
Deep Learning Approach to Link Weight Prediction
Yuchen Hou

School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164

yuchen.hou@wsu.edu

Lawrence B. Holder
School of Electrical Engineering and Computer Science

Washington State University, Pullman, WA 99164
holder@wsu.edu

Abstract—Deep learning has been successful in various do-
mains including image recognition, speech recognition and natu-
ral language processing. However, the research on its application
in graph mining is still in an early stage. Here we present Model
R, a neural network model created to provide a deep learning
approach to link weight prediction problem. This model extracts
knowledge of nodes from known links’ weights and uses this
knowledge to predict unknown links’ weights. We demonstrate
the power of Model R through experiments and compare it with
stochastic block model and its derivatives. Model R shows that
deep learning can be successfully applied to link weight prediction
and it outperforms stochastic block model and its derivatives by
up to 73% in terms of prediction accuracy. We anticipate this
new approach to provide effective solutions to more graph mining
tasks.

I. INTRODUCTION

Both academia and industry have seen pervasive adoption of
deep learning techniques powered by neural network models
since early 2010s, when they began to outperform other
machine learning techniques in various application domains,
e.g., speech recognition [1], image recognition [2], natural
language processing [3], recommendation systems [4], and
graph mining [5]. These neural net models can not only
achieve higher prediction accuracy than traditional models, but
also require much less domain knowledge and engineering.

Among those domains, graph mining is a new and active
application area for deep learning. An important task in graph
mining is link prediction [6] [7], i.e., link existence prediction:
to predict the existence of a link. A less well-known problem
is the link weight prediction: to predict the weight of a link.
Link weight prediction is more informative in many scenarios.
For example, when describing the connection of two users in
a social network, a description ”Alice texts Bob 128 times per
day” is more informative than ”Alice likes Bob”.

We want to create a technique to predict link weights in a
graph using a neural net model. The estimator should learn to
represent the graph in a meaningful way and to learn to predict
the target link weights using the representation it learns. The
contribution of this paper is a deep learning approach to link
weight prediction problem.

II. PROBLEM

We consider the problem of link weight prediction in a
weighted directed graph. We first take a look at an example
of the problem, and then give the problem a definition. An
undirected graph can be reduced to a directed graph by

converting each weighted undirected link to two directed links
with the same weight and opposite directions, so the prediction
for a weighted undirected graph is a special case of the
problem we consider.

A. Problem example

Let us look at an example of link weight prediction -
message volume prediction in a social network, shown in
Figure 1 and Table I. In this example, there are 3 users in
a social network: A, B and C. Each user can send any amount
of text messages to every other user. We know the message
size transmitted between A and C, B and C, but not A and
B. We want to predict the message size transmitted between
A and B. This is a simplified network similar to many

B

C

A

?7

?

4

74

11

Fig. 1. An example of link weight prediction in a weighted directed graph -
message volume prediction in a social network.

TABLE I
THE EDGE LIST REPRESENTATION OF THE EXAMPLE IN FIGURE 1.

Source node Destination node Link weight
A B ?
A C 74
B A ?
B C 7
C A 4
C B 11

real social networks, where every user interacts with other
users by posting, sharing, following or liking them. There can
not be any logical approach to derive the unknown message
volumes, as they have randomness. But there can be statistical
approaches to build models to predict them. The ability to
predict these interactions potentially allows us to recommend

new connections to users: if A is predicted/expected to send a
large amount of messages to B by some model, and A is not
connected to B yet, we can recommend B as a new connection
to A.

B. Problem definition

Now we define the link weight prediction problem in a
weighted directed graph.
• Given a weighted directed graph with the node set V and

link subset E
• Build a model w = f(x, y) where x and y are nodes and

w is the weight of link (x, y) that can predict the weight
of any link

For every possible link (1 out of n2, where n is the number
of nodes), if we know its weight, we know it exists; if we
do not know its weight, we do not know it exists. This is a
very practical point when we handle streaming graphs: for any
possible link, we either know it exists and know its weight (if
it has been streamed in), or we do not know if the link will
ever exist, nor know its weight.

III. EXISTING APPROACHES

In our literature study on previous research in the link
weight prediction problem, we have found few existing ap-
proaches and no deep learning ones. In this section, we review
these existing approaches.

A. Node similarity model

This approach is designed for undirected graphs. It assumes
the weight of a link between two nodes is proportional to the
similarity of those two nodes. It employs a linear regression
model [8]:

wxy = k · sxy
where k is the regression coefficient, wxy is the weight of the
link between node x and node y, and sxy is the similarity of
x and y, calculated based on their common neighbors:

sxy =
∑

z∈N(x)∩N(y)

F

where N(x) is the set of neighbors of node x, z is any common
neighbor of x and y, and F is an index factor which has nine
different forms, shown in Table II. In Table II, dz is the degree
of node z and sz is the strength of node z:

sz =
∑

u∈N(z)

wzu

These nine forms represent three groups of measures of 2-hop
paths connecting those two nodes:
• Unweighted group [9]: this group is based on path

existence and ignore path weights.
• Weighted group [10]: this group is based on path length,

i.e., the sum of path weights.
• Reliable route weighted group [11]: this group is based

on path reliability, i.e., the product of path weights.
And each group contains three forms:

TABLE II
9 DIFFERENT FORMS OF INDEX FACTOR F.

Common
Neighbors

Adamic-Adar Resource Al-
location

Unweighted
1 1

log(dz)

1

dz

Weighted

wxz + wzy
wxz + wzy

log(1 + sz)

wxz + wzy

sz

Reliable-
route
Weighted wxz · wzy

wxz · wzy

log(1 + sz)

wxz · wzy

sz

• Common Neighbors: this form is based on path and
ignore node degrees.

• Adamic-Adar: this form is similar to Common Neighbors,
but depresses the contribution of nodes with high degrees
or high strengths.

• Resource Allocation: this form is similar to Adamic-Adar,
but depresses more than Adamic-Adar does.

B. SBM (Stochastic Block Model)

This approach is designed for unweighted graphs and uses
only link existence information [12]. The main idea is to
partition nodes into L groups and connect groups with bundles.
In this way, the graph has a 2-level structure:
• Lower level: each group consists of nodes which were

topologically similar in the original graph
• Upper level: groups are connected by bundles to represent

the original graph
Given a graph with adjacency matrix A, the SBM has the
following parameters:
• A: link existence matrix, where Aij ∈ {0, 1}
• z: the group vector, where zi ∈ {1...L} is the group label

of node i
• θ: the bundle existence probability matrix, where θzizj is

the existence probability of bundle (zi, zj)
So the existence of link (i, j) Aij is a binary random variable
following the Bernoulli distribution:

Aij ∼ B(1, θzizj)

The SBM fits parameters z and θ to maximize the probability
of observation A:

P (A|z, θ) =
∏
ij

θAij
zizj (1− θzizj)

1−Aij

We rewrite the log likelihood of observation A as an exponen-
tial family:

log(P (A|z, θ)) =
∑
ij

(T (Aij)η(θzizj))

where

T (Aij) = (Aij , 1)

is the vector-valued function of sufficient statistics of the
Bernoulli random variable and

η(θ) = (log(
θ

1− θ
), log(1− θ))

is the vector-valued function of natural parameters of the
Bernoulli random variable.

C. pWSBM (pure Weighted Stochastic Block Model)

The pWSBM is designed for weighted graphs and uses only
link weight information [13]. So it differs from SBM in a
few ways described below. Here we choose model link weight
with normal distribution. Adjacency matrix A becomes the
link weight matrix where the weight of link (i, j) Aij is a real
random variable following the normal distribution:

Aij ∼ N(µzizj , σ
2
zizj)

θzizj becomes the weight distribution parameter of bundle
(zi, zj):

θzizj = (µzizj , σ
2
zizj)

T (Aij) becomes the vector-valued function of sufficient statis-
tics of the normal random variable:

T (Aij) = (Aij , A
2
ij , 1)

η(θ) becomes the vector-valued function of natural parameters
of the normal random variable:

η(θ) = (
µ

σ2
,− 1

2σ2
,− µ2

2σ2
)

The pWSBM fits parameter z and θ to maximize the log
likelihood of observation A:

log(P (A|z, θ)) =
∑
ij

(Aij

µzizj

σ2
zizj

−A2
ij

1

2σ2
zizj

−
µ2
zizj

σ2
zizj

)

D. bWSBM (balanced Weighted Stochastic Block Model)

The bWSBM is a hybrid of SBM and pWSBM and uses
both link existence information and link weight information
[13]. The hybrid log likelihood becomes:

log(P (A|z, θ))

=α
∑
ij∈E

(Te(Aij)ηe(θzizj))

+ (1− α)
∑
ij∈W

(Tw(Aij)ηw(θzizj))

where pair (Te, ηe) denotes the family of link existence
distributions in SBM and pair (Tw, ηw) denotes the family
of the link weight distributions in pWSBM. and α ∈ [0, 1] is
a tuning parameter that determines their relative importance, E
is the set of observed interactions, and W is the set of weighted
edges. In the following, we use α = 0.5 following the practice
in [13].

E. DCWBM (Degree Corrected Weighted Stochastic Block
Model)

The DCWBM is designed to incorporate node degree by
replacing pair (Te, ηe) in the bWSBM with:

Te(Aij) = (Aij ,−didj)
ηe(θ) = (log θ, θ)

where di is the degree of node i [13].

F. Deep learning approaches to other related problems

There are a few deep learning approaches to the node
classification problem (i.e., to predict whether a node has a
label) and link existence prediction problem (i.e., to predict
whether a link exists). Two earlier approaches are graph
neural nets and relational neural nets [14], where neural nets
are incorporated into a traditional iterative graph information
propagation approach. A newer approach is deep walk [15],
where a graph is reduced to a natural language corpus so
that existing neural net model designed for natural language
processing - skip-gram model - can handle the graph. A very
recent approach is node2vec [5], which uses the same skip-
gram model, but a different way to reduce the graph to a
natural language corpus.

IV. OBSERVATIONS

As deep learning techniques become more powerful and
standardized, a key process of a domain-specific deep learn-
ing application is to represent entities as vectors, because a
neural net needs vectors as inputs. In this section, we make
some observations about this process, which lead to the deep
learning approach to link weight prediction.

A. Entities and representations

First of all, we summarize how a neural net represents
various types of entities in different domains with different
relations, as shown in Table III. An image in image recognition
is represented as a 2D light amplitude array with dimensions
height and width; an audio/spectrogram in speech recognition
is represented as a 2D sound amplitude array with dimensions
time and frequency. The relation between two images or two
audio is not commonly used. Words in natural languages,
items in recommendation systems, and nodes in graphs can
be represented by vectors (1D numeric arrays). The relations
between two words, two items and two nodes are commonly
used to learn these vectors. It is clear that representations for
all the entities are numeric arrays, because neural nets rely
on neurons’ activations and communications, which are both
numeric.

B. Mapping entities to vectors

The word2vec technique is famous for using a neural net to
learn to map every entity (word in this case) in a vocabulary to
a vector without any domain knowledge [16]. The subsequent
techniques item2vec [4] and node2vec [5] use the same skip-
gram model used in word2vec to map items and nodes to
vectors. In a corpus, every word is described/defined only by

TABLE III
A SUMMARY OF VARIOUS TYPES OF ENTITIES, THEIR NUMERIC REPRESENTATIONS AND INTER-ENTITY RELATIONS IN DIFFERENT DOMAINS.

Domain Entity Relations Representation
image recognition image N/A 2D light amplitude array[width, height]
speech recognition audio/spectrogram N/A 2D sound amplitude array[time, frequency]

natural language processing word co-occurrences of words in a context 1D array (i.e., word vector)
recommendation systems item co-purchases of items in a order 1D array (i.e., item vector)

graph mining node connections of nods (i.e., links) 1D array (i.e., node vector)

related words in its contexts, by implicit relations between
words in word co-occurrences. Nonetheless, the neural net can
learn from word co-occurrences and map words to vectors ac-
cordingly, such that the relations between words are preserved
in the word vector space [17]. The same arguments apply to
relations between items and between nodes.

C. Mapping nodes to vectors

The relation between nodes is quite different from that
between words:
• The weight of a link from one node to another specifically

tells us how strong one node connects to the other; this
type of relation has regular and explicit form: entity -
relation - entity.

• On the other hand, the co-occurrences of words (e.g., in
the context [The quick brown fox jumps over the lazy
dog]) implicitly tell us these words are related but do
not tell us any specific relations (e.g., Are [quick] and
[brown] related? What is the relation between [fox] and
[jumps]? Is [over] a relation or entity?).

Natural languages do not have the notion that all information
can be described as entities and their relations, as in graphs.
For a neural net, words can simply show up in sequences from
day-to-day conversations, in many flexible and unpredictable
ways, with little structure or regularity. Therefore, the skip-
gram model, designed to handle natural languages, can not
take advantage of highly structured data in graphs. This
suggests that a neural net, if correctly designed to handle
graphs, should be able to learn a node-to-vector mapping
supervised by the link weight, in a more specific, direct and
simply way than it learns word-to-vector mappings supervised
by word co-occurrences.

V. APPROACH

Following the above observations, we build an estimator
with a neural net model using a node pair as its input and the
weight of the link connecting the nodes as its output.

A. Model R

We design the model in the estimator as a fully connected
neural net which we call Model R (R as in relation), shown
in Figure 2. We have considered a convolutional neural net as
an alternative, but we decided it would not be a good fit for
this application. These node vectors do not have any spacial
property for a convolutional neural network to take advantage
of, compared to the 2D array of an image where the spacial
location of each pixel has significant meaning (e.g., relative

distances of pixels). These node vectors do not have any of
the invariance properties of an image either, such as translation
invariance, rotation invariance, size invariance and illumination
invariance.

The model contains the following layers:
• A mapping layer that maps node IDs to node vectors.

In the node dictionary, the key is the node ID, the
value is the node vector, which is learned through back
propagation and stochastic gradient descent.

• An input layer directly activated by the node dictionaries.
Its activations are the two node vectors.

• Multiple fully connected hidden layers of rectified linear
units (only two layers are shown in the figure). These
units employ the rectifier (f(x) = max(0, x)) as their
activation function. These layers learn to extract more
and more abstract weight-relevant information.

• An output layer with a linear regression unit. This unit
employs linear regression (f(x) = kx) as its activation
function. It learns to predict the link weight as a real
number using abstracted weight-relevant information.

Link weights provide the information about nodes. We fully
take this property into account and design this model to learn
complex and unobservable node information (i.e., node vec-
tors) supervised by a simple and observable relations between
nodes (i.e., link weight).

B. Learning techniques

The estimator uses the above model and a number of
popular deep learning techniques:
• Backpropagation: propagation of the error gradients from

output layer back to each earlier layer [18]
• Stochastic gradient descent: the optimization that min-

imizes the error (descending against the error gradient
in weight space) for a random sample in each gradient
descent step [19]

• Mini-batch: the modification to stochastic gradient de-
scent to accelerate and smooth the descent by minimizing
the error for a small random batch of samples in each
gradient descent step [20]

• Early stopping: the regularization used to reduce over-
fitting during the iterative learning process by stopping
the learning when validation error stops decreasing [21]

C. Model R design parameters

Given the above design and learning techniques, there are
still a number of design parameters we can adjust, e.g.,
the number of layers, the number of units in each layer,

linear regression (f(x) = kx)

rectifier (f(x) = max(0, x))

rectifier (f(x) = max(0, x))

node vector node vector

node dictionary (node ID: node vector) node dictionary (node ID: node vector)

link weight

output layer

hidden layer

hidden layer

input layer

mapping layer

node ID node ID

Fig. 2. Model R for a weighted graph. Only layers and their connections are shown, while the units in each layer and their connections are not shown.

and the activation function of each unit. Now we briefly
discuss different options for these parameters, and also some
justifications for our choices.
• The choice of rectifier as the activation function is a

relatively easy one. Compared to earlier popular acti-
vation functions like sigmoid function (f(x) = (1 +
exp(−x))−1), rectifier not only simplifies and acceler-
ates computation, but also eliminates vanishing gradient
problems, and has become the most popular activation
function for deep neural networks [22].

• The choice of layer size is related to the number of
examples in the dataset. Naturally, the larger the dataset
is, the more discriminative the model should be, and con-
sequently higher degrees of freedom, higher dimensions
of vectors and larger layer sizes. Empirically, we usually
set the layer size as a logarithm function of the dataset
size:

d = log2(n)

where d (as in dimension) is the layer size and n is the
dataset size.

• The choice of number of layers is related to the com-
plexity of the relation between the input and the output

of the model. As a trivial example, if the input and the
output have linear relation, no hidden layer is necessary
and the model is simply a linear model. If the input and
the out put have non-linear relation, the more complex
the relation is, the more number of layers are necessary.
Empirically, we usually set the layer size to 4, as a good
compromise of learning speed and prediction accuracy.

We naturally assume the most optimum design parameters are
dataset dependent. However, we do not know any theoretical
way to calculate the most optimum parameters based on the
statistic signatures of a specific dataset. Therefore, in this
work, we evaluate different parameter choices through a few
experiments. We will work on design parameter optimization
in our future research.

VI. EXPERIMENTS

We evaluate Model R experimentally with SBM, pWSBM,
bWSBM and DCWBM as baselines, and compare their predic-
tion errors on several datasets. We use the same datasets and
experiment process used in a recent study of these baselines
[13]. The results show that Model R can achieve much lower
prediction error than the baseline models.

A. Datasets

The experiments use four datasets summarized in Table IV.

B. Experiment process

We do the same experiment for each dataset. All the link
weights are normalized to the range [-1, 1] after applying a
logarithm function. Each experiment consists of 25 indepen-
dent trials. In each trial, we split the dataset randomly into 3
subsets:
• 70% into training set
• 10% into validation set
• 20% into testing set

We use mean squared error as the prediction accuracy met-
ric. For each experiment, we report the mean and standard
deviation of the errors from 25 trials. The pseudo code of the
experiment process is shown in Figure 3.

C. Experiment results

In our experiments, Model R’s error is lower than every
other model on every dataset, shown in Figure 4 and Table V.
In this section we compare Model R with the baseline models
on every dataset. Given the dataset, we regard ModelRError
(as well as BaselineError) as a random variable so each trial
generates an example of it. We can do a t-test to justify
the significance of difference between the means of variables
ModelRError and BaselineError. The mean of a variable is
not the same as the mean of a sample of the variable. More
specifically, a variable can generate two samples with different
sample means, therefore two samples with different means do
not imply the two variables generating them have different
means. For each dataset, we do a t-test for the two variables
where the null hypothesis is that the two variables have the
same mean:

X1 == X2

where X1 and X2 are ModelRError and BaselineError and
where X is the mean of variable X. Welch’s t-test defines
its p value as the Student’s t-distribution cumulative density
function:

p = 2

∫ −|t|
−∞

f(x)dx

The smaller p is, the more confidently we can reject the null
hypothesis, i.e., accept that:

ModelRError 6= BaselineError

Typically there is a domain specific threshold for p, e.g., 0.1
or 0.01. If p is smaller than the threshold we reject the null
hypothesis. We calculate the p value and also error reduction
from baseline to Model R as:

Reduction =
BaselineError −ModelRError

BaselineError

The p value is almost 0 for all datasets and error reduction is
significant, shown in Table V. Model R has lower error than

every other model on every dataset, reducing error by 25%
to 73% from the best baseline model - pWSBM. The number
in every parenthesis is the standard deviation of the errors
in 25 trials in the last digit. The very low p values strongly
indicate the error reduction is significant. These results show
that Model R outperforms pWSBM on all these datasets.

D. Model robustness

In our experiments, we have not observed any significant
(more than 5%) prediction error increase or decrease when
we change parameters around the values we typically choose.
Overall, Model R has demonstrated a very high level of model
robustness.

E. Reproducibility

In order to ensure the reproducibility of the experiment, we
specify the implementation details in this section:
• Programming language: Python 3
• Python implementation: CPython 3.5
• Deep learning package: TensorFlow [27]
• Operating system: Ubuntu 16.10 64-bit
• Computer make and model: Lenovo ThinkCentre M83
• Memory: 16 GB
• Processor: Intel Core i7-4770 CPU @ 3.40GHz × 8

The program uses all 8 threads of the processor. Each ex-
periment takes about one hour to finish, depending on the
dataset and parameters in the learning algorithm. The program
is open-source under MIT license hosted on Github 1 so that
anyone can use it without any restriction.

VII. CONCLUSION

Model R shows that deep learning can be successfully
applied to the link weight prediction problem. It effectively
learns complex and unobservable node information (i.e., node
vectors) from simple and observable relations between nodes
(i.e., link weights), and uses that information to predict un-
known link weights. We anticipate this new approach will
provide effective solutions to more graph mining tasks.

Compared to SBM based approaches, Model R is much
more accurate. A few possible reasons are:
• Higher level of discrimination for nodes: SBM based

approaches do not differentiate nodes within the same
group, and assume the weights of all links connecting
two nodes from two groups follow the same distribution.
Model R does not assume that, but gives every node a
unique description - the node vector - so that it can have
a more accurate description for every single node.

• Higher level of model flexibility: SBM based approaches
assume the weight of every link follows a normal dis-
tribution. Model R does not assume that, but takes
advantage of high flexibility of layers of non-linear neural
network units, so that it can model very complex weight
distributions.

1https://github.com/yuchenhou/elephant

TABLE IV
THE DATASETS USED IN EXPERIMENTS.

Dataset name Node count Node type Link count Link weight type
Airport[23] 500 busiest airports in US 5960 number of passengers traveling from one airport to the other

Collaboration[24] 226 nations on Earth 20616 number of papers written by authors from the two nations
Congress[25] 163 102nd US Congress committees 26569 interlock value of shared members from the two committees

Forum[26] 1899 users of a student social network 20291 number of messages sent from one student to the other

def main():
for dataset in [Airport, Collaboration, Congress, Forum]:

(error_mean, error_standard_deviation) = do_experiment(dataset)
def do_experiment(dataset):

errors = list()
for trial in range(25):

testing_error = append(evaluate_model_on(dataset))
errors.append(testing_error)

return (errors.mean(), errors.standard_deviation())
def evaluate_model_on(dataset):

(training_set, validation_set, testing_set) = split(dataset)
while validation_error decreases:

training_error = estimator.learn(training_set)
validation_error = estimator.predict(validation_set)

testing_error = estimator.predict(testing_set)
return testing_error

Fig. 3. The pseudo code of the experiment process. The estimator.learn() method learns for one epoch through the training set, updating the weights after
each example batch.

Fig. 4. The mean squared errors of 5 models on 4 datasets: Model R has lower error than every other model on every dataset. Every error value shown here
is the mean errors for the 25 trials in the experiment.

VIII. FUTURE WORK

There are three aspects we would like to study in our future
work on this model.

The first aspect is the mapping layer of Model R. In the
current model, the mapping layer contains two independent

TABLE V
THE MEAN SQUARED ERRORS WITH STANDARD DEVIATIONS OF 5 MODELS ON 4 DATASETS.

Dataset pWSBM bWSBM SBM DCWBM Model R Reduction p
Airport 0.0486 ± 0.0006 0.0543 ± 0.0005 0.0632 ± 0.0008 0.0746 ± 0.0009 0.013 ± 0.001 73% 4.2e-66

Collaboration 0.0407 ± 0.0001 0.0462 ± 0.0001 0.0497 ± 0.0003 0.0500 ± 0.0002 0.030 ± 0.001 25% 9.1e-44
Congress 0.0571 ± 0.0004 0.0594 ± 0.0004 0.0634 ± 0.0006 0.0653 ± 0.0004 0.036 ± 0.003 35% 7.1e-35

Forum 0.0726 ± 0.0003 0.0845 ± 0.0003 0.0851 ± 0.0004 0.0882 ± 0.0004 0.037 ± 0.001 48% 4.2e-68

node dictionaries to learn the node vectors. During the learning
stage, these two dictionaries learn to map the nodes to two
spaces:
• The source node dictionary maps nodes to source node

space.
• The destination node dictionary maps nodes to destination

node space.
A more intuitive approach is to have every node mapped to
one and only one node vector in both dictionaries, as in the
word2vec technique. However, will this more intuitive ap-
proach actually perform better? Or does it depend on whether
the graph is undirected or directed? These are interesting
questions we can study in the future.

The second aspect is to handle more complex graphs,
especially for social network applications. In particular, we
want to handle graphs with node attributes. Users can have
labels like ”nationality”, and real attributes like ”age” . One
feasible approach is to append one unit for each of these
attributes to the node vector.

The third aspect is to handle large dynamic graphs. A
social network can have a large volume of links collected
continuously by a distributed system. A potential approach
is to deploy an estimator to each computing node of the
distributed system and analyze a link stream there, and let
these estimators exchange their knowledge periodically.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1646640.

REFERENCES

[1] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu, “Recurrent neural
networks for language understanding.” in INTERSPEECH, 2013, pp.
2524–2528.

[4] O. Barkan and N. Koenigstein, “Item2vec: Neural item embedding for
collaborative filtering,” arXiv preprint arXiv:1603.04259, 2016.

[5] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” 2016.

[6] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American society for information
science and technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[7] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction using
supervised learning,” in SDM06: workshop on link analysis, counter-
terrorism and security, 2006.

[8] J. Zhao, L. Miao, J. Yang, H. Fang, Q.-M. Zhang, M. Nie, P. Holme,
and T. Zhou, “Prediction of links and weights in networks by reliable
routes,” Scientific reports, vol. 5, 2015.

[9] L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Social
networks, vol. 25, no. 3, pp. 211–230, 2003.

[10] T. Murata and S. Moriyasu, “Link prediction of social networks based
on weighted proximity measures,” in Web Intelligence, IEEE/WIC/ACM
international conference on. IEEE, 2007, pp. 85–88.

[11] H. A. Taha, Operations Research: An Introduction (For VTU). Pearson
Education India, 1982.

[12] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Social networks, vol. 5, no. 2, pp. 109–137, 1983.

[13] C. Aicher, A. Z. Jacobs, and A. Clauset, “Learning latent block structure
in weighted networks,” Journal of Complex Networks, p. cnu026, 2014.

[14] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[15] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Cognitive modeling, vol. 5, no. 3,
p. 1, 1988.

[19] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[20] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” The Journal of Machine Learning
Research, vol. 11, pp. 19–60, 2010.

[21] S. Smale and D.-X. Zhou, “Learning theory estimates via integral op-
erators and their approximations,” Constructive approximation, vol. 26,
no. 2, pp. 153–172, 2007.

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[23] V. Colizza, R. Pastor-Satorras, and A. Vespignani, “Reaction–diffusion
processes and metapopulation models in heterogeneous networks,” Na-
ture Physics, vol. 3, no. 4, pp. 276–282, 2007.

[24] R. K. Pan, K. Kaski, and S. Fortunato, “World citation and collaboration
networks: uncovering the role of geography in science,” arXiv preprint
arXiv:1209.0781, 2012.

[25] M. A. Porter, P. J. Mucha, M. E. Newman, and C. M. Warmbrand,
“A network analysis of committees in the us house of representatives,”
Proceedings of the National Academy of Sciences of the United States
of America, vol. 102, no. 20, pp. 7057–7062, 2005.

[26] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,” Social
networks, vol. 31, no. 2, pp. 155–163, 2009.

[27] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

