DATA MINING

Graph-Based Data Mining

Diane J. Cook and Lawrence B. Holder, University of Texas at Arlington

THE LARGE AMOUNT OF DATA

; ) i USING DATABASES REPRESENTED AS GRAPHS, THE SuBDUE
collected today is quickly overwhelming re-

searchers’ abilities to interpret the data and SYSTEM PERFORMS TWO KEY DATA-MINING TECHNIQUES:.

discover interesting patterns in it. In response UNSUPERVISED PATTERN DISCOVERY AND SUPERVISED

to this problem, researchers have developed

techniques and systems for discovering con- CONCEPT LEARNING FROM EXAMPLES. APPLICATIONS TO

ceps databasés?Much of the collected LARGE STRUCTURAL DATABASES DEMONSTRATE
ata, however, has an explicit or impligit :

structural component (spatial or temporal), SUBDUE’S SCALABILITY AND EFFECTIVENESS.

which few discovery systems are designed
to handle? So, in addition to the need t .
accelerate data mining of large databaseblnsupervised concept
there is an urgent need to develop scal btéiscovery
tools for discovering concepts in structural rithm. The first step initializes ParentList
databases. Subdue discovers substructures that congsubstructures to be expanded), ChildLis
One method for discovering knowledge|inpress the original data and represent stiu¢substructures that have been expanded), a|
structural data is the identification of com-tural concepts in the data. The substructur@estList (the highest-valued substructure
mon substructures within the data. Subeiscovery system represents structural dafaund so far) as empty. It also sets Processe

structure discovery is the process of identias a labeled graph. Objects in the data m&ubs (the number of substructures expanded

fying concepts describing interesting ando vertices or small subgraphs in the graptso far) to 0. Each list is a linked list of sub-
repetitive substructures within structuraland relationships between objects map tstructures, sorted in nonincreasing order b
data. The discovered substructure concepthrected or undirected edges in the graph. Bubstructure value. For each unique verte

allow abstraction from the detailed datasubstructuras a connected subgraph in thdabel, Subdue assembles a substructure

structure and provide relevant attributes fographical representation. Anstanceof a | whose definition is a vertex with that labe
interpreting the data. substructure is a set of vertices and edgesd whose instances are all the vertices
The substructure discovery method is th&rom the input graph that match—graph theinput graphG with that label. Each sub-
basis of Subdue, which performs data miningretically—the substructure’s graphical repstructure is inserted in ParentList.
on databases represented as graphs. The sgsentation. This graphical representation The innerwhile loop is the algorithm’s
tem performs two key data-mining tech-serves as input to the substructure discovenpre. It removes each substructure in tur
niques: unsupervised pattern discovery ansystem. Figure 1 shows a geometric exanfrom the head of ParentList, and extends ea
supervised concept learning from examplesle of a database. It also shows the graph repfthe substructure’s instances in all possibl
Our test applications have demonstrated thesentation of the discovered substructureays. It does this either by adding a new edd
scalability and effectiveness of these techand highlights one of the four instances|o&nd vertex irs to the instance or by adding
niques on a variety of structural databasesthe substructure. a new edge between two vertices if both ve

Subdue’s substructure discovery algorithm
is a beam search. Figure 2 shows the algp-
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In this contimugion of our special
issue on da mining we pesent
four aticles tha deal with mining
nontraditional brms of déa. Two
articles deal with tet mining Sho
lom Weiss BrianWhite, Chidanand
Apte and Fediick Dameau shav
tha simple anddst document
matching can diectively assist help-
desk gplicaions in méaching pob-
lem desaptions to elevant stoed
solution desdptions. Kurt Bollaker,
Steve Lavrencgand C. Lee Giles
present theitWeb-based CiteSeer
system thifinds useispecifc scien
tific documents in the documentstthee peprocessed and st in a local
daabaseThe system leas the user pfile from the inteactions and uses it
as an gent to monitor n& documents thtamight inteest the user

Two aticles desabe nev tedhniques. Neal LesiMlohammed Zakiand
Mitsunoi Ogihara find frequent subsequencetems tha help dassify a
sequencesud as DM\, into different dasses of sequencd$eir Feaure-
Mine system diciently examines subsequences to selecaataraly pruned
fedure setThe aticle by Diane Cook and harence Holder deals with tia
mining gaph-stuctured daa, sud as CAD digrams and leemical stuctures.
Their Subdue system uses a beanchdardisceer substictures (eeures)
tha efficiently descibe the gven set of strctures based on the MDLipci-
ple. Both of these netedniques disceer useful gaures fom the soure
daa thd are not thelt tables typicaly found in popular dabasesyhich dis
criminate or desdbe sut dda.

The earlier issue

In the frst pat of this two-pat special issue on tmining tharan in
our NovemberDecember 1999 isspuéregory Piaetsk/-Shapiro descibed
the gowing comnunity of ddga mining in his'Expert Opinion” column.
Data mining is becoming an indispebiadecision-making tool in thever
more competite tusiness wrld. And challendng gpplicétions inspie
new techniques and &fm their utility.

Two atticles by Simon Kasif and Sten Salzbeg discussed da mining

Data Mining: A Long-Term Dream Continues

in the eciting field of comput#onal biolagy, where frequent ptiem dis
covely, clusteing, and dassifcation all play crucial mles in undestanding
protein stuctures and their functions.

Several atticles epresented inneative dda-mining gplicaions in moe
traditional domains with conpéually flat data tebles. Chidanandpte
Edna GossmanEdwin PednaultBary RosenfFatehTipu, and Bian
White hare developed a speciake pobabilistic model br auto insuance
pure pemium—thais, the expected &@im amount ér ead policy holder
tha meets the st actuaral requirement. Specialtgention is gven to
missing \alues and the modslscalaility. Sylvain Létouneau Fazel
Famili, and Stan Mawin descibed the enti piocess of modelingafling
aircraft componentdrom gatheling dela and gnegting sefous models to
evaluaing them using a domain-speciscoing function. Extensie exper
iments seem to shotha the neagst-neighbor method does bestmost
paits. Philip Chanyei Fan,Andreas Podromidis,and Saletore Stolb
apply a specialied boosting temique to cedit cad fraud detectiondr
scaldility and enhanced utility of the model. Costisgs thus asieved
demonstate the impoved accuacy of multiple models while providing a
scaldle fast model gnegtion on a ery large dda set.

—David Waltz and Seuhe HongGuest Editos

David Waltz has been vice psident of the NEC ResehrInstitutes Com
puter Science ResearDivision and adjunct p|fessor of computer sciende a
Brandeis Uniersity since 1993and i

will become pesident of the NEC
Reseath Institute imMApril 2000. Con
tact him aNEC Reseah Institute 4
IndependenceWay, Princeton, NJ
08540; valtz@eseath.nj.neccom.

Se line Hongis a eseath staf

member wverking on daa-mining
technology at the IBM T.J. Watson
Reseagh Center irvorktown Heights,
New York. His reseath intelests hae

included eror-correcting codefault-

tolerant computingdesign automa
tion, and knevledge-based systems.
Contact him & IBM T.J. Watson
Researh CenterPO. Box 218,York-
town HeightsNY 10598; hong@us.
ibm.com.

tices ae allead/ pat of the instancerhe frst | new child in ChildList,

instance of edtunique gpansion becomes a exceeds BeamWith, the system deglys the
substucture & the end of the lisThe paent
substucture is inseted in BestListand the

definition for a nev child substucture. All the
child instances thawere expanded in th
same way (by adding the same meedg or

if ChildList's length| same puning mebanism limits BestList to
be no longr than MaxBestWhen RirentList
is empty the algrithm switches RrentList

and ChildList,so tha ParentList nav holds

new edge with nev vertex to the same older-
tex) become instances of trehild substuc-
ture. In addition, child instances gnegted ty
different expansions thiaméch the dild sul
structure defnition within the mach-cost

threshold (desdbed lger) become instances

of the dild substucture.
Subdue thenwaluaes eah child, using

the mininum desdiption length (MDL)

heuistic, and insets ea child in ChildList
in order of its heustic value The algrithm

enforces the seah’s beam width ¥ con
trolling ChildList’s lengthAfter inseting a

Figure 1. Example substructure in graph form: (a) input graph; (b) substructure.
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ParentList {}
ChildList {}
BestList {}

ProcessedSubs

0

while ProcessedSubs <= Limit

Parent
Extend each instance of

foreach Child do

Evaluate the Child

ProcessedSubs

return BestList

Subdue (Graph, BeamWidth, MaxBest, MaxSubSize,

Create a substructure from each unique vertex label and
its single-vertex instances; insert the resulting
substructures in ParentList

while ParentList is not empty do
RemoveHead (ParentList)

Group the extended instances into Child substructures

if SizeOf (Child) <= MaxSubSize then

Insert Child in ChildList in order by value
if Length(ChildList) > BeamWidth then

Destroy the substructure at the end of ChildList
ProcessedSubs + 1
Insert Parent in BestList in order by value
if Length(BestList) > MaxBest then

Destroy the substructure at the end of BestList
Switch ParentList and ChildList

Limit)

and ParentList is not empty do

Parent in all possible ways

Figure 2. Subdue’s discovery algorithm.

the net genestion of substuctures to be
expanded

The BeamMWdth and Limit (a usedefned
limit on the number of substrctures to
process) pametes, along with computa
tional constaints on the ineact gaph mach
algorithm, constain Subdue to a pghomial
running time

Another useispecifed paametey Max-
SubSiz, detemines vhether the algrithm
prunes the disaery seach space b dis-
carding a tild substucture whose heustic
value is not geder than its pant’s heuistic
value Ealy in the discwery processthe
number of a yen substicture’s instances is
velry large, and it dominges the wlue of ay

heuistic tha uses theumber of instances as stuctural daa in tems of the disceered sub

a paameterAs the substrcture gows, its
number of instances desmases quidy
because the substture is becoming mer
specifc. This means thahe heuistic value
also usualf deceases edy in the discoery
process. If it de@asesdr a suficiently long
petiod, all the dild substuctures will be dis
caded ParentList will emptyand discoery
will halt. Disabling pruning duing disca/-
ery keeps ChildList full,even for substuc-
ture values thado not incease monotoni
cally as the substicture defnition grows.

Because &entList neer emptiesanother
method 6r halting the pogram is neededf
the user spedds a maximm substucture
size (MaxSubSie),larger dild substuctures
will not be inseted in ChildListAs a esult,
ParentList and ChildList will gentualy
empty and the disceery algorithm will halt.
Once a subdticture is discoered Subdue
uses it to simplify the da by replacing
instances of the subgtiture with a pointer
to the navly discorered substicture. Dis-
covered substictures allav abstiaction flom
detailed stuctures in the aginal dda.
Through iteation of the substrcture dis
covery and eplacement pcess,Subdue
constucts a hiearchical desdption of the

structures. This hiearchy provides \arying
interpretaion levels tha can be accessed o
the basis of the daanaysis’s speciic goals.

The MDL heuristic. Subdues heuistic for
evaluaing substuctures is based on th
MDL principle: The best thegrfor descib-
ing a dda set is the thegttha minimizes the
data sets desdption length® The model 6r
desciption length calculéon is a local com
puter sending the deggtion of a concpt to

a remote computerThe local compute

encodes the conpeas a bit sing, and the
remote computer decodes théngfito restoe
the oiginal concet. The concpt’s desdp-
tion length is the mmber of bits in the strg.

Subdue implements the MDL ipciple in
the contet of graph compession using a
substucture. Thus,the best subsicture in
a gaph is one thaminimizes DL(S) +
DL(G|9. Her Sis the discuered substuic-
ture, G is the input gaph, andDL(S) is the
number of bits equired to encode the dis
covered substicture. DL(G|S) is the mmber
of bits required to encodé& after it has been
compessed usingS. An eatier atticle
descibes the ract gaph-desdption-length
computdion used in Subdu®

Inexact graph match. Because subsicture
instances canpgpear in diferent forms
throughout the dabase Subdue uses an
inexact gaph mach to identify thent.In this
approad, the user assigns a cost toledis
tortion of a gaph.A distortion consists of
basic tansbrmations sub as deletioninser
tion, and substitution ofertices and edes.
In detemining the distdion coststhe user
can bias the nteh for or aainst paticular
types of distaions.

Given gaphsg; with n vertices andg,
with mvertices,mbeing geaer than or equal
ton, the compleity of the full inexact gaph
match is on the ater ofn™*, Because the
discovery process uses thisutine hesily,
its compleity can signifcantly degrade sys
tem perbrmanceTo improve the algrithm’s
performance we have it seach through the
space of posslbe patial mgppings using a
uniform cost seah. The cost fom the pot
of the tee to a tyen node is calculed as the
cost of all distations coresponding to tha
nodes patial mgpping The algrithm con
sidess \ettices flom the mé&ched gaphs in
order, from the most hedy connected to the
least connectedBecause the urdfm cost
seach guaantees an optimal solutiahends
as soon as itrfds the irst complete nping

In addition, the user can limit theumber

nof seach nodes (défied as a function of the

number of \ertices in the if st gaph) con
sideed ly the bant-and-bound mrcedue.
When the omber of nodesx@anded in the

e seach tree eades the defied limit, the

seach resots to hill dimbing, using the mp:
ping cost sodr as the measeifor choosing
the best nodeta gven level. Our edrer atti-
cle provides a complete degption of Sub
due’s polynomial inexact gaph mach ®
Bounds on theumber of substrctures
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consideed () and the nmber of patial
mgppings consided duing an ine&act gaph
match (g) constrin Subdue to un in poy-
nomial time The systens worst-case uin-
time is the poduct of the amber of gner
ated substictures,the rumber of instances
of eat substucture, and the omber of par
tial mgppings considexd duing the gaph
mach. This is expressed

(Soi* -D-G-1)) (L -D)* g

wherev represents theumber of ettices in
the input gaph.An ealier aticle provides
the deivation of this epression’

Discovery system applications

We hae successfullgppliedSubduewith
and without domain kivaledgg, to ddabases
in domains inkuding image anaysis, CAD
circuit anaysis,Chinese baractes, program
source codeand hiemical eaction bains’-8

CAD circuit analysis.Figure 3 shavs the
substuctures Subdue diseered in a CAD
circuit representing a sixth-aler bandpass
legpfrog ladder (boed substictures were
discovered in pevious itegtions). The fg-
ure also taulates an ealuaion based on
compeession obtained with the suhstture,
time required to pocess the dabase a
human ating of the discuered concet's
interestingnessand the omber of substrc-
ture instancesdund in the d@base For the
interestingnessating, eight domain epetts
rated eab substucture on a scale &m 1 to
5, with 1 meaning the subsitture does not
represent useful CAD imrmation and 5
meaning the substcture is \ery useful.

In this expeiiment,Subdue gneeted sub
structures in thee ways: using no bakground
knowledge, using bakground knevledge in
the form of graph madch rules customied for
this domainand using bothrgph mach rules
and inbrmation about specit models lilely
to occur in this domairs the fgure shavs,
Subdue disceered substictures thaperform
well a& compessing the dabase andepre-
sent functional CAD conggs. Using gneal
badground knavledge impoved the con
cept’s functional ating. But the MDL pimnci-
pal alone was efective in disceering the
opestional amplifer substucture, which the
expelts detemined is high} interesting and
functional in this domain.

: Human
Usage of Discovered : Nodes b
domain knowledge substructures Compression expanded rating - Instances
[std. dev.]
ugﬁggg <D£j:>>f 063 571370 | 42[12] 9
(:)ti::>>JVW\I{:;>> 0.68 46422 |2.7[12] 3
0.72 59,886 | 2.7 [1.0] 2
Graph match rules o 043 |145175 | 27[17] 6
H
uE @
AN 0.51 39,881 | 2.7 [1.0] 3
{1 @
0.62 425,772 | 1.5[0.8] 2
%&M@QWW
Model
knowledge @ I Wh 0.53 24,273 | 4.3[1.2] 9
and graph
}7
tch rul
maten rules @Wf; | 0.66 | 12,960 | 45[0.8] 4
n
@WLLI 0.72 7432 | 45[08] 2
o

Figure 3. Discovered substructures in a leapfrog circuit (boxed substructures were discovered in previous iterations).

Protein structure analsis.More recenty, we
appliedSubdue to seeral laige daabases con
taining daa requiling scientifc interpretetion.
For example we gplied the unsupeised-dis
covely system to theuly 1997 elease of the
Protein Dda Bank (PDB). Our gal was to
identify stuctural patems in the gmary, see
onday, and tetiary structures of thee potein
caegories: hemalobin, myoglobin, and
ribonudeaseA. These pdaems would act as
signdures distinguishing pteins in the da-
gory from other types of pteins and fvid-
ing a dassifcation medanism.

Using Subduewe cowerted pimary
structure information from the pimary DNA
sequence spedfl in eab PDB fle by rep-
resenting edtamino acid in the sequence
a gaph \ertex. The \ertex numbes increase
in the sequence der fom N-teminus to C-
teminus,and the ertex label is the name o
the amino acidWe adled an edg lebeled
“bond” between adjacent amino acids in
sequence

We etracted secondgstiucture by listing
occurences of helices and atds along the
primary sequence graph \ertex labeled‘h”

followed ky the helix type and lengtlepre-
sents edt helix.A graph \ertex labeled"s”
followed ty the stands oiientaion and length
represents edcstiand Edges betveen tvo
consecutie \ertices ae lebeled“sh” if they
belong to the same PDBef To represent the
protein’s 3D eaures,we used the, y, andz
coorinaes of eab @om in the potein.We
represented edcamino acidr-carbon as a
graph \ertex. If the distance beteen tvo a-
carbons s geaer than 6 Awe discaded
the information. Otherwisewe cieaed edgs
between tvo a-carbons and zeled thenfivs”
(very shot, distances 4 A) or“s” (shot).
Subdue indeeddund a stuctural patem
for eat protein caegory. Using pimary

astructure information, it identified patems

unique to eaedass of potein hut occuring
in 63 of the 65 henglobin cases(7 of the
103 nyoglobin casesand 59 of the 68
ribonudeaseA cases.

a Figure 4 summazes one of theifidings

for hemalobin secondar structure, pre-
senting an werall view of the potein,the
portion where the disceered pdtem exists,
and sbemdic views of the best fitem. The
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Figure 4. Hemoglobin secondary structure: (a) overall view, (b) discovered pattern, and (c) schematic views of the pattern.

There ae maly possilke reasons thasome
proteins did not she a patem. Mary fac
tors can diect a potein’s stucture: sample

patems discoered for eath sample dagory
covered a majaty of proteins in thacae-
gory. Tha is, 33 of the 50 angked heme

globin poteins,67 of the 89 mjoglobin
proteins,and 35 of the 53lvonudeaseA pro-
teins contained the discered patems.

Related work

Reseathers hare poposed aanety of unsuperised-disceery gpproades br stiuctural
datal20ne pproad is to use a knaledge base of congis to ¢assify the stictural daa.
Systems using thipparoad lean concets from examples and then tegorize obseved dda.
Sud systemseapresent gamples as distinct objects andpess indiidual objects oneta
time. In contast,Subdue sta@s the ente ddabase (with embeted objects) as oneaph and
processes thergph as a \wole.

Scientifc discorery systems thause domain kneledge have also been deloped but they
tamget a single pplicaion domainAn example is Mehem?3 which relies on domain krval-
edee to discoer chemisty hypotheses. In cordst,Subdue perdrms geneal-pupose autc
mated discoery with or without domain kneledge and hence can bpgied to maw stuc-
tural domains.

Logic-based systems ydominged eldional concet leaning, especialy inductive logic
programming (ILP) systems. higever, first-order Iagic can also beepresented as aaph and
in fact,is a subset of het graphs cana@presentTherefore, leaming systems usingaphical iep-
resentdions potentialf can lean richer concpts if they can handle the lger hypothesis space

FOIL,*the ILP system discussed in thisicle, executes a top-den gpproad to leaning
relaional concets (theoies) iepresented as anagrd sequence of functionele deihite
clauses. Gien etensional bacground knevledge induding reletions and gamples of the
target concet relaion, FOIL begins with the most gnerl theoy. Then it bllows a set-ceer
ing gpproad, repededly adding a ¢ause thacovers some positie examples anddv negative
examplesThen,FOIL removes the positie examples cwered by the dause and itetes the
process on theeduced set of posie examples and all rgetive examples until the thegr
covers all the positie examplesTo avoid overcomplex clausesFOIL ensues thaa dauses
desciption length does notxeeed the desigtion length of thexeamples thelause cwers. In
addition to the aplicaions discussed heras vell as gplicaions in umeous ecusive and
nonrecusive logical domainsFOIL has beengplied to leaning seath-contol rules and pa
tems in typettext.
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quality, expeiimental conditionsand human
error. Discrepancies can alscesult fom
physiological and biobemical fctors. The
same potein molecules stucture might dif
fer from one species to anoth€he potein
might be g@neticaly defective. For example
sickle-cell anemia is thdassic @ample of a
genetic hemglobin disease in kich the po-
tein ladks the stucture necessarto perbrm
its nomal function.

We mapped the secondastuctural pa-
tems of the hemglobin, myoglobin, and
ribonudeaseA proteins bak into the PDB
files.After mgpping, we found thaone dis
covered hemglobin patem belongs to the
a chains and the other to thfichains of a
hemalobin molecule (a hengbobin mole
cule contains te a and two S chains).The
discovered nmyoglobin pdtem gppeas in a
majoiity of the nyoglobin pioteins in the
data set. Fally, upon m@ping the disco-
ered ibonudeaseA patems bak to the PDB
files,we obseved tha several ribonudease
S pioteins hae the same pems as those in
ribonudeaseA proteins.This is consistent
with the fct tharibonudease S is a comple
consisting of tw fragments (S-petide and
S-protein) of the bonucleaseA proteins.
The pdtem in the ibonudease S comesdm
the S-potein fragment.

The secondgrstructure patems disco-
ered ae also distinct to e&cprotein cade-
gory. Subdue seahed the global da set to
identify the possile existence of the dis
covered patem from eab protein caegory.
The results indicged tha there is no &act
match of the best ggems of one cegory in
other caegories.

Steve Spang a molecular biolgist a the
University of Texas Southwsten Medical
Centerevaluaed the pttems discoered by
theSubdue system. Hexviewed the oiginal
database and the diseered substictures to
detemine whether the disa@red concpts
represented the da accuately and pointed
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to interesting disceeries. Spang bund tha
Subdue disceered an integsting previously
unknawvn patem tha sugyests nes informa
tion ebout the micoevolution of sud pro-
teins in mammals.

We ae contiruing expeiimental gplications of
Subdues unsupeiised-discuely cgpabilities in
the domains of bidemisty, geolagy, program
souce codeand &iation dda.

Scalability

A barrier to integrating scientifc discovery
into practical déa-mining g@proades is the
discovery systems ldcscaldility. Mary sys
tem deelopes e/aluge a discaery methods
correctness withoutegard to its scalhility.
Another barier is tha some scienti€-dis-
covely systems deal withiah dda represen
tations tha degrade scalaility. For example
Subdues disceery relies on computanally
expensve piocedues sub as subggph ise
morphism.Although Subdue’ algorithm is
polynomially constained the system still
spends a considaale amount of computian
on this task.

We ae reseathing the use of distruted
hadware to impove Subdues scalaility. In
our gproad, we patition the déaa among
individual piocessos and pocess edtpar
tition in parllel.? Ead processor pedrms
the sequentialersion ofSubdue on its local
graph patition and boadcasts its best sub
structures to the other pcessos. The
processas then galuae the commnicaed
substuctures on their local pétions. Once
all evaluaions ae completea master mces
sor gathers the esults and detarines the
global best disogeries.

SequentiaBubdues muntime is nonlinear
with respect to thergph's siz. So deceas
ing the inputs siz by patitioning the gaph
among nalltiple processa sometimesasults
in a speedup rgaer than the amber of
processos. Hawvever, the seial algorithm
anal/zes the ent& gaph and thezfore does
not overlook impotant relaionships of its
pats. Rattitioning the gaph among pces
sors might emove essential idrmation (in
our caseedges along boundgrines),and
neighbomg informaion can no longr be
used to disceer concets.

The Metis gaph-patitioning algorithm
(http://www-uses.cs.umn.edu/~kgpis/
metis) lets us dide the input gaph inton
pattitions in a vay tha minimizes the amber
of edges shazd ty patitions and thusaduces

informaion lossWe modifed this al@rithm
to allov a small amount ofverap between
pattitions, which recovers some of the -
mation lost d the patition boundaies.

Figure 5 gaphs the untime of distibuted
Subdue on tw dasses of gaphs as the
number of pocessos increasesThe two
classes &

e graphs epresenting CAD cituits (eab
labeled“nCAD,” wher n represents the
size factor and 1CAD contains 8,44 kw

tices and 19,206 edg) and

e graphs gnested atificially (ead labeled
“nART,” wheren represents the sizfac
tor, and 1AR contains 2,000ertices and
5,000 edgs).

As predictedthe speedup is usugaltiose to
linear and sometimeseger than the nm-
ber of ppcessas. Inceasing the umber of
pattitions results in impoved speedup until
the rumber of pditions gproates the om-
ber of \ettices in the gaph.
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Figure 5. Distributed Subdue runtime on (a) CAD and (b) ART graphs.
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Positive:

house2

Negative:

(@)

FOIL(80%): : - house(A, B, C). [3/0]

SubdueCL:

(o)

Subdue CL: Same as for housel

©

FOIL(50%): : house(A, B, C) : - shape(A,triangle). [0/1]

FOIL(80%): house(A, B, C): - shape(A,triangle), shape(C,triangle). [3/0]
FOIL(50%): house(A, B, C) : - shape(A triangle). [0/2]

Figure 6. (a) The house domain; (b) SubdueCL and FOIL results for houseZ; (c) results for house2.

Because esprocessor handles gri por
tion of the werall daabase some dgrada
tion in the quality of disogered substictures
might result flom this paallel version ofSub-
due In practice we find tha as the amber
of processas incieasesquality measwed as
compeession initialy improves because
greaer rumber of substrctures can be con
sideed in the allotted timé\s the mumber of
pattitions gproades the amber of ertices
in the gaph, the quality of disceered sub
stiuctues dgrades.

By patitioning the déabase dfectively,
distributed Subdue poves to be a highl
scaldle system. One of our testedtda
basesrepresenting a dallite image, con
tains 2 million \ertices and 5 million edgs.
It could not be d&ctively processed on ong
madine gven the memarconstaints. But
distributed Subdue pocessed the t@base
in less than thlee hous using eight poces
sors. Requiing a minimal amount of com
municaion and using PVM (&allel Virtual
Machine) for comnunicaion, distributed
Subdue is wailable for widespead use and
runs on a anety of heteogeneous distb-
uted netverks.

Supervised concept learning

We hare extended Subdue to act not gnl
as an unsupeised-discoery systembut
also to perdrm supevised graph-based
relational concet leaning. Few geneal-

a purpose leaming methods use arfmal gaph

representéion of knovledge, perhas be
cause of agph’s arbitary expressveness.
Another eason is the inhent NP-hadiness
of typical leaning routines,suc as coers
and least-gneanl genealization, which both
require subgaph isomophism tests in the
geneal case Pattem-recaynition-leaning
methods in kemical domains lva been suc
cessful because of thetngl graphical des
cription of chemical compoundshut no
domain-ind@endent congg-leaning sys
tems use argph representéon.

Our main talleng in adling a concpt-
leaming caability to the gaph-based dis
covery system was induding a neative
graph in the pocess. Subsictures thaoccur
often in the positie gaph hut infrequenty
in the ngative gaph ae likely to represent
the taget concet. Therefore, the Subdue
concet leaner SubdueCL) accepts both a
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positive and a ngetive gaph and galuges
substuctures as to their comession of the
positive and lak of compession of the ree
ative. SubdueCL seaches br the substrc-
ture Stha minimizes the cost of desbing
substucture Sin positve gaph G, and ne-
ative gaph G,,. This cost is gpressed

valug(Gy, G, § =DL(Gp,, § +DL(§) +
DL(G,) -DL(G,, 9.

DL(G, S is the desdption lengthaccoding
to the MDL encodingof graph G after being
compessed using substture S andDL(G)
is the desdption length of gaph G. This
cost epresents the imfrmation needed to
representG, using substicture S, plus the
information needed toepresent the poion
of G, tha was compessed usin®. Thus,
SubdueCL prefers substuctures tha com
press the posite gaph hut not the ngative
graph.

Another dalleng was the disceery sys
tem’s bias tavard finding only one @od sub
stiucture in the entie input gaph. Inductve
logic programming (ILP) systems ka a
distinct adrantage over Subdue; thg typi-
cally find theores composed of mgnules,
wherasSubdue inds essentiajl one ule.
Subdues itertive, hierarchical cgabilities
somevha address this psblem. But the sub
structures bund in lder itetions ae typk
cally defned in tems of peviously discor-
ered substuctures and ag theefore only
specializéions of the edier, more genenl
rule. To avoid this tendeng SubdueCL dis-
cards ary substucture tha contains sub
stiuctures discoered duing previous iteie-
tions.Subdu€CL iterates until it canihd no
substucture tha compesses the posie
graph moe than the rgetive gaph.

Comparing learning systems

We compaged SubdueCL to the ILP sys
tem FOIL (Frst-Oder Inductve Leaning)L°
and to the decision€e induction systen
C4.53 First, we compaed the elaional
leamers SubdueCL and FOIL on a simple
artificial domain to gamine qualitdve dif-
ferencesThen we compaed all thee sys
tems on elaional domains.

An artificial domain. Figure 6a deicts the
two daa sets of theousedomainhouseland
house2whose taget concet is“triangle on
squae” Houselcontains the six@mples on
the left,andhouseZontains the tw adli-
tional ekamples on thaght. Eat object has
a shpe and iselaed to other objectsytthe
binary relation on. Fgure 6b shas the esults
of runningSubdueCL and FOIL orhousel
The badeted mmbes in Fgure 6b ae
the rumber of &lse ngatives anddlse posi
tives.We ran FOIL twice on edtdda set,
once with the defult mininum indiidual-
clause-accuacy of 80%,and once with a min
imum of 50% At 80%, FOIL retumed the
concet tha nothing vas a housemisdasst
fying the thee positve examplesAt 50%,
FOIL descibed houses as pexample with
a tiangle on top. Havever, to relate the ti-

tion-invariant (and otheralaional) concets.
However, logic is better suitedor some con
cepts. For example FOIL can easyl repre-
sent the cong# “top and bottom objects
have same shge” as bllows:

house(A,B,C) :- shape(A,S),
shape(C,S). or

house(A,B,C) :- shape(A,Sl),
shape(C,S2), S1 = S2.

In contiast,using the gaph representéion
defined for thehousedomain,SubdueCL
would need to learfive different subsuic-
tures,one br ead shagpe Of couse if we
could foresee sut a concpt, we could
change the gaph representéion to indude
an intemediae shgpevertex connected to
another ertex with the actual stge Then,
we could ad equaledges between these
shgpevertices to epresent equialent shpes
independent of the actual gha Further
more, although both systems handlameic
values (ertex labels),a similar epresenta
tional tansbrmation is necessgrfor lean-
ing concets involving geneal equalities and
inequalities betwen mmbes.

Relational domains. The elaional do
mains ve used in our tests ihded illegal

angle and squarobjects in a connected sup chess endamestic-tac-toe endgmesand

structure, SubdueCL includes theonreldion.
Therefore, SubdueCL recanized thathe ti-
angle should be on top of the squar
ThehouseXaa set ads two examples to
houselo emphasie the needdr theonrela
tion. Hgure 6¢ shws the esults of unning
the two systems ohouse2Again,FOIL has
troude identifying the caect concpt.
These gamples eveal an adantage of
graph representdon over logic for sud post

musical &celpts.The dess domain consists
of 12,957 ow-column positionsdr a white
king, white ok, and bBack king sud tha
the Hack king is (positve) or is not (nga-
tive) in dhedk. FOIL extensionaly defined
adjaceny relations betveen tiessboat
positions and less-thaeletions betveen
row and column ambes.We piovided C4.5
with the same irdrmation by adding fea
tures tha relate eab pieces row and col

0 1 2
0| wk

1 BK
2| WR

(@

()

©

Figure 7. (a) A chess domain example; SubdueCL's (b) graphical representation and (c) discovered substructures for the example.
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umn \alues as equahot equalpr adjacent.

Figure 7 shavs SubdueCL’s representéon
of a dhess domaine@mple Ead piece isep-
resented ¥ two vertices coresponding to a
pieces row and columngonnected Yaposk
tion relation (for example WKC stands dér
white king column). Instead ¢éss-tharrela-
tions,we usedkgandnotegreldions betveen
all sud rows and columns.

We tested the the systemsof predictive
accurgy on this domainysing theebld cross
validation, with significance alues gthered
from a paied-student t-tesifThe accuacy
results vere 99.8% o6r FOIL, 99.77% br
C4.5,and 99.21%dr SubdueCL.The accu
ragy difference betwen FOIL andubdueCL
is signifcant d the 0.19 leel (tha is, the pob-
ability that the diference is insignitant is
0.19),and the diference betwen C4.5 and
SubdueCL is signitant d the 0.23 lgel.

FOIL leaned six vles,SubdueCL leamed
five wles (substrctures),and C4.5 leared 43
rules All three systems disgered four mules
that descibed in eab case pproximately
2,000 of the 2,118 posit examples. igure
7c¢ shavs two of theseules desdbed as sub
structures. The remaining ules difered
among systems andgwed to be mar pawv-
erful for FOIL and C4.5 because of these sys
tems’ability to leam numeic ranges.

Next, we tested the systems on a complet
set of 958 possie boad confgurations @ the
end of tic-tac-toe @mesThe taget concet is
“a win for x” We supplied the tlee systems
with the \alues (X,0, and Bank) for eat of
the nine boat positions. Unlik the other sys
tems,SubdueCL does notedy on individual
position \alues it useseldional information
between boatt positions to learthe thee win
concepts: three-in-a-ow, three-in-a-column,
and thee-in-a-digonal. The accuagy results
are theefore 100% 6r SubdueCL92.35% br
FOIL (the diference is signi€ant a the 0.21
level), and 96.03%dr C4.5 (the dfierence is
significant d the 0.03 leel).

In the fnal expeiiment,we atempted to
differentiade Beethoen works from Bad
works, using a set of msical eceipts
descibed by a sequence of pitcvaluesWe
obtained the 100 Baahorales fom the UC
Irvine repositoly and endomy selected the
Beethaen works from the composes’cot
lected works. To provide examples br the
three leaning systemswe selected a osi-
cal theme fom eab of 50 Beetheen exam-
ples andepeded it 10 timeswith avarying
pitch offset and suounded § random pith
values We tested the leaing systems both

[©)
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by using &solute pitt values and ypusing

the elaive difference betwen one pite

value and the ne. All three systems per
formed better with pite difference alues.
Unlike FOIL and C4.5SubdueCL used the
relaional information between successe
notes to lear the embeded nusical
sequencesofr the positre examples.The
accungy values vere 100% br SubdueCL,
85.71% br FOIL (the diference is signif
icant & the 0.06 Igel), and 82% 6r C4.5
(the difference is signitant & the 0.00
level).

OUR EXPERIMENTAL RESULTS
indicae tha SubdueCLthe gaph-basedala
tional concet leaner, is competitve with
logic-based eldional concet leaners on a
variety of domains.This compaison has
identified a mmber of &erues br enhance
ments. SubdueCL ould benet from the
ability to identify ranges of umbes. We
could accomplish thisybutilizing the sys
tem’s &isting cgability to find similar lut
not exact maches of a subaicture in the
input gaph. Numeic values within the
instances could beegealized to the encom
passing ance. A graph-based leaer also
needs thelality to representecusion,which
plays a centl pat in mary logic-based con
cepts. Mok reseath is needed to identifyp-
resentdonal enhancementsif descibing
recusive stuctures—or example graph
grammas. Our futue work will also focus on
extendingSubdue to handle otheorims of
leaming, sut as tusteing.

We ae continuing our testing of Subdue i
real-world gpplicaions. In bio©emisty, for
example we ae gplying Subdue to di from
the Human Genome éject to fnd patems
in the DNA sequence thandicae the pes
ence of a gne-tensciption-factor siteUnlike
other g@proades to inding patems in gne
daal! Subdue uses aaph to Epresent stic-
tural information in the sequenc&Ve hope
tha the disceered patems will point to gnes
in uncharted aeas of the D sequence

In another aga of hiemisty, we ae gply-
ing SubdueCL to the Rdictive Toxicology
Challenge dda. This dda contains the sic-

>

tural desciptions of moe than 300 lsemk

cal compounds thidave been angked for
carcinogenicity. Ead compound (ecept for
about 30 held outdr future testing) is laeled
as either cancezausing or not. Ouraal is
to find a p&tem in the canc@&us compounds
tha does not occur in the noncanmes com
pounds. Sodr, SubdueCL hasdund sgeral
promising p&tems, which are curently
under @aluaion in the Unversity of Texas &
Arlington’s Depaitment of Chemisir.

In addition, we ae gplying Subdue to a
number of other dabasesincluding theAvi-
ation Sakty Reporting System dabaseUS
Geolagjical Suvey eathquale dda,and soft
ware call gaphs.Subdue has diseered s&-
eral inteesting p&ems in theASRS daa-
baseBurke Bukart of UTA’s Degpatment of
Geolgyy evaluaed Subdues results on the
geolagy daa and dund thaSubdue carectly
identified patems dgpendent on edrquale
depth, often the distinguishingat.tor among
eathquale types.These and otheesults
show tha Subdue disoeers relevant knavl-
edee in stuctural daa and thait scales to
large ddabases™

Acknowledgments

Our work was suppded by NSF gant IRI-
9615272 andHECB gant 003656-045.

References

1. P. Cheeseman and Stutz,“Bayesian Clas
sification (AutoClass)Theor and Results,
Advances in Knwledge Discaery and Dda
Mining, U.M. Fayyad et al.eds. MIT Press,
Cambidge, Mass.,1996,pp. 153-180.

. D. Fsher “Knowledge Acquisition via Ince-
mental Concptual Clusteing,” Machine
Leaming, Vol. 2,No. 2,1987,pp. 139-172.

. JR. Quinlan,C4.5: Programs br Machine
Leaming, Morgan KaufmannSan Maeo,
Calif., 1993.

. U.M. Fayyad, G. Piaetsky-Shairo, and P
Smyth, “From D&a Mining to Knavledge
Discovery: An Overiew,” Advances in
Knowledge Discarery and Dda Mining,
U.M. Fayyad et al.eds. MIT Press,Cam
bridge, Mass.,1996,pp. 1-34.

. J. RissanenStohastic Compleity in Stais-
tical Inquiry, World Scientifc Pulishing,

Singapore, 1989.

. D.J. Cook and L.B Holder “Substucture
Discovery Using Minimum Desciption
Length and Baaround Knavledge,” J. Arti-
ficial Intelligence Reseah, Vol. 1,1994 pp.
231-255.

. D.J. Cook,L.B. Holder and S Djoko, “Scak
able Discovely of Informative Stuctural Con
cepts Using Domain Kneledge,” IEEE
Expet, Vol. 11,No. 5,Sept/Oct. 1996 pp.
59-68.

. S. Djoko, D.J. Cook,and L.B Holder “An
Empirical Stug/ of Domain Knaevledge and
Its Beneits to Substucture Discavery,” IEEE
Trans. Knevledge and Daa Engneeling,
Vol. 9,No. 4,1997,pp. 575-586.

. G. Galal, D.J. Cook, and L.B Holder,
“Improving Scaldility in a Scientifc Dis-
covery System kg Exploiting Rarallelism?
Proc. Int'l Conf. Knowledge Discaery and
Data Mining, AAAI Press, Menlo Rark,
Calif., 1997,pp. 171-174.

10. R.M. Cameon-Dbnes and.R. Quinlan;Effi-

cient Top-Down Induction of Laic Pro-

grams, SIGAR Bulletin Vol. 5,No,1,1994,

pp. 33-42.

11. M.W. Craven and JN. Shalik, “Machine

Leaming Approadies to Gene Regaition;’

IEEE Expet, Vol. 9,No. 2,Mar./Apr. 1993,

pp. 2-10.

Diane J Cookis an assocta pofessor in the Com
puter Science and Eimgeing Depatment & the
University of Texas @ Arlington, where she is a
director of the Leaning and Planning Lzoratory.
Her reseath intelests intude atificial intelligence
madine planningmadine leaning, robotics,and
parllel algorithms for attificial intelligence Cook
receved her BS omWhedon College and her MS
and PhD fom the Unversity of lllinois. Contact her
at the Dgt. of Computer Science and Emeging,
Univ. of Texas @Arlington,Box 19015Arlington,
TX 76019-0015; cook@cséa.edu; http://iwww-
cseuta.edu/~cook.

Lawrence B Holder is an assocta piofessor and
associge dair in the Dpartment of Computer
Science and Erngeeiing a the Unversity of
Texas @ Arlington,wher he is also a codictor
of the Leaning and Planning Lzoratory. His
reseach interests intude atificial intelligence
and mahbine leaning. Holder eceved his BS in
computer engieeiing and his MS and PhD in
computer scienceall from the Unversity of Illi-
nois & Urbana-Champaign. He is a member of th
AAAI, theACM, and the IEEE. Contact hint a
the Dept. of Computer Science and Eneelng,
Univ. of Texas @Arlington, Box 19015 Arling-
ton, TX 76019-0015; holder@csea.edu; http://
www-cseuta.edu/~holder

14

MARCH/APRIL 2000

41




