b^c)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Optimal</td>
<td>Yes**</td>
<td>No</td>
<td>No</td>
<td>Yes**</td>
</tr>
</tbody>
</table>

* Complete if b is finite
** Optimal if step costs all the same
Informed (Heuristic) Search

- Guided by problem-specific knowledge other than the problem formulation
- Problem-specific knowledge usually expressed as heuristics

Which node closest to goal?
Heuristic Function

- **Heuristic function** $h(n)$ estimates cost of the path from state n to a goal state
 - E.g., 8-puzzle
 - Number of tiles out?
 - Euclidean distance of each tile?
 - City-block (Manhattan) distance of each tile?
 - Non-negative function
 - For goal node $h(n)=0$
- Recall **path cost** $g(n)$ is the cost so far from the initial state to state n
- **Evaluation function** $f(n) = g(n) + h(n)$ estimates the total cost of a solution going through state n
Heuristic Search Strategies

- Greedy best-first search
 - Choose node on frontier with smallest $h(n)$

- A* search
 - Choose node on frontier with smallest $f(n)$

- Hill-climbing
 - Choose node with smallest $h(n)$
 - Discard other nodes on frontier
function **BEST-FIRST-SEARCH** (*problem*) returns a solution, or failure

node ← a node with \text{STATE} = \text{problem.\textsc{initial-state}}, \text{COST} = h(node)

frontier ← priority queue ordered by COST, with node as only element

explored ← empty set

loop do
 if EMPTY(frontier) then return failure
 node ← DEQUEUE(frontier) // choose lowest cost node in frontier
 if \text{problem.goal-test}(node.\text{STATE}) then return SOLUTION(node)
 add node.\text{STATE} to explored

 for each action in problem.\text{ACTIONS}(node.\text{STATE}) do
 child = \text{CHILD-NODE}(problem, node, action)
 if child.\text{STATE} is not in explored or frontier then
 frontier ← ENQUEUE(child, frontier)
 else if child.\text{STATE} is in frontier with higher COST then
 replace that frontier node with child

Why not check Goal–Test here?

Why is this test necessary?
Greedy Best–First Search

- Best–first search with \(f(n) = h(n) \)
- Example: Route–finding problem
 - \(h(n) = \) straight–line distance from city \(n \) to goal city

Straight–line distances to Bucharest:

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobeta</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy Best–First Search Example:
Arad to Bucharest

(a) The initial state
(b) After expanding Arad
(c) After expanding Sibiu
(d) After expanding Fagaras
Greedy Best–First Search Example: Arad to Bucharest
Greedy Best–First Tree Search Example: Iasi to Fagaras

SLD to Fagaras
Neamt 200
Iasi 220
Vaslui 230
Greedy Best–First Search

- Complete?
- Optimal?
- Time and space complexity: $O(b^m)$
 - $b =$ branching factor
 - $m =$ maximum depth of search space
- Worst case
 - Good heuristic can substantially improve
A* Search

- \(f(n) = g(n) + h(n) \)
 - Estimated cost of solution through \(n \)
- Best-First-Search using Cost = \(f(n) \)
- Complete and optimal assuming some constraints on \(h(n) \)

History: A* generalizes over algorithms A1 and A2, which were heuristic extensions to Dijkstra’s shortest path algorithm.
A* Search Example: Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Rimnicu Vilcea
A* Search Example: Arad to Bucharest (cont.)

(e) After expanding Fagaras

(f) After expanding Pitesti
For A* tree search to be optimal, h(n) must be admissible

- A heuristic function h(n) is admissible if it never over-estimates the cost of reaching the goal from n
- E.g., Straight-line distance for route finding
- E.g., Tiles out of place in 8-puzzle

For A* graph search to be optimal, heuristic must further satisfy triangle inequality (also called consistent or monotonic)

- A heuristic function h(n) satisfies the triangle inequality if \(h(n) \leq \text{cost}(n,a,n') + h(n') \)
A* Search

- Complete and optimal?
 - Yes, if heuristic is admissible

- Time and space complexity?
 - Still $O(b^d)$ worst case
 - Space is typically the bottleneck

- A* is optimally efficient
 - No other algorithm using the same consistent heuristic is guaranteed to expand fewer nodes
Water Jug Problem

- **States**: Water jugs of various sizes with some amount of water in them
 - Jug j has capacity c(j) and contains w(j) gallons of water
- **Initial state**: Water jugs all empty: w(j) = 0
- **Actions**:
 - Fill a jug to the top with water from water source
 - Pour water from one jug into another until second jug is full or first jug is empty
 - Empty all water from a jug
- **Transition model**:
 - Fill(j): w(j) = c(j)
 - Pour(j1,j2):
 - w(j1) = max(0,w(j1)-c(j2)+w(j2))
 - w(j2) = min(c(j2),w(j1)+w(j2))
 - Empty(j): w(j) = 0
- **Goal test**: Some w(j) = X
- **Path cost**: Number of actions

Die Hard with a Vengeance (1995)
c(1)=3, c(2)=5, Goal: w(2)=4
State–Space Landscape

value $\sim 1 / h(n)$
Hill–Climbing Search

Also called “steepest ascent” or “greedy local search”
Gets stuck on local maxima and plateaus
Stochastic hill climbing
 ◦ Random selection of next node

function HILL-CLIMBING (problem) returns a state which is a local maximum
 current ← MAKE-NODE(problem. INITIAL-STATE)
 loop do
 next ← current
 for each action in problem.ACTIONS(node. STATE) do
 child ← CHILD-NODE(problem, node, action)
 if child. VALUE > next. VALUE then next ← child // VALUE ~ 1 / h(n)
 if next. VALUE ≤ current. VALUE then return current. STATE // Goal test?
 current ← next
Hill–Climbing

- Complete?
- Optimal?
- Time complexity?
- Space complexity?
Designing Heuristics

- Why not use $h(n) = 1$?

- Why not use $h(n) =$ actual optimal cost to goal from n?

- How to measure quality of heuristic?
Designing Heuristics

- E.g., 8-puzzle
 - $h_1 = \text{tiles out of place}$
 - $h_2 = \text{sum of tiles’ city block distances}$

\[h_1 = 8 \]
\[h_2 = 3 + 1 + 2 + 2 + 3 + 2 + 2 + 3 = 18 \]

Solution cost = 26
Values averaged over 100 8-puzzle problems for each d

Note: $A^*(h_2) \leq A^*(h_1)$

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>3644035</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>539</td>
<td>113</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>1301</td>
<td>211</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>3056</td>
<td>363</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>7276</td>
<td>676</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>18094</td>
<td>1219</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>39135</td>
<td>1641</td>
</tr>
</tbody>
</table>
Designing Heuristics

- Heuristic h_2 dominates h_1 if, for all nodes n, $h_2(n) \geq h_1(n)$
 - Implies A* using h_2 will typically generate fewer nodes than A* using h_1
 - “City block distance” dominates “tiles out of place”

- In general, want $h(n)$ to be:
 - Admissible and consistent
 - Close to actual solution cost from node n
 - But still fast to compute
Designing Heuristics

- Relaxed problems
 - $h(n) = \text{cost of solution to relaxed problem}$
 - E.g., 8-puzzle where you can swap tiles

- Subproblems
 - $h(n) = \text{cost of solution to subproblem}$
 - E.g., get half the tiles in correct position

- Learning from experience
 - Collect experience as (state, solution cost) pairs
 - Learn $h(n): \text{state} \rightarrow \text{solution cost}$
Summary

- Problem-solving agent
- Formulating problems
- Search
- Uninformed search (Iterative-Deepening)
- Informed (heuristic) search (A*)
- Admissible heuristics