Adversarial Search

Larry Holder
School of EECS
Washington State University
Games

- Classic AI challenge
 - Easy to represent
 - Difficult to solve
- Perfect information (e.g., Chess, Checkers)
 - Fully observable and deterministic
- Imperfect information (e.g., Poker)
- Chance (e.g., Backgammon)
Tic–Tac–Toe

- State space has about $3^9 = 19,683$ nodes
- Average branching factor about 2
- Average game length about 8
- Search tree has about $2^8 = 256$ nodes
Game Tree

- MAX wants to maximize its outcome
- MIN wants to minimize its outcome
- Search tree refers to the search for a player’s next move
- Terminal node
- Utility
Chess

- State space about 10^{40} nodes
- Average branching factor about 35
- Average game length about 100 (50 moves per player)
- Search tree has about $35^{100} = 10^{154}$ nodes

Garry Kasparov vs. IBM’s Deep Blue (1997)
Optimal Play

MAX

MIN

Artificial Intelligence
Optimal Play

- Minimax value
 - Best player can achieve assuming all players play optimally
 \[
 \text{Minimax}(s) = \begin{cases}
 \text{Utility}(s) & \text{if TerminalTest}(s) \\
 \max_{a \in \text{Actions}(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{MAX} \\
 \min_{a \in \text{Actions}(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{MIN}
 \end{cases}
 \]

- Minimax decision
 - Action that leads to minimax value
Minimax Algorithm

function **MINIMAX-DECISION** (*state*) **returns** an action
 return arg max$_a \in$ ACTIONS(*state*) MIN-VALUE(Result(*state*,*a*))

function **MAX-VALUE** (*state*) **returns** a utility value
 if TERMINAL-TEST(*state*) then return UTILITY(*state*)
 $v \leftarrow -\infty$
 for each *a* in ACTIONS(*state*) do
 $v \leftarrow$ MAX(v, MIN-VALUE(Result(*state*,*a*)))
 return v

function **MIN-VALUE** (*state*) **returns** a utility value
 if TERMINAL-TEST(*state*) then return UTILITY(*state*)
 $v \leftarrow \infty$
 for each *a* in ACTIONS(*state*) do
 $v \leftarrow$ MIN(v, MAX-VALUE(Result(*state*,*a*)))
 return v
Minimax Demo

- www.yosenspace.com/posts/computer-science-game-trees.html
Minimax Algorithm

- Essentially depth-first search of game tree
- Time complexity: $O(b^m)$
 - $m =$ maximum tree depth
 - $b =$ legal moves at each state
- Space complexity
 - Generates all actions: $O(bm)$
 - Generates one action: $O(m)$
- Practical?
Pruning Search Tree

(a) \([-\infty, +\infty]\)

[\(-\infty, 3]\)

3

(b) \([-\infty, +\infty]\)

[\(-\infty, 3]\)

3 12

(c) \([3, +\infty]\)

[3, 3]

3 12 8

(d) \([3, +\infty]\)

[3, 3]

3 12 8 2

(e) \([3, 14]\)

[3, 3]

3 12 8 2 14

(f) \([3, 3]\)

[3, 3]

[\(-\infty, 2]\)

[\(-\infty, 14]\)

3 12 8 2 14 5 2

Artificial Intelligence 11
Alpha–Beta Pruning

- Prune parts of the search tree that MAX and MIN would never choose
- \(\alpha = \text{value of best choice for MAX so far (highest value)} \)
- \(\beta = \text{value of best choice for MIN so far (lowest value)} \)
- Keep track of alpha \(\alpha \) and beta \(\beta \) during search

If \(m > n \), Player will never move to \(n \).
Alpha–Beta Pruning

function **Alpha-Beta-Search** \((\text{state})\) \textbf{returns} an action
\[
\begin{align*}
v & \leftarrow \text{Max-Value}(\text{state}, -\infty, +\infty) \\
\text{return} & \text{ the } \textit{action} \text{ in } \text{Actions}(\text{state}) \text{ with value } v
\end{align*}
\]

function **Max-Value** \((\text{state}, \alpha, \beta)\) \textbf{returns} a utility value
\[
\begin{align*}
\text{if} & \ \text{Terminal-Test}(\text{state}) \ \text{then return} \ \text{Utility}(\text{state}) \\
v & \leftarrow -\infty \\
\text{for each } a \text{ in } \text{Actions}(\text{state}) \text{ do} \\
v & \leftarrow \text{Max}(v, \text{Min-Value}(\text{Result}(\text{state}, a), \alpha, \beta)) \\
\text{if } v \geq \beta \text{ then return } v \\
\alpha & \leftarrow \text{Max}(\alpha, v) \\
\text{return} & v
\end{align*}
\]

function **Min-Value** \((\text{state}, \alpha, \beta)\) \textbf{returns} a utility value
\[
\begin{align*}
\text{if} & \ \text{Terminal-Test}(\text{state}) \ \text{then return} \ \text{Utility}(\text{state}) \\
v & \leftarrow +\infty \\
\text{for each } a \text{ in } \text{Actions}(\text{state}) \text{ do} \\
v & \leftarrow \text{Min}(v, \text{Max-Value}(\text{Result}(\text{state}, a), \alpha, \beta)) \\
\text{if } v \leq \alpha \text{ then return } v \\
\beta & \leftarrow \text{Min}(\beta, v) \\
\text{return} & v
\end{align*}
\]
Alpha–Beta Pruning Demo

- www.yosenspace.com/posts/computer-science-game-trees.html
- inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice
Move Ordering

- **ALPHA–BETA–SEARCH** still $O(b^m)$ worst case
- If order moves by value, then could prune maximally (always choose best move next)
 - Achieve $O(b^{m/2})$ time
 - Branching factor $b^{1/2}$
 - Chess: $35 \to 6$
 - But not practical
- Choosing moves randomly
 - Achieve $O(b^{3m/4})$ average case
- Choosing moves based on impact
 - E.g., chess: captures, threats, forward, backward
 - Closer to $O(b^{m/2})$
Real-Time Game Play

- Minimax and Alpha–Beta search to terminal nodes
- Impractical for most games due to time limits
- Employ cutoff test to treat nodes as terminal nodes
- Heuristic evaluation function at these nodes to estimate utility
- \(d = \text{depth} \)

\[
H - \text{Minimax}(s, d) =
\begin{cases}
\text{Eval}(s) & \text{if CutoffTest}(s, d) \\
\max_{a \in \text{Actions}(s)} H - \text{Minimax}(\text{Result}(s, a), d + 1) & \text{if Player}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} H - \text{Minimax}(\text{Result}(s, a), d + 1) & \text{if Player}(s) = \text{MIN}
\end{cases}
\]
Real–Time Game Play

- Cutoff test
 - Depth-limit, iterative deepening until time’s up

- Heuristic evaluation function $E\text{VAL}(s)$
 - Weighted combination of features
 \[Eval(s) = \sum_{i=1}^{n} w_i f_i(s) \]
 - E.g., chess
 - $f_1(s) = \#\text{pawns}$, $w_1 = 1$
 - $f_4(s) = \#\text{bishops}$, $w_4 = 3$
 - Learn weights
 - Learn features
Go

- State space about 10^{170} nodes
- Average branching factor about 250
- Average game length about 200 (100 moves per player)
- Search tree has about $250^{200} = 10^{480}$ nodes

Lee Sedol vs. Google DeepMind’s AlphaGo (2016)

deeplearning.org/research/alphago
Stochastic Games

- Element of chance (e.g., dice roll)
- Include chance nodes in game tree
 - Branch to possible outcomes with their probabilities

![Game Tree Diagram]

Artificial Intelligence
Stochastic Games

- Can’t compute minimax values
- Can compute expected minimax values

\[\text{ExpectiMinimax}(s) = \]
\[
\begin{cases}
 \text{Utility}(s) & \text{if } \text{TerminalTest}(s) \\
 \max_{a \in \text{Actions}(s)} \text{ExpectiMinimax}(\text{Result}(s, a)) & \text{if } \text{Player}(s) = \text{MAX} \\
 \min_{a \in \text{Actions}(s)} \text{ExpectiMinimax}(\text{Result}(s, a)) & \text{if } \text{Player}(s) = \text{MIN} \\
 \sum_r P(r) \text{ExpectiMinimax}(\text{Result}(s, r)) & \text{if } \text{Player}(s) = \text{CHANCE}
\end{cases}
\]

- \(r \) represents possible chance event (e.g., dice roll)
- \(\text{Result}(s, r) = \text{state } s \text{ with a particular outcome } r \)
Stochastic Games

- Chance nodes increase branching factor
- Search time complexity $O(b^{mn^m})$
 - Where n is the number of chance outcomes
 - E.g., backgammon: $n = 21$, $b \approx 20$ (can be large)
 - Can only search a few moves ahead
- Estimate ExpectiMinimax values
Partially Observable Games

- Can reason about all possible states of unknown information
- If \(P(s) \) represents probability of each unknown state \(s \), then best move is:

\[
\arg \max_{a} \sum_{s} P(s) \text{Minimax}(\text{Result}(s, a))
\]

- If \(|s|\) too large, take a random sample
 - Monte Carlo method
State of the Art

- Checkers (solved, perfect play)
 - Chinook (webdocs.cs.ualberta.ca/~chinook)
 - Open/close database plus brute-force search

- Chess
 - Komodo (komodochess.com) – proprietary
 - Stockfish (stockfishchess.org) – open source

- Go
 - AlphaGo (deepmind.com/research/alphago)
 - Zen (senseis.xmp.net/?ZenGoProgram)

- Backgammon
 - Extreme Gammon (www.extremegammon.com)
 - GNU Backgammon (www.gnubg.org)
 - Neural network based evaluation function

- Poker
 - DeepStack (www.deepstack.ai)
 - Pluribus (ai.facebook.com/blog/pluribus-first-ai-to-beat-pros-in-6-player-poker)
State of the Art

- First-person shooter (FPS) games
 - DeepMind’s “For-The-Win” (FTW) Quake III agent
 - deepmind.com/blog/article/capture-the-flag-science
Real-Time Strategy (RTS) games
- DeepMind’s AlphaStar masters StarCraft
State of the Art

- Role-playing games (RPG/MMORPG)
- Neuro MMO
 - openai.com/blog/neural-mmo
Summary

- Adversarial search and games
- Minimax search
- Alpha–beta pruning
- Real–time issues
- Stochastic and partially observable games
- State of the art ...

Are there any games that humans can still beat computers?