Adversarial Search

Larry Holder
School of EECS
Washington State University
Games

- Classic AI challenge
 - Easy to represent
 - Difficult to solve
- Perfect information (e.g., Chess, Checkers)
 - Fully observable and deterministic
- Imperfect information (e.g., Poker)
- Chance (e.g., Backgammon)
Tic–Tac–Toe

- State space has about $3^9 = 19,683$ nodes
- Average branching factor about 2
- Average game length about 8
- Search tree has about $2^8 = 256$ nodes
Game Tree

- MAX wants to maximize its outcome
- MIN wants to minimize its outcome
- Search tree refers to the search for a player’s next move
- Terminal node
- Utility

Artificial Intelligence
Chess

- State space about 10^{40} nodes
- Average branching factor about 35
- Average game length about 100 (50 moves per player)
- Search tree has about $35^{100} = 10^{154}$ nodes

Garry Kasparov vs. IBM’s Deep Blue (1997)
Optimal Play

MAX

MIN

Artificial Intelligence 6
Optimal Play

- **Minimax value**
 - Best player can achieve assuming all players play optimally

 \[
 \text{Minimax}(s) = \begin{cases}
 \text{Utility}(s) & \text{if } \text{TerminalTest}(s) \\
 \max_{a \in \text{Actions}(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if } \text{Player}(s) = \text{MAX} \\
 \min_{a \in \text{Actions}(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if } \text{Player}(s) = \text{MIN}
 \end{cases}
 \]

- **Minimax decision**
 - Action that leads to minimax value
function Minimax-Decision (state) returns an action
 return arg max_{a \in \text{actions}(state)} \text{Min-Value(\text{Result}(state,a))}

function Max-Value (state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 v ← -\infty
 for each a in \text{actions}(state) do
 v ← \text{Max}(v, \text{Min-Value(\text{Result}(state,a)))}
 return v

function Min-Value (state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 v ← \infty
 for each a in \text{actions}(state) do
 v ← \text{Min}(v, \text{Max-Value(\text{Result}(state,a)))}
 return v
Minimax Demo

www.yosenspace.com/posts/computer-science-game-trees.html
Minimax Algorithm

- Essentially depth-first search of game tree
- Time complexity: $O(b^m)$
 - $m = \text{maximum tree depth}$
 - $b = \text{legal moves at each state}$
- Space complexity
 - Generates all actions: $O(bm)$
 - Generates one action: $O(m)$
- Practical?
Pruning Search Tree

(a) \([-\infty, +\infty]\)

(b) \([-\infty, +\infty]\)

(c) \([3, +\infty]\)

(d) \([3, +\infty]\)

(e) \([3, 14]\)

(f) \([3, 3]\)
Alpha–Beta Pruning

- Prune parts of the search tree that MAX and MIN would never choose.
- $\alpha = \text{value of best choice for MAX so far (highest value)}$
- $\beta = \text{value of best choice for MIN so far (lowest value)}$
- Keep track of alpha α and beta β during search.

If $m > n$, Player will never move to n.
Alpha–Beta Pruning

function **Alpha-Beta-Search** (*state*) returns an action

\[v \leftarrow \text{Max-Value}(*state*, -\infty, +\infty) \]

return the *action* in **Actions**(*state*) with value \(v \)

function **Max-Value** (*state*, \(\alpha \), \(\beta \)) returns a utility value

if **Terminal-Test**(*state*) then return **Utility**(*state*)

\[v \leftarrow -\infty \]

for each *a* in **Actions**(*state*) do

\[v \leftarrow \text{Max}(v, \text{Min-Value}(*\text{Result}(state,a)*, \alpha, \beta)) \]

if \(v \geq \beta \) then return \(v \)

\[\alpha \leftarrow \text{Max}(\alpha, v) \]

return \(v \)

function **Min-Value** (*state*, \(\alpha \), \(\beta \)) returns a utility value

if **Terminal-Test**(*state*) then return **Utility**(*state*)

\[v \leftarrow +\infty \]

for each *a* in **Actions**(*state*) do

\[v \leftarrow \text{Min}(v, \text{Max-Value}(*\text{Result}(state,a)*, \alpha, \beta)) \]

if \(v \leq \alpha \) then return \(v \)

\[\beta \leftarrow \text{Min}(\beta, v) \]

return \(v \)
Alpha–Beta Pruning Demo

www.yosenspace.com/posts/computer-science-game-trees.html
Move Ordering

- **ALPHA–BETA–SEARCH** still $O(b^m)$ worst case
- If order moves by value, then could prune maximally (always choose best move next)
 - Achieve $O(b^{m/2})$ time
 - Branching factor $b^{1/2}$
 - Chess: $35 \rightarrow 6$
 - But not practical
- Choosing moves randomly
 - Achieve $O(b^{3m/4})$ average case
- Choosing moves based on impact
 - E.g., chess: captures, threats, forward, backward
 - Closer to $O(b^{m/2})$
Minimax and Alpha–Beta search to terminal nodes

Impractical for most games due to time limits

Employ **cutoff test** to treat nodes as terminal nodes

Heuristic **evaluation function** at these nodes to estimate utility

\[d = \text{depth} \]

H - Minimax (s,d) =

\[
\begin{cases}
\text{Eval}(s) & \text{if CutoffTest}(s,d) \\
\max_{a \in \text{Actions}(s)} \text{H - Minimax}(\text{Result}(s,a),d+1) & \text{if Player}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} \text{H - Minimax}(\text{Result}(s,a),d+1) & \text{if Player}(s) = \text{MIN}
\end{cases}
\]
Real–Time Game Play

- Cutoff test
 - Depth-limit, iterative deepening until time’s up

- Heuristic evaluation function EVAL(s)
 - Weighted combination of features
 \[\text{Eval}(s) = \sum_{i=1}^{n} w_i f_i(s) \]
 - E.g., chess
 - \(f_1(s) = \#\text{pawns}, w_1 = 1 \)
 - \(f_4(s) = \#\text{bishops}, w_4 = 3 \)
 - Learn weights
 - Learn features
Go

- State space about 10^{170} nodes
- Average branching factor about 250
- Average game length about 200 (100 moves per player)
- Search tree has about $250^{200} = 10^{480}$ nodes

Lee Sedol vs. Google DeepMind’s AlphaGo (2016)

deepmind.com/research/alphago
Stochastic Games

- Element of chance (e.g., dice roll)
- Include **chance nodes** in game tree
 - Branch to possible outcomes with their probabilities
Stochastic Games

- Can’t compute minimax values
- Can compute expected minimax values

\[
\text{ExpectiMinimax}(s) = \begin{cases}
\text{Utility}(s) & \text{if TerminalTest}(s) \\
\max_{a \in \text{Actions}(s)} \text{ExpectiMinimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} \text{ExpectiMinimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{MIN} \\
\sum_r P(r) \text{ExpectiMinimax}(\text{Result}(s, r)) & \text{if Player}(s) = \text{CHANCE}
\end{cases}
\]

- \(r \) represents possible chance event (e.g., dice roll)
- \(\text{Result}(s, r) = \) state \(s \) with a particular outcome \(r \)
Stochastic Games

- Chance nodes increase branching factor
- Search time complexity $O(b^m n^m)$
 - Where n is the number of chance outcomes
 - E.g., backgammon: $n = 21$, $b \approx 20$ (can be large)
 - Can only search a few moves ahead
- Estimate ExpectiMinimax values
Can reason about all possible states of unknown information

If $P(s)$ represents probability of each unknown state s, then best move is:

$$\arg \max_a \sum_s P(s) \text{Minimax} \left(\text{Result} (s, a) \right)$$

If $|s|$ too large, take a random sample
 ◦ Monte Carlo method
State of the Art

- Checkers (solved, perfect play)
 - Chinook (webdocs.cs.ualberta.ca/~chinook)
 - Open/close database plus brute-force search

- Chess
 - Komodo (komodochess.com) – proprietary
 - Stockfish (stockfishchess.org) – open source

- Go
 - AlphaGo (deepmind.com/research/alphago)
 - Zen (senseis.xmp.net/?ZenGoProgram)

- Backgammon
 - Extreme Gammon (www.extremegammon.com)
 - GNU Backgammon (www.gnu.org/software/gnubg)
 - Neural network based evaluation function

- Poker
 - DeepStack (www.deepstack.ai)
 - Pluribus (ai.facebook.com/blog/pluribus-first-ai-to-beat-pros-in-6-player-poker)
State of the Art

- First-person shooter (FPS) games
 - DeepMind’s “For–The–Win” (FTW) Quake III agent
 - deepmind.com/blog/article/capture-the-flag-science
Real-Time Strategy (RTS) games

- DeepMind’s AlphaStar masters StarCraft
State of the Art

- Role-playing games (RPG/MMORPG)
- Neuro MMO
 - openai.com/blog/neural-mmo
Summary

- Adversarial search and games
- Minimax search
- Alpha-beta pruning
- Real-time issues
- Stochastic and partially observable games
- State of the art …

Are there any games that humans can still beat computers?