
Percolator: Scalable Pattern Discovery in Dynamic Graphs
Sutanay Choudhury

Pacific Northwest National
Laboratory, USA

sutanay@gmail.com

Sumit Purohit
Pacific Northwest National

Laboratory, USA
sumit.purohit@pnnl.gov

Peng Lin
Washington State University, USA

plin1@eecs.wsu.edu

Yinghui Wu
Washington State University, USA

Pacific Northwest National
Laboratory, USA

yinghui@eecs.wsu.edu

Lawrence Holder
Washington State University, USA

holder@eecs.wsu.edu

Khushbu Agarwal
Pacific Northwest National

Laboratory, USA
khushbu.agarwal@pnnl.gov

ABSTRACT
We demonstrate Percolator, a distributed system for graph pattern
discovery in dynamic graphs. In contrast to conventional mining
systems, Percolator advocates efficient pattern mining schemes that
(1) support pattern detection with keywords; (2) integrate incremen-
tal and parallel pattern mining; and (3) support analytical queries
such as trend analysis. The core idea of Percolator is to dynam-
ically decide and verify a small fraction of patterns and their in-
stances that must be inspected in response to buffered updates in
dynamic graphs, with a total mining cost independent of graph size.
We demonstrate a) the feasibility of incremental pattern mining by
walking through each component of Percolator, b) the efficiency
and scalability of Percolator over the sheer size of real-world dy-
namic graphs, and c) how the user-friendly GUI of Percolator inter-
acts with users to support keyword-based queries that detect, browse
and inspect trending patterns. We demonstrate how Percolator ef-
fective supports event and trend analysis in social media streams
and research publication analysis, respectively.

1 INTRODUCTION
Discovering emerging events from massive dynamic data is a crit-
ical need in a wide range of applications. Real-world events in dy-
namic networks (e.g., Web, social media and cyber networks) are
often represented as graph patterns. Although desirable, discover-
ing such patterns is more challenging than its counterpart over item
streams [2]. It requires effective querying and mining over graphs
that bear constant changes, while pattern mining is already expen-
sive over static graphs [5, 8]. Moreover, it is hard to reduce the
computational complexity (NP-hard). Moreover, pattern discovery
should support keyword input, i.e., to discover and track patterns
that “cover” user-specified keywords.

One approach is to leverage incremental computation that has
been applied to update query results [6]. The idea is to dynamically
identify a fraction of data that must be inspected to update the pat-
terns in response to changes. Another method is to develop parallel
mining [7] to cope with the sheer amount of data. Can we combine
parallel and incremental computation to support pattern discovery
in massive dynamic graphs?

Percolator. This motivates us to develop Percolator, a prototype
system that combines both incremental mining and parallel mining
for feasible pattern detection over graph streams. It has the follow-
ing unique new features that differ from conventional systems.

(1) Keyword specified patterns. Percolator supports the discovery
of (general) graph patterns that pertain to user-specified keywords.
It finds informative and concise patterns characterized by maximal
patterns and their activeness measures. It also supports both ad-hoc
top pattern detection and offline trend analysis.

(2) Incremental mining. Percolator supports incremental pattern min-
ing to avoid rediscover patterns from scratch upon receiving changes.
Given discovered patterns Σ over a graph, and a batch of edge up-
dates, it incrementally updates Σ by automatically tracking and only
re-verifying a set of patterns and their matches. This avoids unnec-
essary computation from scratch, with a cost only determined by
these patterns and data changes, independent of the size of graphs.

(3) Scale-up. Percolator is a parallel system implemented on top of
Apache Spark. It parallelizes the incremental graph mining in (2)
by dynamically constructing and exchanging messages that contain
affected patterns and triples needed for incremental verification, in
parallel and only when necessary. This reduces communication cost
and ensures the scalability.

(4) Easy-to-use. The Percolator system is easy to use. It provides
a user-friendly GUI, a built-in natural-language query constructor
to support keyword-based pattern discovery, a visualization compo-
nents to inspect and interpret the results.

Demo overview. We next demonstrate Percolator as follows. (1)
We walk through each component of Percolator from pattern mod-
els to incremental and parallel mining, to demonstrate the feasibility
of Percolator over massive dynamic graphs. (2) We demonstrate the
applications of Percolator with real-world event analysis scenarios
in social media (news data) and academic data. We demonstrate its
query interface, performance analysis and visual analysis interface
to demonstrate emerging events and their text interpretations.

2 PATTERN AND GRAPH STREAMS MODELS
We start with the graph streams and pattern model in Percolator.

Dynamic Graph. Percolator models a dynamic graph GT as a set
of triples with timestamps. Each triple e=< s,p,o > consists of a
subject s, predicate p (a relation) and object o, and each of s, p and
o has a label (e.g., URI). (1) A snapshot of GT at time i is a graph
Gi induced by triples at time i. (2) At each timestamp i, a batch of
triples ∆E updates snapshot Gi to Gi+1.

Politician

require

Organization

release regulates

drone drone
guidance safety

Figure 1: Emerging event pattern from News data as triples
Patterns. A pattern P is a labeled connected graph (Vp ,Ep , ū) with
a set of labeled pattern nodes Vp and a set of labeled pattern edges
Ep ⊆ Vp × Vp . Given a set of keywords K={k1, . . .kn }, a pattern
P pertains to K if for every keyword ki i ∈ [1,n], there exists a
keyword node u in P such that L(u)=ki .
Activeness. By default, Percolator extends minimum image support [1]
to characterize active patterns. Given a snapshotGi , a pattern P and
a set of (user-specified) keyword nodes ū in P , the activeness of P
in Gi (Act(P ,Gi)) is quantified as min |{M(u)|u ∈ ū}|, where M(u)
refers to the matches of node u induced by all the subgraph iso-
morphisms from P to Gi , and u ranges over ū. Given an activeness
threshold θ , P is active in Gi w.r.t. θ if Act(P ,Gi) ≥ θ .

We remark that the activeness of P preserves anti-monotonicity [1]
w.r.t. a fixed ū: at any time i, Act(P ,Gi) ≤ Act(P ′,Gi) w.r.t. a fixed
set of keyword nodes, if P ′ is obtained by adding edges to P .

Maximal patterns. We are interested in detecting “informative” pat-
terns as maximal ones. Indeed, small patterns may be active, but
usually tend to be trivial ones. A pattern P is maximal in Gi w.r.t.
threshold θ , if (1) P is active w.r.t. θ , and (2) there exists no active
super-pattern P ′ of P . Percolator discovers maximal patterns that
pertain to a set of user-specified keywords K.

Example 1: Figure 1 illustrates an active pattern detected and tracked
by Percolator, specified by keywords “Politician”, “drone” and “or-
ganization”. It is discovered in a dynamic graph (RDF triples) ex-
tracted from news articles by Nous [3], a knowledge graph construc-
tion engine. The pattern and its matches reveal events regarding
emerging concerns of drone safety. It verifies that politicians (e.g.,
“Schumer”) are pressing organizations (e.g., “Federal Aviation Ad-
ministration (FAA)”) to regulate drones and provide guidance. �

Pattern discovery in dynamic graphs. Given a dynamic graph GT ,
a set of keywords K, a set of active patterns Σ pertain to K (which
can be obtained by “from-scratch” discovery), Percolator updates
Σ in response to a set of edge transactions ∆E applied to G, without
re-discovery Σ from scratch, and outputs updated Σ upon request.

3 FOUNDATIONS OF PERCOLATOR
The Percolator system is built on two principles: incremental pat-
tern mining and parallel mining. (1) Instead of discovering patterns
from scratch, each time GT is updated, it performs necessary com-
putation that suffice to update Σ. (2) To scale the process over large
GT , it distributes updates and perform incremental mining in paral-
lel, and aggregates the changes to update Σ. We introduce incremen-
tal mining in Section 3.1, and its parallel mining in Section 3.2.

3.1 Incremental Mining
Upon receiving updates ∆E, Percolator dynamically identifies a set
of “affected” patterns that must be inspected in order to update Σ,
and only verifies these patterns. Percolator implements this princi-
ple with three core components: Stream Manager, Affected Pattern
Detector and Incremental Verifier.

Stream manager. The stream manager of Percolator processes GT
as a triple stream and manages the built-in structures below.

Triple Buffer. Percolator uses a buffer B with a tunable size to cache
and process the edge updates in batches. (1) It caches the updates
∆E in multiple batches bounded by the buffer size. It also maintains
a buffer map B.M , which points each triple e ∈ B to a single-edge
pattern B.M(e) having e as a match. A pattern P is “hit” by e if P
contains a pattern edge B.M(e). (2) Percolator applies load shed-
ding to prune triples in B: only triples with one end node having a
keyword label is cached for processing. Indeed, only these triples
may affect the activeness of patterns by the definition of activeness.
All others are applied to G directly without further processing.

Pattern lattice. The manager also maintains a pattern lattice T , com-
monly used in constrained graph mining. The active events Σ are
bookkept in T . In addition, it tracks the activeness of the patterns.

Affected Pattern Detector. Upon receiving a batch of triples ∆EB ⊆
∆E, the affected pattern detector of Percolator interacts with incre-
mental verifier (to be discussed) and dynamically identifies a “min-
imal” pattern set P that are necessary to be inspected to update Σ.
(1) It initializes P as the patterns “hit” by e .M , and sends P to the
incremental verifier to update their activeness. (2) For each verified
pattern P ∈ P, it “propagates” P by taking two actions below.

Downward propagation: If Act(P ,Gi) ≥ θ , it updates P as:

P := P ∪ P+,

where P+ refers to the patterns obtained by adding an edge to P , i.e.,
the possible “children” of P in T . That is, it simulates the explo-
ration of larger patterns in T as P remains to be active.

Upward propagation: If Act(P ,Gi) < θ (i.e., becomes inactive due
to e.g., edge deletions in ∆EB), it updates P as:

P := P ∪ P−,
where P− refers to the “parents” of P in T , obtained by removing an
edge from P . That is, it explores smaller patterns that may become
new maximal ones as P becomes inactive.

Note that both P+ and P− (including new patterns) can be con-
structed without reconstructing T from scratch. The detector stops
downward (resp. upward) propagation at pattern P if P+ (resp. P−)
is ∅, and checks whether no child of P is active. If so, it inserts P to
Σ as a newly discovered maximal pattern.

Incremental Verifier. The Incremental Verifier of Percolator up-
dates the activeness of each pattern P ∈ P. (1) If P is hit by edge
insertions, it updates Act(P ,Gi) by “incrementalizing” the conven-
tional subgraph isomorphism test, which processes single-edge pat-
terns in T hit by B.M and “percolate-up” to P (see below). (2) If
P is hit by edge deletions, it simply checks if the matches of P re-
mains to be valid. To this end, it computes isomorphism from P to a
subgraph induced by d-hop (with d the diameter of P) of the deleted

2

Percolator GUI

Incremental Verifier

Affected Pattern Detector

Query Execution Engine

Stream Manager

online component offline component

Trend analyzer

Maintenance

Parallel Mining Mgr.

users/applications

active patterns/trendqueries/configuration

Interactive mining

Figure 2: Architecture of Percolator

edges in Gi , without reevaluating P against Gi . (3) Otherwise, P is
obtained by either forward or backward propagation, and Act(P ,Gi)
remains to be the same.

Percolate-up. The Incremental Verifier adopts a “percolate-up” strat-
egy to reduce the processing cost of edge insertions. Given ∆EB , it
partitions ∆EB into groups by consulting the buffer map B.M , where
each group hits a single-edge pattern P0. For each pattern P ∈ P, it
then evaluates a sequence of patterns {P0, . . . , Pj } sorted by their
size, such that Pi is a sub-pattern of Pi+1 (i ∈ [0, j − 1]), and Pj=P .
That is, it “percolates” the edges up against the affected patterns,
from smaller ones to larger ones. Moreover, it never re-evaluates a
pattern Pi if Pi is verified (in other sequences). This effectively re-
duces redundant verifications (especially for “overlapping” patterns
that share sub-patterns), and early terminates at inactive patterns,
guaranteed by the anti-monotonicity of the activeness.

Upon each batch of updates, Percolator interleaves Affected Pat-
tern Detector and Incremental Verifier to “lazily” perform necessary
amount of verification. The interaction repeat until no pattern can
be added to P. It then reports updated Σ upon request.

Performance. Percolator correctly updates Σ: (1) at any time, it suf-
fices to verify the patterns in P to update Σ; (2) the Incremental
Verifier correctly updates the pattern activeness. Moreover, P lazily
includes the neighbors of affected patterns instead of regenerating
all patterns, reducing redundant verifications; and the re-verification
of P visits up to bounded hop of neighbors of ∆E instead of the en-
tire Gi . These ensure the feasiblity of Percolator over large GT .

3.2 Parallel mining
To cope with large GT , Percolator parallelizes the incremental min-
ing over a set of distributed, shared-nothing workers.

Parallel mining manager. This component executes the parallel
computation of Percolator. It maintains the following. (1) A frag-
mentation F of dynamic graph GT is a partition of the snapshot G
over n workers {F1, . . . , Fn }, where each workerWj manages a sub-
graphG j ofG. By default, Percolator applies balanced 2D partition.
(2) The batch updates ∆Ei is fragmented as {∆E1, . . . ,∆En }, where
each ∆Ej changes Fi to Fi ⊕∆Ej , respectively. (3) The pattern lattice
T is synchronized among all the workers.

Figure 3: Percolator GUI

Parallel mining. Given F and a batch of updates ∆E, Percolator
“parallelizes” the sequential incremental mining (Section 3.1) fol-
lowing a Bulk Synchronous Parallel model, and runs in supersteps.

(1) Upon receiving ∆Ej , each worker Wj invokes Affected Pattern
Detector to identify a local set of affected patterns Pj due to local
changes of Fj , and invokes Incremental Verifier to compute their lo-
cal activeness, in parallel. For each pattern P that cannot be verified
locally, it extends Fj with d-hop neighbors of the “border” nodes of
Fj in G and perform local verification, with d the diameter of P .

(2) Once all the workers complete the local verification, the coordi-
natorWo computes affected patterns P=

∪
j ∈[1,n] Pj , assembles the

local activeness of each pattern in P, and update Σ when necessary.
It then broadcasts P to all workers.

The above two steps repeats until no new affected patterns can
be added to P, and all the affected patterns are verified. Percolator
then returns Σ updated at the coordinatorWo .

4 SYSTEM OVERVIEW
System architecture. As shown in Figure 2, Percolator consists of
three components below.

Online pattern discovery: consists of four modules, including Stream
Manager, Affected Pattern Detector, Incremental Verification (Sec-
tion 3.1), and a query execution engine to evaluate ad-hoc queries.

Offline pattern analysis: consists of three modules, including a trend
analyzer to support trend analysis, a maintenance component to syn-
chronize the changes to underlying graphs, and the parallel mining
manager to manage the distributed environment, e.g., the parallel
configuration, data partitioning and fault-tolerance.

Percolator GUI. The user-friendly Percolator GUI is illustrated in
Figure 3. The configuration panel receives mining configurations
(e.g., activeness threshold, the number of workers). Users can browse
and inspect active patterns in the monitor panel, which includes the
activeness curve, and the details of the triple matches of the selected
patterns. The performance panel (not shown) visualizes delay time,
memory cost and scalability results. Finally, a built-in Query panel
allows users to issue natural-language style analytical queries, sup-
ported by built-in query parsers.

3

tweet

Obama

foreign
policy

hasKeyword hasKeyword

Russia

hasKeyword

tweet

plane

hasKeyword

hasKeyword

hasKeyword
hasKeyword

MH17

shot ukrain

tweet

2 suspects
detained

hasKeyword hasKeyword

metro
train crush

tweet

Debut of the
league of Europe

hasKeyword hasKeyword

Krasnodar

language language

language language

Russian Russian

English English

Figure 4: Top-k Twitter Patterns

Implementation. Percolator is implemented in Scala, and built on
top of Apache Spark and HDFS. Percolator uses core functions in
GraphX library to implement incremental mining. The graph stream
is represented as distributed arrays (RDDs) managed by Spark. To
support fast stream access, Percolator uses Elasticsearch1, an in-
memory database to manage the intermediate results (e.g., the map-
ping in Stream Manager) as key-value pairs. In addition, Percolator
connects to our prior work of graph construction [3] and process-
ing [4] as input and query interfaces, respectively.

The system Percolator is deployed on a cluster of 16 nodes (with
one serving as the coordinator), each equipped with an Intel Xeon
processor (2.3 GHz) with 16 cores and 64 GB memory.

5 DEMONSTRATION OVERVIEW
We next present our demonstration plan. The target audience of the
demo includes anyone who is interested in understanding complex
event and trend over data streams.

Settings. We use the following settings.

Datasets. Our real world datasets include: (1) Twitter, a collection
of dynamic knowledge graphs with in total 5 million triples and in
batches of 1.5 million triples per day. (2) MAG, a citation network
with 153.6 million triples. Each batch of triples contains 8 million
nodes and 22 million edges in one year window.
Ad-hoc queries. We invite users to inspect patterns discovered by
the following two classes of ad-hoc queries . (1) Top-k active events:

“what are the current k most active patterns?” and (2) Targeted
trends: “tell me emerging patterns pertaining to specified keywords.”
System comparison. We compare Percolator with Arabesque [7],
a state-of-the-art parallel graph mining system. As Arabesque does
not support mining over dynamic graphs, we develop a “batch” ver-
sion that applies the buffered updates and run mining from scratch.

Scenario. We invite users to experience the following scenarios.
Performance of Percolator. We demonstrate the efficiency and scal-
ability of Percolator, and the impact of key factors (e.g., pattern size,
activeness threshold, number of workers). Users are invited to con-
figure Percolator and compare the performance of Percolator and
Arabesque. We show that Percolator scales well. For example, over

1https://www.elastic.co/products/elasticsearch

paper

Machine

Learning

NLP

Memory
Networks

Sentiment
Classification

hasTopic hasTopic

related related

related

paper

Machine

Learning

NLP

Deep Language
Modeling

hasTopic hasTopic

related related

related

Learning

paper

Machine

Learning

NLP

Relation
Extraction

hasTopic hasTopic

related related

relatedRecursive
Neural
Networks

Figure 5: Trend of specified research topics (2013-2016)
MAG, its performance is improved by 2.5 times when the number
of workers varies from 2 to 8. Percolator is quite efficient: it takes
245 seconds to process 10 million updates per batch with 8 workers
in parallel. In contrast, Arabesque does not run to complete over a
small fraction of MAG using the same setting.
Top Event Analysis. Using Twitter, we show that given keywords,
Percolator effectively tracks top events and their evolution.

Example 2: A top-1 query with three keywords “twitter”, “MH17”
and “English” finds most active patterns in English twitters related
to “MH17”. As shown by the two patterns at bottom in Figure 4,
Percolator identifies a shift of twitter topics before and after the
event of MH17 plane crash in English twitters. Changing keywords
“English” to “Russian”, it finds that Russian tweets are less fazed
by the event (shown by the two active patterns at the top). �

Trend analysis. We next demonstrate that Percolator detects the trend
of specified topics, with trend queries over MAG.

Example 3: Figure 5 illustrates a trend discovered by Percolator
when user specifies trend queries with keywords “Machine Learn-
ing”, “paper” and “NLP”. As verified by the matched triples in
MAG, the trend shows the most active and relevant research top-
ics changes from “Recursive Neural Network” (2013-14) to “Deep
learning” (2014-15) and “Memory networks” (2015-16). �

REFERENCES
[1] B. Bringmann and S. Nijssen. What is frequent in a single graph? In PAKDD,

pages 858–863, 2008.
[2] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz. Moment: Maintaining closed frequent

itemsets over a stream sliding window. ICDM ’04.
[3] S. Choudhury, K. Agarwal, S. Purohit, B. Zhang, M. Pirrung, W. Smith, and

M. Thomas. Nous: Construction and querying of dynamic knowledge graphs. In
ICDE, 2017.

[4] S. Choudhury, L. Holder, G. Chin, K. Agarwal, and J. Feo. A selectivity based
approach to continuous pattern detection in streaming graphs. EDBT, 2015.

[5] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. GRAMI: frequent
subgraph and pattern mining in a single large graph. PVLDB, 2014.

[6] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu. Incremental graph pattern
matching. SIGMOD ’11, 2011.

[7] C. H. e. a. Teixeira. Arabesque: a system for distributed graph mining. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles, 2015.

[8] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM,
2002.

4

