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ABSTRACT
Data mining algorithms look for patterns in data. While
most existing data mining approaches look for patterns in
a single data table, multi-relational data mining (MRDM)
approaches look for patterns that involve multiple tables
(relations) from a relational database. In recent years, the
most common types of patterns and approaches considered
in data mining have been extended to the multi-relational
case and MRDM now encompasses multi-relational (MR) as-
sociation rule discovery, MR decision trees and MR distance-
based methods, among others. MRDM approaches have
been successfully applied to a number of problems in a va-
riety of areas, most notably in the area of bioinformatics.
This article provides a brief introduction to MRDM, while
the remainder of this special issue treats in detail advanced
research topics at the frontiers of MRDM.
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1. IN A NUTSHELL
Data mining algorithms look for patterns in data. Most

existing data mining approaches are propositional and look
for patterns in a single data table. Relational data mining
(RDM) approaches [16], many of which are based on induc-
tive logic programming (ILP, [35]), look for patterns that in-
volve multiple tables (relations) from a relational database.
To emphasize this fact, RDM is often referred to as multi-
relational data mining (MRDM, [21]). In this article, we
will use the terms RDM and MRDM interchangeably. In
this introductory section, we take a look at data, patterns,
and algorithms in RDM, and mention some application ar-
eas.

1.1 Relational data
A relational database typically consists of several tables

(relations) and not just one table. The example database in
Table 1 has two relations: Customer and MarriedTo. Note
that relations can be defined extensionally (by tables, as in
our example) or intensionally through database views (as
explicit logical rules). The latter typically represent re-
lationships that can be inferred from other relationships.

For example, having extensional representations of the re-
lations mother and father, we can intensionally define the
relations grandparent, grandmother, sibling, and ancestor,
among others.

Intensional definitions of relations typically represent gen-
eral knowledge about the domain of discourse. For example,
if we have extensional relations listing the atoms that make a
compound molecule and the bonds between them, functional
groups of atoms can be defined intensionally. Such general
knowledge is called domain knowledge or background knowl-
edge.

Table 1: A relational database with two tables and two
classification rules: a propositional and a relational.
Customer table
ID Gender Age Income TotalSpent BigS
c1 Male 30 214000 18800 Yes
c2 Female 19 139000 15100 Yes
c3 Male 55 50000 12400 No
c4 Female 48 26000 8600 No
c5 Male 63 191000 28100 Yes
c6 Male 63 114000 20400 Yes
c7 Male 58 38000 11800 No
c8 Male 22 39000 5700 No
... ... ... ... ... ...

MarriedTo table
Spouse1 Spouse2
c1 c2
c2 c1
c3 c4
c4 c3
c5 c12
c6 c14
... ...

Propositional rule

IF Income > 108000 THEN BigSpender = Yes

Relational rule
big spender(C1,Age1,Income1,TotalSpent1) ←
married to(C1,C2) ∧
customer(C2,Age2,Income2,TotalSpent2,BS2) ∧
Income2 ≥ 108000.



1.2 Relational patterns
Relational patterns involve multiple relations from a re-

lational database. They are typically stated in a more ex-
pressive language than patterns defined on a single data
table. The major types of relational patterns extend the
types of propositional patterns considered in single table
data mining. We can thus have relational classification rules,
relational regression trees, and relational association rules,
among others.

An example relational classification rule is given in Ta-
ble 1, which involves the relations Customer and MarriedTo.
It predicts a person to be a big spender if the person is mar-
ried to somebody with high income (compare this to the rule
that states a person is a big spender if he has high income,
listed above the relational rule). Note that the two persons
C1 and C2 are connected through the relation MarriedTo.

Relational patterns are typically expressed in subsets of
first-order logic (also called predicate or relational logic).
Essentials of predicate logic include predicates (MarriedTo)
and variables (C1, C2), which are not present in proposi-
tional logic. Relational patterns are thus more expressive
than propositional ones.

Most commonly, the logic programming subset of first-
order logic, which is strongly related to deductive databases,
is used as the formalism for expressing relational patterns.
E.g., the relational rule in Table 1 is a logic program clause.
Note that a relation in a relational database corresponds to
a predicate in first-order logic (and logic programming).

1.3 Relational to propositional
RDM tools can be applied directly to multi-relational

data to find relational patterns that involve multiple rela-
tions. Most other data mining approaches assume that the
data resides in a single table and require preprocessing to
integrate data from multiple tables (e.g., through joins or
aggregation) into a single table before they can be applied.
Integrating data from multiple tables through joins or aggre-
gation, however, can cause loss of meaning or information.

Suppose we are given the relations customer(CustID,
Name, Age, SpendsALot) and purchase(CustID,
ProductID, Date, V alue, PaymentMode), where each cus-
tomer can make multiple purchases, and we are interested in
characterizing customers that spend a lot. Integrating the
two relations via a natural join will give rise to a relation
purchase1 where each row corresponds to a purchase and
not to a customer. One possible aggregation would give rise
to the relation customer1(CustID, Age,NofPurchases,
TotalV alue, SpendsALot). In this case, however, some in-
formation has been clearly lost during aggregation.

The following pattern can be discovered if the relations
customer and purchase are considered together.

customer(CID, Name,Age, yes)←
Age > 30 ∧
purchase(CID,PID, D, V alue, PM) ∧
PM = credit card ∧ V alue > 100.

This pattern says: “a customer spends a lot if she is older
than 30, has purchased a product of value more than 100
and paid for it by credit card.” It would not be possible to
induce such a pattern from either of the relations purchase1
and customer1 considered on their own.

Besides the ability to deal with data stored in multi-
ple tables directly, RDM systems are usually able to take
into account generally valid background (domain) knowl-
edge given as a logic program. The ability to take into ac-
count background knowledge and the expressive power of the
language of discovered patterns are distinctive for RDM.

Note that data mining approaches that find patterns in a
given single table are referred to as attribute-value or propo-
sitional learning approaches, as the patterns they find can be
expressed in propositional logic. RDM approaches are also
referred to as first-order learning approaches, or relational
learning approaches, as the patterns they find are expressed
in the relational formalism of first-order logic. A more de-
tailed discussion of the single table assumption, the prob-
lems resulting from it and how a relational representation
alleviates these problems is given by Wrobel [50] (Chapter
4 of [16]).

1.4 Algorithms for relational data mining
A RDM algorithm searches a language of relational pat-

terns to find patterns valid in a given database. The search
algorithms used here are very similar to those used in single
table data mining: one can search exhaustively or heuristi-
cally (greedy search, best-first search, etc.). Just as for the
single table case, the space of patterns considered is typically
lattice-structured and exploiting this structure is essential
for achieving efficiency. The lattice structure is traversed by
using refinement operators [46], which are more complicated
in the relational case. In the propositional case, a refinement
operator may add a condition to a rule antecedent or an item
to an item set. In the relational case, a new relation can be
introduced as well.

Just as many data mining algorithms come from the field
of machine learning, many RDM algorithms come form the
field of inductive logic programming (ILP, [35; 30]). Situ-
ated at the intersection of machine learning and logic pro-
gramming, ILP has been concerned with finding patterns
expressed as logic programs. Initially, ILP focussed on au-
tomated program synthesis from examples, formulated as
a binary classification task. In recent years, however, the
scope of ILP has broadened to cover the whole spectrum of
data mining tasks (classification, regression, clustering, asso-
ciation analysis). The most common types of patterns have
been extended to their relational versions (relational classi-
fication rules, relational regression trees, relational associa-
tion rules) and so have the major data mining algorithms
(decision tree induction, distance-based clustering and pre-
diction, etc.).

Van Laer and De Raedt [49] (Chapter 10 of [16]) present
a generic approach of upgrading single table data mining
algorithms (propositional learners) to relational ones (first-
order learners). Note that it is not trivial to extend a single
table data mining algorithm to a relational one. Extending
the key notions to, e.g., defining distance measures for multi-
relational data requires considerable insight and creativity.
Efficiency concerns are also very important, as it is often the
case that even testing a given relational pattern for validity
is computationally expensive, let alone searching a space of
such patterns for valid ones. An alternative approach to
RDM (called propositionalization) is to create a single table
from a multi-relational database in a systematic fashion [28]
(Chapter 11 of [16]): this approach shares some efficiency
concerns and in addition can have limited expressiveness.



A pattern language typically contains a very large num-
ber of possible patterns even in the single table case: this
number is in practice limited by setting some parameters
(e.g., the largest size of frequent itemsets for association
rule discovery). For relational pattern languages, the num-
ber of possible patterns is even larger and it becomes nec-
essary to limit the space of possible patterns by providing
more explicit constraints. These typically specify what re-
lations should be involved in the patterns, how the relations
can be interconnected, and what other syntactic constraints
the patterns have to obey. The explicit specification of the
pattern language (or constraints imposed upon it) is known
under the name of declarative bias [38].

1.5 Applications of relational data mining
The use of RDM has enabled applications in areas rich

with structured data and domain knowledge, which would
be difficult to address with single table approaches. RDM
has been used in different areas, ranging from analysis of
business data, through environmental and traffic engineering
to web mining, but has been especially successful in bioin-
formatics (including drug design and functional genomics).
Bioinformatics applications of RDM are discussed in the ar-
ticle by Page and Craven in this issue. For a comprehensive
survey of RDM applications we refer the reader to Džeroski
[20] (Chapter 14 of [16]).

1.6 What’s in this article
The remainder of this article first gives a brief intro-

duction to inductive logic programming, which (from the
viewpoint of MRDM) is mainly concerned with the induc-
tion of relational classification rules for two-class problems.
It then proceeds to introduce the basic MRDM techniques
of discovery of relational association rules, induction of rela-
tional decision trees and relational distance-based methods
(that include both classification and clustering). The arti-
cle concludes with an overview of the MRDM literature and
Internet resources.

2. INDUCTIVE LOGIC PROGRAMMING
From a KDD perspective, we can say that inductive

logic programming (ILP) is concerned with the development
of techniques and tools for relational data mining. Pat-
terns discovered by ILP systems are typically expressed as
logic programs, an important subset of first-order (predi-
cate) logic, also called relational logic. In this section, we
first briefly discuss the language of logic programs, then pro-
ceed with a discussion of the major task of ILP and some
approaches to solving it.

2.1 Logic programs and databases
Logic programs consist of clauses. We can think of

clauses as first-order rules, where the conclusion part is
termed the head and the condition part the body of the
clause. The head and body of a clause consist of atoms, an
atom being a predicate applied to some arguments, which
are called terms. In Datalog, terms are variables and con-
stants, while in general they may consist of function symbols
applied to other terms. Ground clauses have no variables.

Consider the clause father(X, Y ) ∨ mother(X,Y ) ←
parent(X,Y ). It reads: “if X is a parent of Y then X is the
father of Y or X is the mother of Y” (∨ stands for logical or).
parent(X,Y ) is the body of the clause and father(X, Y ) ∨

Table 2: Database and logic programming terms.

DB terminology LP terminology

relation name p predicate symbol p
attribute of relation p argument of predicate p
tuple 〈a1, . . . , an〉 ground fact p(a1, . . . , an)
relation p - predicate p -
a set of tuples defined extensionally

by a set of ground facts
relation q predicate q
defined as a view defined intensionally

by a set of rules (clauses)

mother(X,Y ) is the head. parent, father and mother
are predicates, X and Y are variables, and parent(X,Y ),
father(X, Y ), mother(X, Y ) are atoms. We adopt the Pro-
log [4] syntax and start variable names with capital let-
ters. Variables in clauses are implicitly universally quan-
tified. The above clause thus stands for the logical formula
∀X∀Y : father(X, Y ) ∨ mother(X,Y ) ∨ ¬parent(X,Y ).
Clauses are also viewed as sets of literals, where a literal
is an atom or its negation. The above clause is then the set
{father(X, Y ), mother(X,Y ),¬parent(X,Y )}.

As opposed to full clauses, definite clauses contain ex-
actly one atom in the head. As compared to definite clauses,
program clauses can also contain negated atoms in the body.
While the clause in the paragraph above is a full clause, the
clause ancestor(X,Y )← parent(Z,Y ) ∧ ancestor(X, Z) is
a definite clause (∧ stands for logical and). It is also a recur-
sive clause, since it defines the relation ancestor in terms of
itself and the relation parent. The clause mother(X, Y )←
parent(X,Y ) ∧ not male(X) is a program clause.

A set of clauses is called a clausal theory. Logic pro-
grams are sets of program clauses. A set of program clauses
with the same predicate in the head is called a predicate
definition. Most ILP approaches learn predicate definitions.

A predicate in logic programming corresponds to a rela-
tion in a relational database. A n-ary relation p is formally
defined as a set of tuples [48], i.e., a subset of the Cartesian
product of n domains D1 ×D2 × . . .×Dn, where a domain
(or a type) is a set of values. It is assumed that a relation is
finite unless stated otherwise. A relational database (RDB)
is a set of relations.

Thus, a predicate corresponds to a relation, and the ar-
guments of a predicate correspond to the attributes of a
relation. The major difference is that the attributes of a
relation are typed (i.e., a domain is associated with each
attribute). For example, in the relation lives in(X, Y ), we
may want to specify that X is of type person and Y is of
type city. Database clauses are typed program clauses.

A deductive database (DDB) is a set of database clauses.
In deductive databases, relations can be defined extension-
ally as sets of tuples (as in RDBs) or intensionally as sets of
database clauses. Database clauses use variables and func-
tion symbols in predicate arguments and the language of
DDBs is substantially more expressive than the language of
RDBs [31; 48]. A deductive Datalog database consists of
definite database clauses with no function symbols.

Table 2 relates basic database and logic programming
terms. For a full treatment of logic programming, RDBs,
and deductive databases, we refer the reader to [31] and
[48].



Table 3: A simple ILP problem: learning the daughter relation. Positive examples are denoted by ⊕ and negative by 	.

Training examples Background knowledge

daughter(mary,ann). ⊕ parent(ann,mary). female(ann).
daughter(eve, tom). ⊕ parent(ann, tom). female(mary).
daughter(tom,ann). 	 parent(tom, eve). female(eve).
daughter(eve, ann). 	 parent(tom, ian).

2.2 The ILP task of relational rule induction
Logic programming as a subset of first-order logic is

mostly concerned with deductive inference. Inductive logic
programming, on the other hand, is concerned with induc-
tive inference. It generalizes from individual instances/obser-
vations in the presence of background knowledge, finding
regularities/hypotheses about yet unseen instances.

The most commonly addressed task in ILP is the task
of learning logical definitions of relations [42], where tuples
that belong or do not belong to the target relation are given
as examples. From training examples ILP then induces a
logic program (predicate definition) corresponding to a view
that defines the target relation in terms of other relations
that are given as background knowledge. This classical ILP
task is addressed, for instance, by the seminal MIS system
[46] (rightfully considered as one of the most influential an-
cestors of ILP) and one of the best known ILP systems FOIL
[42].

Given is a set of examples, i.e., tuples that belong to the
target relation p (positive examples) and tuples that do not
belong to p (negative examples). Given are also background
relations (or background predicates) qi that constitute the
background knowledge and can be used in the learned defi-
nition of p. Finally, a hypothesis language, specifying syn-
tactic restrictions on the definition of p is also given (either
explicitly or implicitly). The task is to find a definition of
the target relation p that is consistent and complete, i.e.,
explains all the positive and none of the negative tuples.

Formally, given is a set of examples E = P ∪N , where P
contains positive and N negative examples, and background
knowledge B. The task is to find a hypothesis H such that
∀e ∈ P : B∧H |= e (H is complete) and ∀e ∈ N : B∧H 6|= e
(H is consistent), where |= stands for logical implication or
entailment. This setting, introduced by Muggleton [34], is
thus also called learning from entailment. In an alternative
setting proposed by De Raedt and Džeroski [15], the require-
ment that B ∧ H |= e is replaced by the requirement that
H be true in the minimal Herbrand model of B ∧ e: this
setting is called learning from interpretations.

In the most general formulation, each e, as well as B
and H can be a clausal theory. In practice, each e is most
often a ground example (tuple), B is a relational database
(which may or may not contain views) and H is a definite
logic program. The semantic entailment (|=) is in practice
replaced with syntactic entailment (`) or provability, where
the resolution inference rule (as implemented in Prolog) is
most often used to prove examples from a hypothesis and
the background knowledge. In learning from entailment,
a positive fact is explained if it can be found among the
answer substitutions for h produced by a query ? − b on
database B, where h← b is a clause in H. In learning from
interpretations, a clause h← b from H is true in the minimal
Herbrand model of B if the query b ∧ ¬h fails on B.

As an illustration, consider the task of defining relation
daughter(X,Y ), which states that person X is a daughter
of person Y , in terms of the background knowledge relations
female and parent. These relations are given in Table 3.
There are two positive and two negative examples of the
target relation daughter. In the hypothesis language of def-
inite program clauses it is possible to formulate the following
definition of the target relation,

daughter(X,Y )← female(X), parent(Y,X).

which is consistent and complete with respect to the back-
ground knowledge and the training examples.

In general, depending on the background knowledge, the
hypothesis language and the complexity of the target con-
cept, the target predicate definition may consist of a set of
clauses, such as

daughter(X,Y )← female(X),mother(Y, X).
daughter(X,Y )← female(X), father(Y,X).

if the relations mother and father were given in the back-
ground knowledge instead of the parent relation.

The hypothesis language is typically a subset of the lan-
guage of program clauses. As the complexity of learning
grows with the expressiveness of the hypothesis language,
restrictions have to be imposed on hypothesized clauses.
Typical restrictions are the exclusion of recursion and re-
strictions on variables that appear in the body of the clause
but not in its head (so-called new variables).

From a data mining perspective, the task described above
is a binary classification task, where one of two classes is
assigned to the examples (tuples): ⊕ (positive) or 	 (nega-
tive). Classification is one of the most commonly addressed
tasks within the data mining community and includes ap-
proaches for rule induction. Rules can be generated from
decision trees [43] or induced directly [33; 7].

ILP systems dealing with the classification task typically
adopt the covering approach of rule induction systems. In a
main loop, a covering algorithm constructs a set of clauses.
Starting from an empty set of clauses, it constructs a clause
explaining some of the positive examples, adds this clause
to the hypothesis, and removes the positive examples ex-
plained. These steps are repeated until all positive examples
have been explained (the hypothesis is complete).

In the inner loop of the covering algorithm, individual
clauses are constructed by (heuristically) searching the space
of possible clauses, structured by a specialization or general-
ization operator. Typically, search starts with a very general
rule (clause with no conditions in the body), then proceeds
to add literals (conditions) to this clause until it only covers
(explains) positive examples (the clause is consistent).

When dealing with incomplete or noisy data, which is
most often the case, the criteria of consistency and com-
pleteness are relaxed. Statistical criteria are typically used



instead. These are based on the number of positive and
negative examples explained by the definition and the indi-
vidual constituent clauses.

2.3 Structuring the space of clauses
Having described how to learn sets of clauses by us-

ing the covering algorithm for clause/rule set induction, let
us now look at some of the mechanisms underlying single
clause/rule induction. In order to search the space of rela-
tional rules (program clauses) systematically, it is useful to
impose some structure upon it, e.g., an ordering. One such
ordering is based on θ-subsumption, defined below.

A substitution θ = {V1/t1, ..., Vn/tn} is an assignment
of terms ti to variables Vi. Applying a substitution θ to a
term, atom, or clause F yields the instantiated term, atom,
or clause Fθ where all occurrences of the variables Vi are
simultaneously replaced by the term ti. Let c and c′ be two
program clauses. Clause c θ-subsumes c′ if there exists a
substitution θ, such that cθ ⊆ c′ [41].

To illustrate the above notions, consider the clause c =
daughter(X,Y )← parent(Y,X). Applying the substitution
θ = {X/mary, Y/ann} to clause c yields

cθ = daughter(mary,ann)← parent(ann,mary).

Clauses can be viewed as sets of literals: the clausal
notation daughter(X,Y ) ← parent(Y,X) thus stands for

{daughter(X,Y ), parent(Y,X)} where all variables are as-
sumed to be universally quantified, overline denotes logical
negation, and the commas denote disjunction. According to
the definition, clause c θ-subsumes c′ if there is a substitu-
tion θ that can be applied to c such that every literal in the
resulting clause occurs in c′. Clause c θ-subsumes the clause

c′ = daughter(X,Y )← female(X), parent(Y,X)

under the empty substitution θ = ∅, since {daughter(X,Y ),

parent(Y,X)} is a proper subset of {daughter(X,Y ),

female(X), parent(Y,X)}. Furthermore, under the substi-
tution θ = {X/mary, Y/ann}, clause c θ-subsumes the clause
c′ = daughter(mary,ann)←

female(mary), parent(ann,mary), parent(ann, tom).
θ-subsumption introduces a syntactic notion of generality.
Clause c is at least as general as clause c′ (c ≤ c′) if c θ-
subsumes c′. Clause c is more general than c′ (c < c′) if
c ≤ c′ holds and c′ ≤ c does not. In this case, we say
that c′ is a specialization of c and c is a generalization of
c′. If the clause c′ is a specialization of c then c′ is also
called a refinement of c. The only clause refinements usually
considered by ILP systems are the minimal (most general)
specializations of the clause.

There are two important properties of θ-subsumption:

• If c θ-subsumes c′ then c logically entails c′, c |= c′.
The reverse is not always true. As an example, [23] gives
the following two clauses c = list(cons(V, W ))← list(W )
and c′ = list(cons(X, cons(Y, Z))) ← list(Z). Given the
empty list, c constructs lists of any given length, while
c′ constructs lists of even length only, and thus c |= c′.
However, no substitution θ exists such that cθ = c′, since
θ should map W both to cons(Y, Z) and to Z, which is
impossible. Therefore, c does not θ-subsume c′.

• The relation ≤ introduces a lattice on the set of reduced
clauses [41]. This means that any two reduced clauses

have a least upper bound (lub) and a greatest lower bound
(glb). Both the lub and the glb are unique up to equiva-
lence (renaming of variables) under θ-subsumption. Re-
duced clauses are the minimal representatives of the equiv-
alence classes of clauses defined by θ-subsumption. For
example, the clauses daughter(X,Y ) ← parent(Y,X),
parent(W,V ) and daughter(X,Y )← parent(Y,X) θ-sub-
sume one another and are thus equivalent. The latter is
reduced, while the former is not.

The second property of θ-subsumption leads to the fol-
lowing definition: The least general generalization (lgg) of
two clauses c and c′, denoted by lgg(c, c′), is the least upper
bound of c and c′ in the θ-subsumption lattice [41]. The
rules for computing the lgg of two clauses are outlined later
in this chapter.

Note that θ-subsumption and least general generaliza-
tion are purely syntactic notions since they do not take into
account any background knowledge. Their computation is
therefore simple and easy to be implemented in an ILP sys-
tem. The same holds for the notion of generality based
on θ-subsumption. On the other hand, taking background
knowledge into account would lead to the notion of semantic
generality [39; 6], defined as follows: Clause c is at least as
general as clause c′ with respect to background theory B if
B ∪ {c} |= c′.

The syntactic, θ-subsumption based, generality is com-
putationally more feasible. Namely, semantic generality is in
general undecidable and does not introduce a lattice on a set
of clauses. Because of these problems, syntactic generality
is more frequently used in ILP systems.

θ-subsumption is important for inductive logic program-
ming for the following reasons:

• As shown above, it provides a generality ordering for hy-
potheses, thus structuring the hypothesis space. It can
be used to prune large parts of the search space.

• θ-subsumption provides the basis for the following impor-
tant ILP techniques:

– clause construction by top-down searching of refine-
ment graphs,

– bounding the search of refinement graphs from below
by the bottom clause constructed as

∗ the least general generalization of two (or more)
training examples, relative to the given back-
ground knowledge [37], or

∗ the most specific inverse resolvent of an example
with respect to the given background knowledge
[34].

2.4 Searching the space of clauses
Most ILP approaches search the hypothesis space of pro-

gram clauses in a top-down manner, from general to specific
hypotheses, using a θ-subsumption-based specialization op-
erator. A specialization operator is usually called a refine-
ment operator [46]. Given a hypothesis language L, a re-
finement operator ρ maps a clause c to a set of clauses ρ(c)
which are specializations (refinements) of c: ρ(c) = {c′ | c′ ∈
L, c < c′}.

A refinement operator typically computes only the set
of minimal (most general) specializations of a clause under
θ-subsumption. It employs two basic syntactic operations:
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Figure 1: Part of the refinement graph for the family rela-
tions problem.

• apply a substitution to the clause, and

• add a literal to the body of the clause.

The hypothesis space of program clauses is a lattice,
structured by the θ-subsumption generality ordering. In
this lattice, a refinement graph can be defined as a directed,
acyclic graph in which nodes are program clauses and arcs
correspond to the basic refinement operations: substituting
a variable with a term, and adding a literal to the body of
a clause.

Figure 1 depicts a part of the refinement graph for the
family relations problem defined in Table 3, where the task
is to learn a definition of the daughter relation in terms of
the relations female and parent.

At the top of the refinement graph (lattice) is the clause

c = daughter(X,Y )←

where an empty body is written instead of the body true.
The refinement operator ρ generates the refinements of c,
which are of the form

ρ(c) = {daughter(X,Y )← L}

where L is one of following literals:

• literals having as arguments the variables from the head of
the clause: X = Y (this corresponds to applying a sub-
stitution X/Y ), female(X), female(Y ), parent(X,X),
parent(X,Y ), parent(Y,X), and parent(Y,Y ), and

• literals that introduce a new distinct variable Z (Z 6= X
and Z 6= Y ) in the clause body: parent(X,Z), parent(Z,X),
parent(Y,Z), and parent(Z,Y ).

This assumes that the language is restricted to definite clauses,
hence literals of the form not L are not considered, and non-
recursive clauses, hence literals with the predicate symbol
daughter are not considered.

The search for a clause starts at the top of the lat-
tice, with the clause d(X, Y ) ← that covers all example
(positive and negative). Its refinements are then consid-
ered, then their refinements in turn, an this is repeated
until a clause is found which covers only positive exam-
ples. In the example above, the clause daughter(X,Y ) ←
female(X), parent(Y,X) is such a clause. Note that this
clause can be reached in several ways from the top of the
lattice, e.g., by first adding female(X), then parent(Y,X)
or vice versa.

The refinement graph is typically searched heuristically
level-wise, using heuristics based on the number of positive
and negative examples covered by a clause. As the branch-
ing factor is very large, greedy search methods are typically
applied which only consider a limited number of alterna-
tives at each level. Hill-climbing considers only one best
alternative at each level, while beam search considers n best
alternatives, where n is the beam width. Occasionally, com-
plete search is used, e.g., A∗ best-first search or breadth-first
search. This search can be bound from below by using so-
called bottom clauses, which can be constructed by least
general generalization [37] or inverse resolution/entailment
[36].

2.5 Transforming ILP problems
to propositional form

One of the early approaches to ILP, implemented in the
ILP system LINUS [29], is based on the idea that the use
of background knowledge can introduce new attributes for
learning. The learning problem is transformed from rela-
tional to attribute-value form and solved by an attribute-
value learner. An advantage of this approach is that data
mining algorithms that work on a single table (and this is
the majority of existing data mining algorithms) become
applicable after the transformation.

This approach, however, is feasible only for a restricted
class of ILP problems. Thus, the hypothesis language of LI-
NUS is restricted to function-free program clauses which are
typed (each variable is associated with a predetermined set
of values), constrained (all variables in the body of a clause
also appear in the head) and nonrecursive (the predicate
symbol the head does not appear in any of the literals in
the body).

The LINUS algorithm which solves ILP problems by
transforming them into propositional form consists of the
following three steps:

• The learning problem is transformed from relational to
attribute-value form.

• The transformed learning problem is solved by an attribute-
value learner.

• The induced hypothesis is transformed back into rela-
tional form.

The above algorithm allows for a variety of approaches
developed for propositional problems, including noise-hand-
ling techniques in attribute-value algorithms, such as CN2
[8], to be used for learning relations. It is illustrated on the
simple ILP problem of learning family relations. The task
is to define the target relation daughter(X,Y ), which states
that person X is a daughter of person Y , in terms of the
background knowledge relations female, male and parent.



Table 4: Non-ground background knowledge for learning the daughter relation.

Training examples Background knowledge

daughter(mary,ann). ⊕ parent(X,Y )← mother(ann,mary). female(ann).
daughter(eve, tom). ⊕ mother(X,Y ). mother(ann, tom). female(mary).
daughter(tom,ann). 	 parent(X,Y )← father(tom, eve). female(eve).
daughter(eve, ann). 	 father(X,Y ). father(tom, ian).

Table 5: Propositional form of the daughter relation problem.

Variables Propositional features

C X Y f(X) f(Y ) m(X) m(Y ) p(X, X) p(X,Y ) p(Y,X) p(Y, Y )

⊕ mary ann true true false false false false true false
⊕ eve tom true false false true false false true false
	 tom ann false true true false false false true false
	 eve ann true true false false false false false false

All the variables are of the type person, defined as person
= {ann, eve, ian, mary, tom}. There are two positive and
two negative examples of the target relation. The training
examples and the relations from the background knowledge
are given in Table 3. However, since the LINUS approach
can use non-ground background knowledge, let us assume
that the background knowledge from Table 4 is given.

The first step of the algorithm, i.e., the transformation of
the ILP problem into attribute-value form, is performed as
follows. The possible applications of the background predi-
cates on the arguments of the target relation are determined,
taking into account argument types. Each such application
introduces a new attribute. In our example, all variables are
of the same type person. The corresponding attribute-value
learning problem is given in Table 5, where f stands for
female, m for male and p for parent. The attribute-value
tuples are generalizations (relative to the given background
knowledge) of the individual facts about the target relation.

In Table 5, variables stand for the arguments of the tar-
get relation, and propositional features denote the newly
constructed attributes of the propositional learning task.
When learning function-free clauses, only the new attributes
(propositional features) are considered for learning.

In the second step, an attribute-value learning program
induces the following if-then rule from the tuples in Table 5:
Class = ⊕ if [female(X) = true]∧[parent(Y,X) = true]

In the last step, the induced if-then rules are transformed
into clauses. In our example, we get the following clause:
daughter(X,Y )← female(X), parent(Y,X).

The LINUS approach has been extended to handle de-
terminate clauses [17; 30], which allow the introduction of
determinate new variables (which have a unique value for
each training example). There also exist a number of other
approaches to propositionalization, some of them very re-
cent: an overview is given by Kramer et al. [28].

Let us emphasize again, however, that it is in general not
possible to transform an ILP problem into a propositional
(attribute-value) form efficiently. De Raedt [13] treats the
relation between attribute-value learning and ILP in detail,
showing that propositionalization of some more complex ILP
problems is possible, but results in attribute-value problems
that are exponentially large. This has also been the main
reason for the development of a variety of new RDM/ILP
techniques by upgrading propositional approaches.

2.6 Upgrading propositional approaches
ILP/RDM algorithms have many things in common with

propositional learning algorithms. In particular, they share
the learning as search paradigm, i.e., they search for pat-
terns valid in the given data. The key differences lie in
the representation of data and patterns, refinement opera-
tors/generality relationships, and testing coverage (i.e., whe-
ther a rule explains an example).

Van Laer and De Raedt [49] explicitly formulate a recipe
for upgrading propositional algorithms to deal with rela-
tional data and patterns. The key idea is to keep as much
of the propositional algorithm as possible and upgrade only
the key notions. For rule induction, the key notions are the
refinement operator and coverage relationship. For distance-
based approaches, the notion of distance is the key one. By
carefully upgrading the key notions of a propositional algo-
rithm, a RDM/ILP algorithm can be developed that has the
original propositional algorithm as a special case.

The recipe has been followed (more or less exactly) to
develop ILP systems for rule induction, well before it was
formulated explicitly. The well known FOIL [42] system can
be seen as an upgrade of the propositional rule induction
program CN2 [8]. Another well known ILP system, PRO-
GOL [36] can be viewed as upgrading the AQ approach [33]
to rule induction.

More recently, the upgrading approach has been used
to develop a number of RDM approaches that address data
mining tasks other than binary classification. These include
the discovery of frequent Datalog patterns and relational as-
sociation rules [11] (Chapter 8 of [16]) [10], the induction of
relational decision trees (structural classification and regres-
sion trees [27] and first-order logical decision trees [3]), and
relational distance-based approaches to classification and
clustering ([25], Chapter 9 of [16]; [22]). The algorithms
developed have as special cases well known propositional
algorithms, such as the APRIORI algorithm for finding fre-
quent patterns; the CART and C4.5 algorithms for learning
decision trees; k- nearest neighbor classification, hierarchi-
cal and k-medoids clustering. In the following three sections,
we briefly review how each of the propositional approaches
has been lifted to a relational framework, highlighting the
key differences between the relational algorithms and their
propositional counterparts.



3. RELATIONAL ASSOCIATION RULES
The discovery of frequent patterns and association rules

is one of the most commonly studied tasks in data mining.
Here we first describe frequent relational patterns (frequent
Datalog patterns) and relational association rules (query ex-
tensions). We then look into how a well-known algorithm
for finding frequent itemsets has been upgraded do discover
frequent relational patterns.

3.1 Frequent Datalog queries
and query extensions

Dehaspe and Toivonen [10], [11] (Chapter 8 of [16]) con-
sider patterns in the form of Datalog queries, which reduce
to SQL queries. A Datalog query has the form
? −A1, A2, . . . An, where the Ai’s are logical atoms.

An example Datalog query is

?− person(X), parent(X,Y ), hasPet(Y,Z)

This query on a Prolog database containing predicates person,
parent, and hasPet is equivalent to the SQL query

select Person.Id, Parent.Kid, HasPet.Aid

from Person, Parent, HasPet

where Person.Id = Parent.Pid

and Parent.Kid = HasPet.Pid

on a database containing relations Person with argument
Id, Parent with arguments Pid and Kid, and HasPet with
arguments Pid and Aid. This query finds triples (x, y, z),
where child y of person x has pet z.

Datalog queries can be viewed as a relational version of
itemsets (which are sets of items occurring together). Con-
sider the itemset {person, parent, child, pet}. The market-
basket interpretation of this pattern is that a person, a par-
ent, a child, and a pet occur together. This is also partly
the meaning of the above query. However, the variables X,
Y , and Z add extra information: the person and the parent
are the same, the parent and the child belong to the same
family, and the pet belongs to the child. This illustrates the
fact that queries are a more expressive variant of itemsets.

To discover frequent patterns, we need to have a notion
of frequency. Given that we consider queries as patterns
and that queries can have variables, it is not immediately
obvious what the frequency of a given query is. This is re-
solved by specifying an additional parameter of the pattern
discovery task, called the key. The key is an atom which
has to be present in all queries considered during the dis-
covery process. It determines what is actually counted. In
the above query, if person(X) is the key, we count persons,
if parent(X,Y ) is the key, we count (parent,child) pairs, and
if hasPet(Y,Z) is the key, we count (owner,pet) pairs. This
is described more precisely below.

Submitting a query Q =?−A1, A2, . . . An with variables
{X1, . . . Xm} to a Datalog database r corresponds to asking
whether a grounding substitution exists (which replaces each
of the variables in Q with a constant), such that the con-
junction A1, A2, . . . An holds in r. The answer to the query
produces answering substitutions θ = {X1/a1, . . . Xm/am}
such that Qθ succeeds. The set of all answering substitutions
obtained by submitting a query Q to a Datalog database r

is denoted answerset(Q, r).

The absolute frequency of a query Q is the number of

answer substitutions θ for the variables in the key atom for
which the query Qθ succeeds in the given database, i.e.,
a(Q, r, key) = |{θ ∈ answerset(key, r)|Qθ succeds w.r.t. r}|.
The relative frequency (support) can be calculated as
f(Q, r, key) = a(Q, r, key)/|{θ ∈ answerset(key, r)}|. As-
suming the key is person(X), the absolute frequency for our
query involving parents, children and pets can be calculated
by the following SQL statement:

select count(distinct *)
from select Person.Id

from Person, Parent, HasPet

where Person.Id = Parent.Pid

and Parent.Kid = HasPet.Pid

Association rules have the form A → C and the intu-
itive market-basket interpretation ”customers that buy A
typically also buy C”. Given A and C have supports fA

and fC , respectively, the confidence of the association rule
is defined to be cA→C = fC/fA. The task of association
rule discovery is to find all association rules A → C, where
fC and cA→C exceed prespecified thresholds (minsup and
minconf).

Association rules are typically obtained from frequent
itemsets. Suppose we have two frequent itemsets A and C,
such that A ⊂ C, where C = A∪B. If the support of A is fA

and the support of C is fC , we can derive an association rule
A→ B, which has confidence fC/fA. Treating the arrow as
implication, note that we can derive A → C from A → B
(A→ A and A→ B implies A→ A ∪ B, i.e., A→ C).

Relational association rules can be derived in a similar
manner from frequent Datalog queries. From two frequent
queries Q1 =?− l1, . . . lm and Q2 =?− l1, . . . lm, lm+1, . . . ln,
where Q2 θ-subsumes Q1, we can derive a relational associ-
ation rule Q1 → Q2. Since Q2 extends Q1, such a relational
association rules is named a query extension.

A query extension is thus an existentially quantified im-
plication of the form ?− l1, . . . lm →?− l1, . . . lm, lm+1, . . . ln
(since variables in queries are existentially quantified). A
shorthand notation for the above query extension is ? −
l1, . . . lm ; lm+1, . . . ln. We call the query ? − l1, . . . lm
the body and the sub-query lm+1, . . . ln the head of the
query extension. Note, however, that the head of the query
extension does not correspond to its conclusion (which is
?− l1, . . . lm, lm+1, . . . ln).

Assume the queries Q1 =? − person(X), parent(X,Y )
and Q2 =?−person(X), parent(X,Y ), hasPet(Y,Z) are fre-
quent, with absolute frequencies of 40 and 30, respectively.
The query extension E =? − person(X), parent(X,Y ) ;

hasPet(Y,Z) can be considered a relational association rule
with a support of 30 and confidence of 30/40 = 75%. Note
the difference in meaning between the query extension E and
two obvious, but incorrect, attempts at defining relational
association rules. The clause person(X), parent(X,Y ) →
hasPet(Y,Z) (which stands for the logical formula ∀XY Z :
person(X)∧parent(X,Y )→ hasPet(Y,Z)) would be inter-
preted as follows: ”if a person has a child, then this child
has a pet”. The implication ?−person(X), parent(X,Y )→
? − hasPet(Y,Z), which stands for (∃XY : person(X) ∧
parent(X,Y )) → (∃Y Z : hasPet(Y,Z)) is trivially true if
at least one person in the database has a pet. The correct
interpretation of the query extension E is: ”if a person has
a child, then this person also has a child that has a pet.”



3.2 Discovering frequent queries: WARMR
The task of discovering frequent queries is addressed by

the RDM system WARMR [10]. WARMR takes as input a
database r, a frequency threshold minfreq, and declarative
language bias L. The latter specifies a key atom and input-
output modes for predicates/relations, discussed below.

WARMR upgrades the well-known APRIORI algorithm
for discovering frequent patterns, which performs levelwise
search [2] through the lattice of itemsets. APRIORI starts
with the empty set of items and at each level l considers
sets of items of cardinality l. The key to the efficiency of
APRIORI lies in the fact that a large frequent itemset can
only be generated by adding an item to a frequent itemset.
Candidates at level l+1 are thus generated by adding items
to frequent itemsets obtained at level l. Further efficiency is
achieved using the fact that all subsets of a frequent itemset
have to be frequent: only candidates that pass this tests get
their frequency to be determined by scanning the database.

In analogy to APRIORI, WARMR searches the lattice
of Datalog queries for queries that are frequent in the given
database r. In analogy to itemsets, a more complex (spe-
cific) frequent query Q2 can only be generated from a sim-
pler (more general) frequent query Q1 (where Q1 is more
general than Q2 if Q1 θ-subsumes Q2; see Section 2.3 for
a definition of θ-subsumption). WARMR thus starts with
the query ? − key at level 1 and generates candidates for
frequent queries at level l +1 by refining (adding literals to)
frequent queries obtained at level l.

Table 6: An example specification of declarative language
bias settings for WARMR.

warmode key(person(-)).
warmode(parent(+, -)).
warmode(hasPet(+, cat)).
warmode(hasPet(+, dog)).
warmode(hasPet(+, lizard)).

Suppose we are given a Prolog database containing the
predicates person, parent, and hasPet, and the declara-
tive bias in Table 6. The latter contains the key atom
parent(X) and input-output modes for the relations parent
and hasPet. Input-output modes specify whether a variable
argument of an atom in a query has to appear earlier in the
query (+), must not (-) or may, but need not to (±). Input-
output modes thus place constraints on how queries can be
refined, i.e., what atoms may be added to a given query.

Given the above, WARMR starts the search of the re-
finement graph of queries at level 1 with the query ? −
person(X). At level 2, the literals parent(X,Y ),
hasPet(X, cat), hasPet(X,dog) and hasPet(X, lizard) can
be added to this query, yielding the candidate queries
?−person(X), parent(X,Y ), ?−person(X), hasPet(X, cat),
? − person(X), hasPet(X,dog), and ? − person(X),
hasPet(X, lizard). Taking the first of the level 2 queries,
we the following literals are added to obtain level 3 queries:
parent(Y,Z) (note that parent(Y,X) cannot be added, be-
cause X already appears in the query being refined),
hasPet(Y, cat), hasPet(Y, dog) and hasPet(Y, lizard).

While all subsets of a frequent itemset must be fre-
quent in APRIORI, not all sub-queries of a frequent query
need be frequent queries in WARMR. Consider the query
? − person(X), parent(X,Y ), hasPet(Y, cat) and assume it
is frequent. The sub-query ? − person(X), hasPet(Y, cat)

is not allowed, as it violates the declarative bias constraint
that the first argument of hasPet has to appear earlier in
the query. This causes some complications in pruning the
generated candidates for frequent queries: WARMR keeps
a list of infrequent queries and checks whether the gener-
ated candidates are subsumed by a query in this list. The
WARMR algorithm is given in Table 7.

Table 7: The WARMR algorithm for discovering frequent
Datalog queries.
Algorithm WARMR( r, L, key, minfreq; Q)
Input: Database r; Declarative language bias L and key ;

threshold minfreq;
Output: All queries Q ∈ L with frequency ≥ minfreq

1. Initialize level d := 1

2. Initialize the set of candidate queries Q1 := {?- key}

3. Initialize the set of (in)frequent queries F := ∅; I := ∅

4. While Qd not empty

5. Find frequency of all queries Q ∈ Qd

6. Move those with frequency below minfreq to I

7. Update F := F ∪ Qd

8. Compute new candidates:
Qd+1 = WARMRgen(L; I; F ; Qd) )

9. Increment d

10. Return F
Function WARMRgen(L; I; F ; Qd);

1. Initialize Qd+1 := ∅

2. For each Qj ∈ Qd, and for each refinement Q′

j ∈ L of Qj :
Add Q′

j to Qd+1, unless:
(i) Q′

j is more specific than some query ∈ I, or
(ii) Q′

j is equivalent to some query ∈ Qd+1 ∪ F

3. Return Qd+1

WARMR upgrades APRIORI to a multi-relational set-
ting following the upgrading recipe (see Section 2.6). The
major differences are in finding the frequency of queries
(where we have to count answer substitutions for the key
atom) and the candidate query generation (by using a refine-
ment operator and declarative bias). WARMR has APRI-
ORI as a special case: if we only have predicates of zero arity
(with no arguments), which correspond to items, WARMR
can be used to discover frequent itemsets.

More importantly, WARMR has as special cases a num-
ber of approaches that extend the discovery of frequent item-
sets with, e.g., hierarchies on items [47], as well as ap-
proaches to discovering sequential patterns [1], including
general episodes [32]. The individual approaches mentioned
make use of the specific properties of the patterns consid-
ered (very limited use of variables) and are more efficient
than WARMR for the particular tasks they address. The
high expressive power of the language of patterns considered
has its computational costs, but it also has the important
advantage that a variety of different pattern types can be
explored without any changes in the implementation.



WARMR can be (and has been) used to perform propo-
sitionalization, i.e., to transform MRDM problems to propo-
sitional (single table) form. WARMR is first used to discover
frequent queries. In the propositional form, examples cor-
respond to answer substitutions for the key atom and the
binary attributes are the frequent queries discovered. An
attribute is true for an example if the corresponding query
succeeds for the corresponding answer substitution. This
approach has been applied with considerable success to the
tasks of predictive toxicology [9] and genome-wide predic-
tion of protein functional class [24].

4. RELATIONAL DECISION TREES
Decision tree induction is one of the major approaches

to data mining. Upgrading this approach to a relational
setting has thus been of great importance. In this section,
we first look into what relational decision trees are, i.e., how
they are defined, then discuss how such trees can be induced
from multi-relational data.

4.1 Relational Classification, Regression, and
Model Trees

Without loss of generality, we can say the task of rela-
tional prediction is defined by a two-place target predicate
target(ExampleID,ClassV ar), which has as arguments an
example ID and the class variable, and a set of background
knowledge predicates/relations. Depending on whether the
class variable is discrete or continuous, we talk about rela-
tional classification or regression. Relational decision trees
are one approach to solving this task.

An example relational decision tree is given in Figure 3.
It predicts the maintenance action A that should be taken on
machine M (maintenance(M, A)), based on parts the ma-
chine contains (haspart(M,X)), their condition (worn(X))
and ease of replacement (irreplaceable(X)). The target
predicate here is maintenance(M,A), the class variable is A,
and background knowledge predicates are haspart(M,X),
worn(X) and irreplaceable(X).

haspart(M,X), worn(X)

yes no

irreplaceable(X)

yes no

A=no maintenance

A=send back A=repair in house

Figure 3: A relational decision tree, predicting the class
variable A in the target predicate maintenance(M, A).

Relational decision trees have much the same structure
as propositional decision trees. Internal nodes contain tests,
while leaves contain predictions for the class value. If the
class variable is discrete/continuous, we talk about rela-
tional classification/regression trees. For regression, linear
equations may be allowed in the leaves instead of constant
class-value predictions: in this case we talk about relational
model trees.

The tree in Figure 3 is a relational classification tree,
while the tree in Figure 2 is a relational regression tree.

Table 8: A decision list representation of the relational de-
cision tree in Figure 3.
maintenance(M, A)← haspart(M,X), worn(X),

irreplaceable(X) !, A = send back
maintenance(M, A)← haspart(M,X), worn(X), !,

A = repair in house
maintenance(M, A)← A = no maintenance

The latter predicts the degradation time (the logarithm of
the mean half-life time in water [19]) of a chemical com-
pound from its chemical structure, where the latter is rep-
resented by the atoms in the compound and the bonds be-
tween them. The target predicate is degrades(C,LogHLT ),
the class variable LogHLT , and the background knowledge
predicates are atom(C,AtomID, Element) and
bond(C, A1, A2, BondType). The test at the root of the tree
atom(C,A1, cl) asks if the compound C has a chlorine atom
A1 and the test along the left branch checks whether the
chlorine atom A1 is connected to a nitrogen atom A2.

As can be seen from the above examples, the major dif-
ference between propositional and relational decision trees
is in the tests that can appear in internal nodes. In the re-
lational case, tests are queries, i.e., conjunctions of literals
with existentially quantified variables, e.g., atom(C,A1, cl)
and haspart(M,X), worn(X). Relational trees are binary:
each internal node has a left (yes) and a right (no) branch.
If the query succeeds, i.e., if there exists an answer substi-
tution that makes it true, the yes branch is taken.

It is important to note that variables can be shared
among nodes, i.e., a variable introduced in a node can be
referred to in the left (yes) subtree of that node. For exam-
ple, the X in irreplaceable(X) refers to the machine part X
introduced in the root node test haspart(M,X), worn(X).
Similarly, the A1 in bond(C, A1, A2, BT ) refers to the chlo-
rine atom introduced in the root node atom(C,A1, cl). One
cannot refer to variables introduced in a node in the right
(no) subtree of that node. For example, referring to the
chlorine atom A1 in the right subtree of the tree in Figure 2
makes no sense, as going along the right (no) branch means
that the compound contains no chlorine atoms.

The actual test that has to be executed in a node is the
conjunction of the literals in the node itself and the literals
on the path from the root of the tree to the node in question.
For example, the test in the node irreplaceable(X) in Fig-
ure 3 is actually haspart(M,X), worn(X), irreplaceable(X).
In other words, we need to send the machine back to the
manufacturer for maintenance only if it has a part which is
both worn and irreplaceable. Similarly, the test in the node
bond(C, A1, A2, BT ), atom(C,A2, n) in Figure 2 is in fact
atom(C,A1, cl), bond(C, A1, A2, BT ), atom(C,A2, n). As a
consequence, one cannot transform relational decision trees
to logic programs in the fashion ”one clause per leaf” (unlike
propositional decision trees, where a transformation ”one
rule per leaf” is possible).

Relational decision trees can be easily transformed into
first-order decision lists, which are ordered sets of clauses
(clauses in logic programs are unordered). When applying
a decision list to an example, we always take the first clause
that applies and return the answer produced. When apply-
ing a logic program, all applicable clauses are used and a set
of answers can be produced. First-order decision lists can
be represented by Prolog programs with cuts (!) [4]: cuts
ensure that only the first applicable clause is used.



atom(C,A1, cl)

true false

bond(C, A1, A2, BT ), atom(C,A2, n)

true
false

atom(C,A3, o)

true false

LogHLT=7.82 LogHLT=7.51 LogHLT=6.08 LogHLT=6.73

Figure 2: A relational regression tree for predicting the degradation time LogHLT of a chemical compound C (target predicate
degrades(C,LogHLT )).

Table 9: A decision list representation of the relational re-
gression tree for predicting the biodegradability of a com-
pound, given in Figure 2.
degrades(C,LogHLT )← atom(C,A1, cl),

bond(C, A1, A2, BT ), atom(C,A2, n), LogHLT = 7.82, !
degrades(C,LogHLT )← atom(C,A1, cl),

LogHLT = 7.51, !
degrades(C,LogHLT )← atom(C,A3, o),

LogHLT = 6.08, !
degrades(C,LogHLT )← LogHLT = 6.73.

Table 10: A logic program representation of the relational
decision tree in Figure 3.
a(M)← haspart(M,X), worn(X), irreplaceable(X)
b(M)← haspart(M,X), worn(X)
maintenance(M, A)← not a(M), A = no aintenance
maintenance(M, A)← b(M), A = repair in house
maintenance(M, A)← a(M), not b(M), A = send back

A decision list is produced by traversing the relational re-
gression tree in a depth-first fashion, going down left branches
first. At each leaf, a clause is output that contains the
prediction of the leaf and all the conditions along the left
(yes) branches leading to that leaf. A decision list obtained
from the tree in Figure 3 is given in Table 8. For the first
clause (send back), the conditions in both internal nodes are
output, as the left branches out of both nodes have been
followed to reach the corresponding leaf. For the second
clause, only the condition in the root is output: to reach

Table 11: The TDIDT part of the SCART algorithm for
inducing relational decision trees.

procedure DivideAndConquer(TestsOnYesBranchesSofar, DeclarativeBias, Examples)

if TerminationCondition(Examples)
then

NewLeaf = CreateNewLeaf(Examples)
return NewLeaf

else

PossibleTestsNow = GenerateTests(TestsOnYesBranchesSofar, DeclarativeBias)
BestTest = FindBestTest(PossibleTestsNow, Examples)
(Split1, Split2) = SplitExamples(Examples, TestsOnYesBranchesSofar, BestTest)
LeftSubtree = DivideAndConquer(TestsOnY esBranchesSofar ∧BestTest,Split1)
RightSubtree = DivideAndConquer(TestsOnY esBranchesSofar, Split2)
return [BestTest,LeftSubtree, RightSubtree]

the repair in house leaf, the left (yes) branch out of the
root has been followed, but the right (no) branch out of
the irreplaceable(X) node has been followed. A decision
list produced from the relational regression tree in Figure 2
is given in Table 9.

Generating a logic program from a relational decision
tree is more complicated. It requires the introduction of new
predicates. We will not describe the transformation process
in detail, but rather give an example. A logic program,
corresponding to the tree in Figure 3 is given in Table 10.

4.2 Induction of Relational Decision Trees
The two major algorithms for inducing relational deci-

sion trees are upgrades of the two most famous algorithms
for inducting propositional decision trees. SCART [26; 27]
is an upgrade of CART [5], while TILDE [3; 14] is an up-
grade of C4.5 [43]. According to the upgrading recipe, both
SCART and TILDE have their propositional counterparts
as special cases. The actual algorithms thus closely follow
CART and C4.5. Here we illustrate the differences between
SCART and CART by looking at the TDIDT (top-down
induction of decision trees) algorithm of SCART (Table 11).

Given a set of examples, the TDID algorithm first checks
if a termination condition is satisfied, e.g., if all examples
belong to the same class c. If yes, a leaf is constructed
with an appropriate prediction, e.g., assigning the value c
to the class variable. Otherwise a test is selected among
the possible tests for the node at hand, examples are split
into subsets according to the outcome of the test, and tree
construction proceeds recursively on each of the subsets.



A tree is thus constructed with the selected test at the root
and the subtrees resulting from the recursive calls attached
to the respective branches.

The major difference in comparison to the propositional
case is in the possible tests that can be used in a node. While
in CART these remain (more or less) the same regardless of
where the node is in the tree (e.g., A = v or A < v for each
attribute and attribute value), in SCART the set of possible
tests crucially depend on the position of the node in the tree.
In particular, it depends on the tests along the path from
the root to the current node, more precisely the variables
appearing in those tests and the declarative bias. To em-
phasize this, we can think of a GenerateTests procedure
being separately employed before evaluating the tests. The
inputs to this procedure are the tests on positive branches
from the root to the current node and the declarative bias.
These are also inputs to the top level TDIDT procedure.

The declarative bias in SCART contains statements of
the form schema(CofL,TandM), where CofL is a conjunction
of literals and TandM is a list of type and mode declarations
for the variables in those literals. Two such schema state-
ments, used in the induction of the regression tree in Figure 2
are as follows: schema((bond(V, W, X, Y), atom(V, X, Z)),
[V:chemical:’+’, W:atomid:’+’, X:atomid:’-’, Y:bondtype:’-
’, Z:element: ’=’]) and schema(bond(V, W, X, Y), [V:
chemical:’+’, W:atomid:’+’, X:atomid:’-’, Y:bondtype: ’=’]).
In the lists, each variable in the conjunction is followed by
its type and mode declaration: ’+’ denotes that the variable
must be bound (i.e., appear in TestsOnYesBranchesSofar),
- that it must not be bound, and = that it must be replaced
by a constant value.

Assuming we have taken the left branch out of the root
in Figure 2, TestsOnYesBranchesSofar = atom(C,A1, cl).
Taking the declarative bias with the two schema statements
above, the only choice for replacing the variables V and
W in the schemata are the variables c and A1, respec-
tively. The possible tests at this stage are thus of the form
bond(C, A1, A2, BT ), atom(C,A2, E), where E is replaced
with an element (such as cl - chlorine, s - sulphur, or n -
nitrogen), or of the form bond(C, A1, A2, BT ), where BT
is replaced with a bond type (such as single, double, or
aromatic). Among the possible tests, the test
bond(C, A1, A2, BT ), atom(C,A2, n) is chosen.

The approaches to relational decision tree induction are
among the fastest MRDM approaches. They have been suc-
cessfully applied to a number of practical problems. These
include learning to predict the biodegradability of chemi-
cal compounds [19] and learning to predict the structure of
diterpene compounds from their NMR spectra [18].

5. RELATIONAL
DISTANCE-BASED APPROACHES

To upgrade distance-based approaches to learning, in-
cluding prediction and clustering, it is necessary to upgrade
the key notion of a distance measure from the propositional
to the relational case. Such a measure could then be used
within standard statistical approaches, such as nearest-neigh-
bor prediction or hierarchical agglomerative clustering. In
their system RIBL, Emde and Wettschereck [22] propose a
relational distance measure. Below we first briefly discuss
this measure, then outline how it has been used for relational
classification and clustering [25].

5.1 The RIBL distance measure
Propositional distance measures are defined between ex-

amples that have the form of vectors of attribute values.
They essentially sum up the differences between the ex-
amples’ values along each of the dimensions of the vectors.
Given two examples x = (x1, . . . , xn) and y = (y1, . . . , yn),
their distance might be calculated as

distance(x, y) =

n
∑

i=1

difference(xi, yi)/n

where the difference between attribute values is defined as

difference(xi, yi) =



















|xi − yi| if continuous

0 if discrete and xi = yi

1 otherwise

In a relational representation, an example (also called
instance or case) can be described by a set of facts about
multiple relations. A fact of the target predicate of the form
target(ExampleID,A1, ..., An) specifies an instance through
its ID and properties, and additional information can be
specified through background knowledge predicates. In Ta-
ble 12, the target predicate member(PersonID,A,G,I,MT)
specifies information on members of a particular club, which
includes age, gender, income and membership type. The
background predicates car(OwnerID, CT, TS,M) and
house(OwnerID, DistrictID, Y, S) provide information on
property owned by club members: for cars this includes car
type, top speed and manufacturer, for houses the district,
construction year and size. Additional information is avail-
able on districts through the predicate
district(DistrictID, P, S, C), i.e., the popularity, size, and
country of the district.

Table 12: Two examples on which to study a relational dis-
tance measure.

member(person1 , 45 , male, 20 , gold)
member(person2 , 30 , female, 10 , platinum)

car(person1 , wagon, 200 , volkswagen)
car(person1 , sedan, 220 , mercedesbenz )
car(person2 , roadster , 240 , audi)
car(person2 , coupe, 260 , bmw)

house(person1 , murgle, 1987 , 560 )
house(person1 , montecarlo, 1990 , 210 )
house(person2 , murgle, 1999 , 430 )

district(montecarlo, famous, large, monaco)
district(murgle, famous, small , slovenia)

The basic idea behind the RIBL [22] distance measure
is as follows. To calculate the distance between two ob-
jects/examples, their properties are taken into account first
(at depth 0). Next (at depth 1), objects immediately related
to the two original objects are taken into account, or more
precisely, the distances between the corresponding related
objects. At depth 2, objects related to those at depth 1 are
taken into account, and so on, until a user-specified depth
limit is reached.



member(person1 , 45 ,male, 20 , gold)

car(person1 , wagon, 200 , volkswagen)

car(person1 , sedan, 220 , mercedesbenz )

house(person1 , murgle, 1987 , 560 )

district(murgle, famous, small , slovenia)

house(person1 , montecarlo, 1990 , 210 )

district(montecarlo, famous, large,monaco)

-

-

-

-

-

-

Figure 4: The case of (all facts related to) member(person1 , 45 , male, 2000000 , gold) constructed with respect to the back-
ground knowledge in Table 12 and a depth limit of 2.

In our example, when calculating the distance between
e1 = member(person1,45, male, 20, gold) and
e2 = member(person2,30, female, 10, platinum), the prop-
erties of the persons (age, gender, income, membership type)
are first compared and differences between them calculated
and summed (as in the propositional case). At depth 1, cars
and houses owned by the two persons are compared, i.e.,
distances between them are calculated. At depth 2, the dis-
tricts where the houses reside are taken into account when
calculating the distances between houses. Before beginning
to calculate distances, RIBL collects all facts related to a
person into a so-called case. The case for person1 generated
with a depth limit of 2 is given in Figure 4.

Let us calculate the distance between the two club mem-
bers according to the distance measure. d(e1, e2) = 1/5·
(d(person1, person2) + d(45, 30) + d(male, female)+
d(20, 10) + d(gold, platinum)). With a depth limit of 0,
the identifiers person1 and person2 are treated as discrete
values, d(person1, person2) = 1 and we have d(e1, e2) =
(1 + (45 − 30)/100 + 1 + (20 − 10)/50 + 1)/5 = 0.67; the
denominators 100 and 50 denote the highest possible differ-
ences in age and income.

To calculate d(person1, person2) at level 1, we collect
the facts directly related to the two persons and partition
them according to the predicates: we thus have F1, car =
{ car(person1 , wagon, 200 , volkswagen), car(person1 , sedan,
220 , mercedesbenz )} ; F2, car = { car(person2 , roadster , 240 ,
audi), car(person2 , coupe, 260 , bmw)}; F1, house = { house
(person1 , murgle, 1987 , 560 ), house(person1 , montecarlo,
1990 , 210 )}; and F2, house = { house(person2 , murgle, 1999 ,
430 )}. Then d(person1, person2) = (d(F1, car, F2, car)+
d(F1, house, F2, house))/2. Distances between sets of facts
are calculated as follows. We take the smaller set of facts (or
the first, if they are of the same size): for
d(F1, house, F2, house), we take F2, house. For each fact
in this set, we calculate its distance to the nearest element
of the other set, e.g., F1, house, summing up these distances
(the house of person2 is closer to the house of person1 in
murgle then to the one in montecarlo). We add a penalty
for the possible mismatch in cardinality and normalize with
the cardinality of the larger set:

d(F1, house, F2, house) =
[1 + min(d(house(person2,murgle, 1999, 430),

house(person1, murgle, 1987, 560)),
d(house(person2,murgle, 1999, 430),

house(person1, montecarlo, 1990, 210))]/2 =
0.5 · [1 + min((0 + (1999− 1987)/100 + |430− 560|/1000)/3,

(1+(1999−1990)/100+(430−210)/1000)/3)]
= 0.5 + 0.5 ·min(0.25/3, 1.31/3) = 13/24.

For calculating d(F1, car, F2, car), we take F1, car and
note that both cars of person1 are closer to the audi of per-
son2 than to the bmw. We thus have d(F1, car, F2, car) =
0.5·[minc∈F2 ,card(car(person1 , wagon, 200 , volkswagen), c)+

minc∈F2,card(car(person1 , sedan, 220 ,mercedesbenz ), c)]
= 0.5 · [(1 + |200 − 240|/100 + 1)/3, (1 + |220 − 240|/100 +
1)/3] = 11/15. Thus, at level 1, d(person1, person2) =
0.5 · (13/24 + 11/15) = 0.6375 and d(e1, e2) = (0.6375 +
(45 − 30)/100 + 1 + (20 − 10)/50 + 1)/5 = 0.5975.

Finally, at level 2, the distance between the two districts
is taken into account when calculating d(F1, house, F2, house).
We have d(murgle,montecarlo) = (0 + 1 + 1)/3 = 2/3.
However, since the house of person2 is closer to the house of
person1 in murgle then to the one in montecarlo, the value
of d(F1, house, F2, house) does not change as it equals
0.5 · [1 + min((0 + (1999− 1987)/100 + |430− 560|/1000)/3,

(2/3+(1999−1990)/100+(430−210)/1000)/3)]
= 0.5 + 0.5 ·min(0.25/3, (2/3 + 0.31)/3) = 13/24. d(e1, e2)
is thus the same at level 1 and level 2 and is equal to 0.5975.

We should note here that the RIBL distance measure is
not a metric [44]. However, some relational distance mea-
sures that are metrics have been proposed recently [45]. De-
signing distance measures for relational data is still a largely
open and lively research area. Since distances and kernels
are strongly related, this area is also related to designing
kernels for structured data (Gaertner; this issue).

5.2 Relational distance-based learning
Once we have a relational distance measure, we can eas-

ily adapt classical statistical approaches to prediction and
clustering, such as the nearest-neighbor method and hierar-
chical agglomerative clustering, to work on relational data.
This is precisely what has been done with the RIBL distance
measure.



The original RIBL [22] addresses the problem of pre-
diction, more precisely classification. It uses the k-nearest
neighbor (kNN) method in conjunction with the RIBL dis-
tance measure to solve the problem addressed. RIBL was
successfully applied to the practical problem of diterpene
structure elucidation [18], where it outperformed proposi-
tional approaches as well as a number of other relational
approaches.

RIBL2 [25] upgrades the RIBL distance measure by con-
sidering lists and terms as elementary types, much like dis-
crete and numeric values. Edit distances are used for these,
while the RIBL distance measure is followed otherwise.
RIBL2 has been used to predict mRNA signal structure and
to automatically discover previously uncharacterized mRNA
signal structure classes [25].

Two clustering approaches have been developed that use
the RIBL distance measure [25]. RDBC uses hierarchical
agglomerative clustering, while FORC adapts the k-means
approach. The latter relies on finding cluster centers, which
is easy for numeric vectors but far from trivial in the rela-
tional case. FORC thus uses the k-medoids method, which
defines a cluster center as the existing case/example that
has the smallest sum of squared distances to all other cases
in the cluster and only uses distance information.

6. MRDM LITERATURE AND
INTERNET RESOURCES

The book Relational Data Mining, edited by Džeroski
and Lavrač [16] provides a cross-section of the state-of-the-
art in this area at the turn of the millennium. This intro-
ductory article is largely based on material from that book.

The RDM book originated from the International Sum-
mer School on Inductive Logic Programming and Knowledge
Discovery in Databases (ILP&KDD-97), held 15–17 Septem-
ber 1997 in Prague, Czech Republic, organized in conjunc-
tion with the Seventh International Workshop on Inductive
Logic Programming (ILP-97). The teaching materials from
this event are available on-line at http://www-ai.ijs.si/

SasoDzeroski/ILP2/ilpkdd/. A summer school on rela-
tional data mining, covering both basic and advanced top-
ics in this area, was organized in Helsinki in August 2002,
preceding ECML/PKDD 2002 (The 13th European Confer-
ence on Machine Learning and The 6th European Confer-
ence on Principles and Practice of Knowledge Discovery in
Databases). The slides are available online at
http://www-ai.ijs.si/SasoDzeroski/RDMSchool/. A re-
port on this event by Džeroski and Ženko is included in this
special issue.

Recent developments in MRDM are presented at the an-
nual workshop on Multi-Relational Data Mining. The first
European event on this topic was held in 2001
(http://mrdm.dantec.nl/). Two international workshops
were organized in conjunction with KDD-2002 and KDD-
2003 (http://www-ai.ijs.si/SasoDzeroski/MRDM2002/
and MRDM2003/). Of interest are the workshops on Learning
Statistical Models from Relational Data held at AAAI-2000
(http://robotics.stanford.edu/srl/workshop.html) and
IJCAI-2003 (http://kdl.cs.umass.edu/events/srl2003/)
and the workshop on Mining Graphs, Trees and Sequences,
held at ECML/PKDD-2003 (http://www.ar.sanken.
osaka-u.ac.jp/MGTS-2003CFP.html).

The present issue is the first special issue devoted to
the topic of multi-relational data mining. Two journal spe-
cial issues address the related topic of using ILP for KDD:
Applied Artificial Intelligence (vol. 12(5), 1998), and Data
Mining and Knowledge Discovery (vol. 3(1), 1999).

Many papers related to MRDM appear in the ILP litera-
ture. For an overview of the ILP literature, see Chapter 3 of
the RDM book [16]. ILP-related bibliographic information
can be found at ILPnet2’s on-line library (http://www.cs.
bris.ac.uk/~ILPnet2/Library/).

The major publication venue for ILP-related papers is
the annual ILP workshop. The first International Workshop
on Inductive Logic Programming (ILP-91) was organized in
1991. Since 1996, the proceedings of the ILP workshops are
published by Springer within the Lecture Notes in Artificial
Intelligence/Lecture Notes in Computer Science series.

Papers on ILP appear regularly at major data mining,
machine learning and artificial intelligence conferences. The
same goes for a number of journals, including Journal of
Logic Programming, Machine Learning, and New Genera-
tion Computing. Each of these has published several special
issues on ILP. Special issues on ILP containing extended
versions of selected papers from ILP workshops appear reg-
ularly in the Machine Learning journal.

Selected papers from the ILP-91 workshop appeared as
a book Inductive Logic Programming, edited by Muggleton
[35], while selected papers from ILP-95 appeared as a book
Advances in Inductive Logic Programming, edited by De
Raedt [12]. Authored books on ILP include Inductive Logic
Programming: Techniques and Applications by Lavrač and
Džeroski [30] and Foundations of Inductive Logic Program-
ming by Nienhuys-Cheng and de Wolf [40]. The first pro-
vides a practically oriented introduction to ILP, but is dated
now, given the fast development of ILP in the recent years.
The other deals with ILP from a theoretical perspective.

Besides the Web sites mentioned so far, the ILPnet2
site @ IJS (http://www-ai.ijs.si/ ilpnet2/) is of special
interest. It contains an overview of ILP related resources
in several categories. These include a list of and pointers
to ILP-related educational materials, ILP applications and
datasets, as well as ILP systems. It also contains a list
of ILP-related events and an electronic newsletter. For a
detailed overview of ILP-related Web resources we refer the
reader to Chapter 16 of the RDM book [16].

7. SUMMARY
As one of the position statements in this special issue

states (Domingos; this issue), (multi-)relational data min-
ing (MRDM) is a field whose time has come. The present
article provides an entry point into this lively and exciting
research area. Since many of the MRDM techniques around
have their origin in logic-based approaches to learning and
inductive logic programming (ILP), an introduction to ILP
was given first. Three major approaches to MRDM were
covered next: relational association rules, relational deci-
sion trees and relational distance-based approaches. Finally,
a brief overview of the literature and Internet resources in
this area were provided for those looking for more detailed
information. While a variety of successful applications of
MRDM exist, these are not covered in this article: we refer
the reader to [20], as well as Page and Craven; Domingos;
and Getoor (this issue).



The bulk of this special issue is devoted to hot topics and
recent advances in MRDM. To some extent, hot topics in
MRDM mirror hot topics in data mining and machine learn-
ing. These include ensemble methods (not covered here, see,
e.g., Chapter 12 of [16]), kernel methods (Gaertner; this is-
sue), probabilistic methods (De Raedt and Kersting; this is-
sue), and scalability issues (Blockeel and Sebag; this issue).
The same goes for application areas, with computational bi-
ology and bioinformatics being the most popular (Page and
Craven; this issue). Web mining and link mining (link analy-
sis/link discovery) follow suit (Domingos; this issue; Getoor;
this issue).

Mining data that is richer in structure than a single ta-
ble is rightfully attracting an ever increasing amount of re-
search effort. It is important to realize that the formulation
of multi-relational data mining is very general and has as
special cases mining of data in the form of sequences, trees,
and graphs. A survey article (Washio and Motoda; this is-
sue) and a position statement (Holder and Cook; this issue)
on mining data in the form of graphs are included in this
special issue. Exploring representations that are richer than
propositional and poorer than full first-order logic may be
well worthwhile, because of the possibility to design more
efficient algorithms.

In summary, the issue provide an introduction to the im-
portant and exciting research field of multi-relational data
mining. It also outlines recent advances and interesting open
questions. (The latter include, for example, the seamless
integration of MRDM approaches within actual database
management systems (DBMSs) and using the query opti-
mization techniques of the DBMSs to improve the efficiency
of MRDM approaches.) In this way, we hope to attract the
attention of data mining researchers and stimulate new re-
search and solutions to open problems in this area, which
can have practical applications and far reaching implications
for the entire field of data mining.
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