CySER Summer Workshop

Graph Mining for Insider Threat Detection

Larry Holder Washington State University

Download site: <u>https://eecs.wsu.edu/~holder/cyser/</u> Exercises require UNIX.

Exercise 1: Use Subdue to find patterns in graph

- Download CSubdue.zip
- unzip CSubdue.zip
- cd CSubdue/graphs
- Is
- more sample.g (type 'q' to quit)
- cd ../src
- make
- make install
- cd ..
- bin/subdue graphs/sample.g

Best 3 substructures:

```
(1) Substructure: value = 1.86819, pos instances = 4, neg instances = 0
  Graph(4v,3e):
    v 1 object
    v 2 object
    v 3 triangle
    v 4 square
    d 1 3 shape
    d 2 4 shape
    d 1 2 on
(2) Substructure: value = 1.37785, pos instances = 4, neg instances = 0
  Graph(3v,2e):
    v 1 object
    v 2 object
    v 3 square
    d 2 3 shape
    d 1 2 on
(3) Substructure: value = 1.37219, pos instances = 4, neg instances = 0
  Graph(3v,2e):
    v 1 object
    v 2 object
    v 3 triangle
    d 1 3 shape
    d 1 2 on
```

Exercise 1 (cont.): Visualize graph

- Download and install Graphviz (dot)
 - AWS: sudo yum install graphviz
- bin/graph2dot graphs/sample.g sample.dot
- dot -Tpng sample.dot > sample.png
- Open sample.png in image viewer or navigate to sample.png file and double-click

Exercise 1 (cont.): Visualize patterns

- bin/subdue -out subs.g graphs/sample.g
- bin/subdue graphs/sample.g
- dot -Tpng subs.dot > subs.png
- Open subs.png in image viewer or navigate to subs.png file and double-click

Exercise 2: Use GBAD to find anomalies in graph

- Download GBAD.zip
- unzip GBAD.zip
- cd gbad-tool-kit_4.0/graphs
- more prob_example.g (type 'q' to quit)
- cd ../gbad-mdl_4.0/src
- make
- make install
- cd ..
- bin/gbad -all 0.5 ../graphs/prob_example.g > output.txt

XF	> #	ŧ 5	
v	1	"1	."
v	2	"2	
v	3	"3	"
v	4	"4	
v	5	"5	
u	1	2	"e"
u	1	3	"e"
u	1	4	"e"
u	3	5	"e"
XF	> #	ŧ 6	
v	1	"1	
v	2	"2	
v	3	"3	
v	4	"4	
v	5	"5	
v	6	٧"	
u	1	2	"e"
u u	1 1	2 3	"e" "e"
u u u	1 1 1	2 3 4	"e" "e" "e"
u u u u	1 1 1 3	2 3 4 5	"e" "e" "e" "e"

ormative Pattern (1):	
Substructure: value = 2.80952, instances = 7	
Graph(4v,3e):	
v 1 "1"	
v 2 "2"	
v 3 "3"	
v 4 "4"	
u 1 2 "e"	
u 1 3 "e"	
u 1 4 "e"	
iscovering anomalous substructure instances	
initial substructures	
substructures being considered	
3 substructures being considered	
7 substructures being considered	
7 substructures being considered	
0 substructures being considered	
nomalous Instance(s):	
from example 6:	
v 22 "1"	
v 23 "2"	
v 24 "3"	
v 25 "4"	
v 27 "V" < anomaly (original vertex: 6 in original example 6)	
u 25 27 "e" < anomaly (original edge vertices: 4 6 in original example	5 6
(anomalous value - 2.000000)	. 0,

Exercise 2 (cont.): Visualize patterns and anomalies

- Download and install Graphviz (dot)
 - AWS: sudo yum install graphviz
- bin/gbad -all 0.5 -dot output.dot ../graphs/prob_example.g
- dot -Tpng output.dot > output.png
- Open output.png in image viewer or navigate to output.png file and double-click
 - Normative pattern in blue
 - o Anomalies in red and orange
 - o Non-anomalous differences from normative pattern in gray

Exercise 3: Government ID Processing Example (normative pattern and anomaly)

- Download idprocess2.g (right-click and 'Save Link As...')
- cd gbad-tool-kit_4.0
- cp ~/Downloads/idprocess2.g graphs/.
- cd gbad-mdl_4.0
- bin/gbad -all 0.5 -dot idoutput.dot ../graphs/idprocess2.g (takes 9 min on AWS)
- <u>sfdp</u> -Tpng idoutput.dot > idoutput.png (takes 30 secs on AWS)
 - $\circ~$ 'sfdp' used because faster and generates smaller files than 'dot'
- Open idoutput.png in image viewer or navigate to idoutput.png file and double-click

