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Abstract 
We introduce a new method for attribute value 
selection, which is driven by the minimum 
description length principle. We demonstrate the 
viability of the approach on the Wisconsin breast 
cancer data set, show a working exa mple and 
evaluate the approach against earlier systems. 
Comparisons on different domains are also 
given. Empirical results show that our approach 
consistently outperforms competing machine 
learning algorithms on domains with all numeric, 
all discrete and mixed attributes types. 

 

1. Introduction 

Attribute value selection is of central importance in data 
mining and machine learning algorithms for learning class 
hypotheses. When learning models, a learning algorithm 
must choose the attributes, and for each attribute, its 
values, to maximize the model’s performance according 
to some metric. Attribute value selection is concerned 
with selecting the values to be included for each attribute 
in a model. Selecting the best values for each attribute has 
a direct effect on the model’s performance.  

One well known benchmark is C4.5 (Quinlan, 1993) 
which uses information gain to order attributes and select 
attribute values to construct a decision tree. Other 
methods include linear discrimination (Wen-Hua, 
Madigan, & Scott, 2002), multi-surface separation 
(Wolberg & Mangasarian, 1990) and nearest neighbor 
(Zhang, 1992). Most of these are rooted in statistics, and 
are designed specifically for data sets with numeric 
attributes. C4.5 is one method that has employed 
information theory successfully while not restricted to 
numeric domains.  

This paper introduces a new method for attribute value 
selection, which is driven by the minimum description 
length principle (Rissanen 1989). We demonstrate the 
viability of the approach on the Wisconsin breast cancer 
domain, and show comparisons with earlier systems. We 
also show results on other domains which contain discrete 
attributes as well. 

A number of different approaches to attribute value 
selection exist. Information gain has been utilized in 
decision tree induction, regression and other statistical 
methods are used to build statistical models, and the list 
goes on. Even description length has been utilized for 
guiding the search for hypotheses (Cameron-Jones & 
Quinlan, 1994). To our knowledge, however, the MDL 
principle has not been applied directly to attribute value 
selection. 

In the next section we give background and further 
motivation for our research. We then describe the 
algorithm in detail followed by examples and 
experimental results. We conclude with a discussion of 
the results and directions for future work.  

2. Attribute Value Selection Based on MDL 

Our approach is based on an algorithm for discovering 
frequent substructures in graphs, called Subdue (Cook and 
Holder 2000). Subdue is based on information theory, and 
seeks to minimize the description length of the entire data 
set. We imagine an agent wishing to communicate a data 
set to its counterpart. One option is to convert the data to 
a bit stream, and send it. A better way might be to identify 
common parts in the data that may be abstracted out and 
sent separately. This way, at least that common pattern is 
not repeated needlessly. This is consistent with Occam’s 
razor, which states that “entities should not be multiplied 
without necessity.” Its modern interpretation is the 
minimum description length principle, which was 
introduced by Rissanen (1989). 

Subdue is able to identify static patterns in any input 
graph. It can also discover patterns that may vary in their 
structure from instance to instance by a user-defined 
threshold. Such a variance may also be applied to numeric 
vertex labels. The problem with discovering patterns in 
this way is that the user has to make a guess as to what 
amount of threshold will produce the best results.  

This work attempts to remove the need for tweaking a 
threshold while allowing for flexibility in the types of 
patterns to be learned. In this work we are not concerned 
with structural variances, only with varying values for 
attributes across instances of the learned pattern. For 
simplicity, we will refer to attributes with multiple values 



as variables, as opposed to attributes with a single value 
to which Subdue was formerly restricted. In essence, we 
are looking to develop a way for Subdue to learn 
variables.  

Subdue is an algorithm that is especially well suited for 
learning in complex data sets, because it represents data 
as a graph. It can, however, handle flat, feature-vector-
based data sets just as well. Such databases can be 
represented as a graph by converting each feature vector 
into a star-like graph in which a central node serves as the 
anchor from which edges originate with attribute labels, 
and terminate in vertices having the attribute value as 
their label. 

Even though the results presented here apply to graphs of 
any degree of complexity, we chose to restrict our 
discussion to flat data sets for several reasons: (1) 
competing approaches typically work on flat data 
exclusively; (2) using flat data makes comparisons 
possible, and reported results by competitors on the same 
data is readily available in the literature; (3) there are 
more, readily available, popular data sets of this type; (4) 
the explanation may be easier to follow. To simplify the 
discussion, we use terminology that refers to features of 
the database, not its graph representation.  

Many techniques exist for selecting attribute values that 
are descriptive of one class and not the other. Linear and 
surface-based separation techniques can be useful but 
only in numeric domains, or where categorical values can 
be ordered naturally. Problems can still arise if the classes 
cannot be separated in such a manner, like in the case of a 
normal distribution where the negative class consists of 
outliers. Neural networks and nearest neighbor algorithms 
may overcome this, but human expertise is essential for 
good results. More sophisticated statistical methods can 
achieve better results, but they only work on numeric 
domains. Table 2 compares the performance of 15 such 
techniques on the Wisconsin Breast Cancer domain. 

Several considerations led us to experiment with using the 
MDL principle for selecting values for attributes. First, 
Subdue was already using this heuristic successfully, so it 
made sense to extend this approach to attribute values. A 
literature search revealed that the MDL heuristic has not 
been applied to this problem directly. In addition, the 
MDL approach has the advantage of being able to handle 
discrete attribute values as well as numeric ones. Since 
Subdue is a general purpose algorithm, this is an 
important point.  

The next section describes the algorithm in detail, 
including graph encoding, exact MDL computation, and 
an example. It also includes a discussion on the 
algorithm’s complexity.  

3. The Learning Algorithm 

The learning algorithm works by performing a beam 
search for the hypothesis that minimizes the description 
length of the input data set. In a very high-level view, the 
algorithm considers each attribute and calculates the 
description length for each. The best attribute is selected 
and becomes a partial hypothesis. This partial hypothesis 
is successively extended by adding other attributes to it. 
To select the best attribute to add, all remaining attributes 
that are not in the hypothesis are recomputed as part of 
the hypothesis. The best attribute selected this time is 
likely to provide additional reduction in description 
length. If so, it is added to the hypothesis. This process 
continues until no more attributes can be added, or the 
best attribute does not provide a decrease in description 
length. Figure 1 shows the pseudo-code for the algorithm. 

But how are values selected for the attribute that 
minimizes the description length? The number of possible 
subsets of values for a given attribute is exponential. We 
can, however, apply the observation that the most 
reduction in description length is provided by values that 
occur more frequently. Hence, attribute values have a 
ranking based on their frequency. This ranking is local to 
each attribute over the positive examples. That is, it does 
not take into account negative instances, and does not 
assume anything about the global performance of each 
attribute value. This ranking, however, allows us to 

Subdue( graph G, int Beam, int Limit ) 
  queue Q = { v | vertex v has a unique label in G } 
  bestSub = first substructure in Q 
  repeat 
    newQ = {} 
    for each substructure S in Q 
      newSubs = ExtendSubstructure(S) 
      newQ = newQ U newSubs 
      Limit = Limit - 1 
    Q = substructures in newQ with top Beam MDL scores 
    if best substructure in Q better than bestSub 
    then bestSub = best substructure in Q 
  until Q is empty or Limit <= 0 
  return bestSub 
 
ExtendSubstructure(substructure S) 
  for each remaining attribute Ai 
    newSubs ← SelectAttributeValues(S, Ai) 
  return newSubs 
 
SelectAttributeValues(substructure P, attribute A) 
  values V = {v | value v is unique in A} 
  compute frequency of each v in V, and determine if A   
    is continuous or discrete 
    if A is continuous, compute mean 
  add attribute A to substructure P with values V 
  evaluate substructure P using MDL 
  bestP ← P 
  repeat 
    if A is continuous 
      remove v from V that is farthest from mean 
    if A is discrete 
      remove v from V that occurs least frequently   
    evaluate substructure P using MDL 
    if P is better than bestP 
      bestP ← P 
  until |V| = 1 
  return bestP 
 

Figure 1. Algorithm pseudo-code. 



consider only a number of subsets of values that is linear 
in the number of positive examples. 

Attribute values are selected as follows. Attribute values 
are ranked based on their frequency, then the attribute is 
evaluated by successively removing the lowest ranked 
value. The set of values that evaluates the best are kept. 

For continuous values such a ranking may not be 
practical, since each value may be unique. Here, we use a 
heuristic that assumes that numeric attributes have a 
central tendency, and we seek to eliminate outliers. That 
is, we compute the mean of the attribute’s values, and 
successively eliminate the value that is farthest from the 
mean.  

Our algorithm detects continuous attributes by checking 
to see if each value in the attribute is a number. If so, the 
attribute is handled as continuous, otherwise as discrete. 
This  method relieves the user from having to designate 
attribute types. 

3.1. MDL Encoding of Graphs 

As mentioned previously, in this paper we are only 
discussing feature vectors. The following discussion on 
graph encoding, however, is applicable to general graphs 
without restriction, and is an extension of the encoding 
due to Cook and Holder (1994).  

The description length of a graph is based on its 
adjacency matrix representation. A graph having v 
vertices, numbered from 0 to v – 1, has a v × v adjacency 
matrix. The adjacency matrix A can have only two types 
of entries, 0 or 1, A[i, j] = 0 representing no edges 
between vertices i and j, and A[i, j] = 1 representing at 
least one edge (possibly more) between vertices i and j. 
Undirected edges are represented by a single directed 
edge with the directed flag set to 0. 

Labels are stored in two separate tables which contain lv 
unique vertex labels, and le unique edge labels. The 
encoding of a graph is broken down into three parts, 
described in more detail below. First, we compute the 
number of bits (vbits) to encode the vertex labels in the 
graph. Second, we compute the number of bits (rbits) to 
encode the rows in the adjacency matrix. Finally, we 
compute the number of bits (ebits) to encode the edges in 
the graph.  The final description length of the graph is the 
sum of the vbits, rbits and ebits. Also, we have to 
differentiate between the encoding DL(S) of the subgraph 
S and the encoding DL(G|S) of the input graph G 
compressed with the subgraph S. Rbits and ebits are the 
same, only vbits is different. While this encoding has not 
been proven minimal, it has been considerably refined to 
minimize the encoding. 

vbits(S) is the number of bits needed to encode the vertex 
labels of subgraph S. Each vertex in the subgraph has a 
label, and the vertices are assumed to be encoded in the 
order in which they appear in the adjacency matrix. 

First we need to specify the number of vertices in the 
subgraph, which can be done in (lg  v) bits. Then, the v 
labels can be represented in (v lg lv) bits. The original 
encoding contained only these bits. With the 
introduction of variables we need additional bits to 
properly encode information about a variable’s range. 

Variables are represented by multiple vertex labels for 
discrete variables, and by a range specified by two 
numeric labels for continuous variables. Hence, for 
each vertex, we need one bit to decide if the vertex is a 
variable (v). If so, another bit is needed to decide if the 
variable is continuous. The number of discrete variables 
is d, while the number of continuous variables in c. For 
continuous variables we only need one extra label since 
each vertex already has one label. Therefore, (c lg lv) 
gives the number of bits needed to specify each extra 
label for each continuous variable. For discrete 
variables, we need to specify the unique labels that a 
discrete variable can take on as a value. Let the number 
of unique values for a discrete variable i be ui. Again, 
since one label is already specified for each vertex, (ui – 
1) additional unique vertices need to be specified, each 
requiring lg lv bits. The sum-term in the equation below 
gives the final number of bits needed to specify each 
extra unique label for each discrete variable. Therefore,
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vbits(G|S) is the numb er of bits needed to encode the 
vertex labels of the input graph G compressed by the 
substructure S. Just as in the subgraph, each vertex in 
the graph has a label, and the vertices are assumed to be 
encoded in the order they appear in the adjacency 
matrix. First we need to specify the number of vertices 
in the graph, which can be done in (lg  v) bits. Then, the 
v labels can be represented in (v lg lv) bits.  

When compressing graph G with subgraph S, if there 
are any variables in an instance of subgraph S 
abstracted out of the input graph, then the pointer 
replacing the subgraph instance in the input graph has 
to reflect which variable values were abstracted out 
from the instance of the subgraph. For s instances of the 
subgraph, lg(ui–1) bits are needed to specify which 
unique labels were replaced in each instance of the 
subgraph. Therefore, 
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rbits is the number of bits needed to encode the rows of 
the adjacency matrix A. To do this, we apply a variant 
of the encoding scheme used by Quinlan and Rivest 



(Quinlan and Rivest 1980). This scheme is based on the 
observation that most graph representations of real-
world domains are sparse. In other words, most vertices 
in the graph are connected to only a small number of 
other vertices. Therefore, a typical row in the adjacency 
matrix will have much fewer 1s than 0s. We define k i to 
be the number of 1s in row i of adjacency matrix A, and 
b = maxi(k i) (that is, the most 1s in any row). An entry 
of 0 in A means that there are no edges from vertex i to 
vertex j, and an entry of 1 means that there is at least 
one edge between vertices i and j. Undirected edges are 
recorded in only one direction (that is, just like directed 
edges). If there is an undirected edge between nodes i 
and j such that i < j, then the edge is recorded in entry 
A[i, j] and omitted in entry  A[j, i]. A flag is used to 
signal if an edge is directed or undirected, which is 
accounted for in ebits. rbits is calculated as follows. 

(1) Given that k i 1s occur in the ith row’s bit string of 

length v, only 
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 strings of 0s and 1s are possible. 

Since all of these strings have equal probability of 

occurrence, 







ik
v

lg  bits are needed to specify which 

combination is equivalent to row i. The value of v is 
known from the vertex encoding, but the value of k i 
needs to be encoded for each row. This can be done 
in lg(b + 1) bits. 

(2) To be able to read the correct number of bits for 
each row, we need to encode the maximum number 
of 1s any given row in A can have. This  number is b, 
but since it is possible to have zero 1s, the number of 
different values is b + 1. We need lg(b + 1) bits to 
represent this value. Therefore, 
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ebits is the number of bits needed to encode the edges 
represented by A[i, j] = 1. The number of bits needed to 
encode a single entry A[i, j] is (lg m) + e(i, j)[1 + lg le], 
where e(i, j) is the number of edges between the 
vertices i and j in the graph and  m = maxi,j e(i, j)—the 
maximum number of edges between any two vertices i 
and j in the graph. The (lg m) bits are needed to encode 
the maximum number of edges between vertices i and j. 
For each edge we need (lg m) bits to specify the actual 
number of edges, and [1 + lg le] bits are needed per 
edge to encode the edge label and the directed flag (1 
bit). The total number of edges is e, and K is the 
number of 1s in the adjacency matrix A. Therefore, 
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The description length of the graph G compressed by 
substructure S is  

DL(G) = DL(G|S) + DL(S) 

where   

DL(G|S) = vbits(G|S) + rbits(G|S)  + ebits(G|S) 

DL(S) = vbits(S) + rbits(S) + ebits(S) 

The formula for computing the description length in 
concept learning given positive and negative inputs is  

DL(G+,G- ) = DL(G+|H) + DL(H) + DL(G- ) – DL(G- |H) 

where DL(H) is the description length of the hypothesis, 
G+ is the positive input set, G-  is the negative input set, 
DL(G+|H) is the positive input set compressed by the 
hypothesis, DL(G- |H) is the negative input set 
compressed by the hypothesis, and DL(G+,G- ) is the 
positive and negative input sets compressed by the 
hypothesis. DL(H) + DL(G+|H) expresses the number of 
bits needed to encode the hypothesis plus parts of the 
positive input that are not described by the hypothesis. 
DL(G- ) – DL(G- |H) is the number of bits needed to 
describe the portion of the negative input that is described 
by the hypothesis.  

For the rationale behind this formula we refer back to our 
two agents wishing to communicate the database from 
one to another. As before, one needs to send the 
hypothesis H and the rest of the positive input that is not 
described by H. This can be done in DL(G+|H) + DL(H) 
bits. If H covers negative examples as well, one needs to 
communicate those examples as exceptions from our rule 
H. This requires DL(G- ) – DL(G- |H) bits, which is the 
part of the negative input that is covered by H. 

3.2. Example with Encoding Computation 

In this section we give a working example for the 
algorithm and the above description length encoding 
calculation. We use the Wisconsin Breast Cancer database 
which is introduced in detail in section 4.1. We start by 
converting the database to graph representation. Each of 
its feature vectors are converted into a star-like graph with 
a center vertex out of which nine edges emanate for the 
attributes, terminating in nine vertices which represent the 
attribute values. For instance, the vector 7, 4, 6, 4, 6, 1, 4, 
3, 1 translates to the graph shown in figure 2. For a less 
crowded appearance, we replaced the attribute names on 
the edges with numbers according to table 2. The positive 
input graph consists of 452 such graphs for each of the 



benign cases, and the negative input graph consists of 241 
graphs for the malignant cases.  
 

 

 

 
Figure 2. Graph representation of vector 7, 4, 6, 4, 6, 1, 4, 3, 1. 

We start the example at the entry point of the Select-
AttributeValues() function and execute the first iteration 
of the repeat-loop using a substructure that already has 2 
attributes, as shown in figure 3. The vertex labels show 
the continuous value ranges selected for those attributes. 

 
 

Figure 3. Graph representation. 
The SelectAttributeValues() function is passed the 
substructure shown in figure 3 and the attribute Clump 
Thickness which has actual values ranging from 1 to 8. 
The function determines that the attribute is continuous, 
and computes its mean, which is 2.82. The attribute is 
added to the substructure using all its values (1..8). The 
next step is to evaluate this new substructure by 
calculating its description length. 

First, we compute the description length of the 
substructure (S). The table of vertex labels has 13 entries 
(“Case”, 10 integer values, and 2 floating-point numbers). 
Hence, lv = 13. S contains four vertices (v = 4), three 
continuous variables (c = 3), and no discrete variables (d 
= 0). Therefore,  
  vbits(S) = lg 4 + 4(lg 13) + 4 + 3 + 0 + (3)lg 13 = 34.90 

The adjacency matrix has 4 rows, such that k1 = 3, k2 = 0, 
k3 = 0, k4 = 0, b = maxi(k i) = 3. Therefore,  
  rbits(S) = (4 + 1)lg(3 + 1) + lg 4 = 12 

The table of edge labels has the names of the nine 
attributes, so le = 9. There are three edges in the subgraph 
(e = 3), and the maximum number of edges between any 
two vertices is one (m = 1). There are a total of three ones 
in the adjacency matrix (K = 3). Hence,  
  ebits(S) = 3(1 + lg 9) + (3 + 1)(lg 1) = 12.51 
  DL(S) = 23.80 + 12 + 12.51 = 59.41 

Next we compute the description length of the positive 
input graph G+ compressed using substructure S. The 
number of vertices in the compressed input graph can be 
computed as the number of positive examples times 
number of vertices per example minus the number of 
vertices covered by S times number of instances covered 
by S plus number of instances covered by S. That is, v = 
(452)(10) – (410)(4) + 410 = 3290. The last term accounts 
for each vertex that was added to the graph in place of 
each substructure abstracted out. For the three continuous 
variables, u1 = 2, u2 = 2, u3 = 8, while s = 410. 
  vbits(G|S) = lg 3290 + 3290(lg 13) + ((3 + 0) > 0)(lg 410 
+ 1151.01) = 11.68 + 12174.45 + (1)(1159.69) = 13345.8  

The adjacency matrix has 3290 rows, such that b = 
maxi(k i) = 9. Therefore,  
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There are 410 graphs with 6 edges and 42 with 9 edges 
making e = 2838. The maximum number of edges 
between any two vertices is one (m = 1). There are a total 
of 2838 ones in the adjacency matrix (K = 2838). Hence,  
  ebits(G|S) = 2838 (1 + lg 9) + (2839)(lg 1) = 11834.25 
  DL(G|S) = 13345.8 + 39420.56 + 11834.25 = 64600.61 

We do not follow the computation for the negative graph 
since that is very similar to the previous calculations. 
Substructure S covers a single negative example. The total 
encoding comes to DL(G+,G- ) = 64939.54 bits. 

Continuing with our example, the SelectAttributeValues() 
function enters the repeat-loop. Since the attribute is 
continuous, the value farthest from the mean (2.82) is 
removed. This value is “8”, shrinking the attribute’s range 
to [1..7]. The evaluation results in DL(G+,G- ) = 64909.77 
bits, which is slightly better than the previous 
substructure, so it becomes the new best substructure. The 
repeat-loop continues until all but one value remains in 
the attribute, at which point the function returns the best 
substructure that was created using the best set of values. 

3.3. Complexity 

The algorithm has to select values for each of the a 
attributes Aj, each of which has v(Aj) unique values. If the 
data set has s number of positive examples, then the upper 
bound on v(Aj) is s. Computing the rank of values can be 
done in one pass. Selecting the values for all attributes is 
hence O(as). Since the partial hypothesis is extended a 
times (for a attributes), the upper bound is O(a2s).  

4. Experiments 

4.1. The Wisconsin Breast Cancer Database 

The Wisconsin breast cancer database was obtained from 
the University of Wisconsin Hospitals, Madison from Dr. 
William H. Wolberg, through the UCI Machine Learning 
Repository (Keogh, Blake & Merz, 1998). The data set 
contains description for 693 cases of breast cancer of two 
classes: 452 benign and 241 malignant cases. The data set 
has nine continuous numeric attributes—excluding the 
class attribute—with values as shown in table 2.  

A comparison table describing accuracies from various 
systems on the Wisconsin Breast Cancer domain reported 
in the literature is shown in Table 1. It lists predictive 
accuracies reported for each algorithm, which were 
obtained using 10-fold cross validation as reported by the 
sources cited in the right column. In our tests we used a  
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Table 1. Comparison with other approaches on the breast cancer domain. 
 

Rank Algorithm   Accuracy  Accuracy Reported by 
1 Probit 97.2% Wen-Hua et al, 2002 
2 RLP 97.07% Brodley & Utgoff, 1995 
3 Gaussian Process 97.0% Wen-Hua et al, 2002 
4 Feature Minimization  96.92% Brodley & Utgoff, 1995 
5 GSBE 96.77% Brodley & Utgoff, 1995 
6 SVM 96.7% Wen-Hua et al, 2002 
7 Multi-surface separation (3 planes) 1 95.9% Wolberg & Mangasarian, 1990 
8 Subdue 95.67% Authors 
9 FOIL 94.8% Authors  
10 C4.5  94.4% Liu & Setiono, 1996 
11 Neural Networks 93.3–95.61% Taha & Ghosh, 1997 
12 1-nearest neighbor 1 93.7% Zhang, 1992 
13 Multi-surface separation (1 plane) 1 93.5% Wolberg & Mangasarian, 1990 
14 Linear Discriminant 92.9% Wen-Hua et al, 2002 
15 Logistic regression 92.3% Wen-Hua et al, 2002 

              1 These experiments worked with only 369 examples (200 training cases, tested on the other 169 cases). 
 
90/10 split between training and test sets. As we can see, 
Subdue outperforms 7 out of 14 other systems, with an 
accuracy of 95.67%. The ones that do better are mostly 
statistical systems (such as RLP, GSBE, Gaussian 
process, multi-surface separation, etc.) specifically 
designed for continuous-valued domains. Even these are 
only 1.5% more accurate, at best. C4.5, a general-purpose 
system (i.e., one that also handles discrete-valued 
attributes) that is considered a benchmark in machine 
learning, did worse than Subdue, with only 94.4% 
prediction accuracy.  
 

Table 2. Breast cancer attributes. 
 

# Attribute Name Value Range 
1 Clump Thickness  1 - 10 
2 Uniformity of Cell Size 1 - 10 
3 Uniformity of Cell Shape 1 - 10 
4 Marginal Adhesion 1 - 10 
5 Single Epithelial Cell Size 1 - 10 
6 Bare Nuclei  1 - 10 
7 Bland Chromatin  1 - 10 
8 Normal Nucleoli  1 - 10 
9 Mitoses 1 - 10 

Aside from predictive accuracy, an algorithm is also 
judged by how simple it is for the human data miner to 
interpret its findings. Humans prefer systems that describe 
most of the data using small, simple rules. To see how 
Subdue fares at producing quality rules, we performed a 
classification task using all examp les for training and 
testing. Subdue terminated after finding 6 rules which 
describe benign cases with 98.12% accuracy. The best 2 
rules achieved 96.39% accuracy.  

Figure 4 shows the textual description of the best rule that 
covers 399 benign cases and 1 malignant case (a 

misclassification). Since this rule covers over 92% of all 
cases, it gives a good idea of how benign and malignant 
cases differ. A graphical depiction is shown in Figure 5. 
Benign cases are represented by the lower dark area. 
 

Rule 1:   1 = Clump Thickness = 8, AND  
1 = Uniformity Of Cell Size = 2, AND  
1 = Uniformity Of Cell Shape = 4, AND  
1 = Marginal Adhesion = 10, AND 
1 = Single Epithelial Cell Size = 5, AND  
1 = Bare Nuclei = 5, AND  
1 = Bland Chromatin = 7, AND  
1 = Normal Nucleoli = 2, AND  
1 = Mitoses = 2 

 
Figure 4. Rule #1 for the breast cancer domain. 
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Figure 5. Graphical representation of rule #1 for the breast 
cancer domain. 

4.2. Effects of Data Skew 

Concept learning in Subdue works by attempting to learn 
rules that describe the positive examples well while not 
describing any of the negative examples. That is, an 
example is classified as negative if the hypothesis found 
for the positive examples does not classify it as positive. 
Some systems, like C4.5, find hypotheses for both 
positive and negative classes. Since this is not the case 
with Subdue, the choice of positive versus negative 
examples may make a difference in the rules generated, 

10-

5-

1-



and their accuracy. Our experiments show that this is in 
fact the case. Table 3 shows the results in terms of 
predictive accuracy, rule complexity (average rule count), 
and time spent learning in all 10 runs of the cross 
validation. 
 

Table 3. Experiment result for switched class attributes. 
 

Positive  Cases Accuracy Rule 
Count 

Run time 
(h:m) 

Benign 452 95.67% 5.8 0:18 
Malignant 241 94.23% 10.8 2:01 

As Table 3 shows, the average rule count almost doubled 
when malignant cases were presented as positive 
examples. Rule #4, depicted graphically in Figure 6, gives 
us an insight into what is happening. As the figure shows, 
cases are classified as benign only if all attributes have a 
value that falls within the dark strip in the middle. If 
malignant cases were to be described (i.e. value ranges 
above and below the dark stripe), two separate ranges 
were necessary for attributes 1, 2, 3, 5, 6, and 7. Subdue 
can only assign a single range per attribute per rule. In 
other words, when switching classes from positive to 
negative, the difference lies in having to learn outliers 
versus the central, contiguous ranges. 

Accuracy was also affected slightly which is due to the 
number of examples available in each class. There are 452 
benign cases and only 241 malignant cases. The accuracy 
of the hypothesis is directly dependent on the number of 
positive examples.  

Running times also differed greatly. When benign cases 
were positive, the computation lasted 18 minutes, while it 
took over 2 hours to compute the rules when the class 
labels were switched. 

At present, there is no way for Subdue to automatically 
detect which class would be better handled as positive. 
The user simply has to try it both ways, unless some 
intelligence about the database is already available.  

The effects of data skew may also affect other learning 
algorithms. To test this, we performed an experiment on 
FOIL in which we swapped the positive and negative 
examples in the breast cancer domain. The results were 
actually reverse compared to Subdue. FOIL achieved a 
94.8% accuracy using 11.7 rules on average when 
malignant cases were positive, while its performance 
slightly decreased to 94.23% using 10.1 rules on average 
when the examples were swapped. As we can see, 
swapping positive and negative examples had a smaller 
effect on FOIL’s performance, although FOIL needed 
significantly more rules to construct its hypotheses and 
was also less accurate than Subdue. 

Learning outliers versus central tendencies may be 
avoided in most cases, since experts tend to label their 
examples of interest as positive. Problems arise when the 
difference is not clear or arbitrary. This is the case in the 

breast cancer domain, where one expert may label 
malignant tumors as positive while others may pick 
benign as positive.  
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Figure 6. Graphical representation of rule #4 

for the breast cancer domain. 

4.3. Other Comparisons 

We also evaluated Subdue on domains that have non-
numeric attributes. We were particularly interested in how 
Subdue compared against other systems that were 
specifically designed for relational domains. We selected 
FOIL (Cameron-Jones & Quinlan, 1994) and Progol 
(Muggleton, 1995), which are prominent inductive logic 
learning systems. Both have had great success in a wide 
variety of domains. We also wanted to know how our 
approach measures up against an algorithm that was 
designed for flat domains. For this we used C4.5. 

We selected the vote, diabetes and credit domains to serve 
as the basis for our comparison. The vote domain is the 
Congressional Voting Records Database available from 
the UCI machine learning repository. It contains only 
discrete-valued attributes, having values y, n, and u (for 
yes, no, and unknown). The diabetes domain is the Pima 
Indians Diabetes Database, which contains 7 continuous-
valued attributes. The credit domain is the German Credit 
Dataset from the Statlog Project Databases, also available 
from the UCI repository. The credit data set contains 13 
discrete and 7 continuous-valued attributes. 

 
Table 4. Comparison of Subdue, FOIL, Progol and C4.5. 

 
 Vote Diabetes Credit 
FOIL 93.02% 70.66% 68.60% 
Progol 94.19% 63.68% 63.20% 
C4.5 94.48% 74.62% 70.90% 
Subdue 94.23% 70.94% 71.30% 

Predictive accuracies are shown in Table 4, which were 
generated using 10-fold cross-validation. As evident from 
the table, Subdue outperformed the two ILP systems in all 
three domains, and was the best on the credit domain. 
C4.5, however, did significantly better on the diabetes 
domain than the other three systems. We performed tests 
to determine the statistical significance of the difference 
in performance of the competing systems against Subdue. 
The results for the Vote domain, shown in table 5, 
indicate that all four algorithms performed quite similarly. 
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Confidence values indicate low statistical significance, 
especially when comparing Subdue and Progol. Tests for 
the Diabetes domain, shown in table 6, indicate that FOIL 
and Subdue performed almost identically, while both 
significantly outperformed Progol. C4.5 did even better. 
Tests for the Credit domain, shown in table 7, tell us that 
Subdue significantly outperformed both FOIL and Progol, 
while doing only slightly better than C4.5.  

 
Table 5. Significance tests for the Vote domain. 

 

 ∆   Error ± σ Confidence 
Subdue – FOIL -1.21% ± 6.51% 71.44% 
Subdue – Progol -0.05% ± 4.78% 51.22% 
Subdue – C4.5  0.25% ± 4.93% 56.16% 
 

Table 6. Significance tests for the Diabetes domain. 
 

 ∆   Error ± σ Confidence 
Subdue – FOIL -0.29% ± 9.76% 53.58% 
Subdue – Progol -7.26% ± 8.81% 98.58% 
Subdue – C4.5  3.68% ± 9.88% 86.51% 
 

Table 7. Significance tests for the Credit domain. 
 

 ∆   Error ± σ Confidence 
Subdue – FOIL -2.70% ± 4.99% 93.94% 
Subdue – Progol -8.10% ± 4.63% 99.98% 
Subdue – C4.5 -0.40% ± 4.88% 59.93% 

5. Discussion and Conclusions  

In this paper we introduced an algorithm for selecting 
attribute values based on description length for both 
discrete and continuous attribute types. We described the 
algorithm in detail, showed the encoding computation and 
illustrated it with an example. We used the Wisconsin 
breast cancer database to show the viability of the 
approach and compared it with other systems reported in 
the literature. Subdue outperformed 7 of 14 systems cited 
among which were general purpose machine learning 
algorithms. The systems that did better than Subdue used 
mainly statistical approaches that can only handle 
numerical domains. Using this domain we also showed 
that Subdue produces rules of high quality that are simple 
and describe much of the data. 

We also evaluated our algorithm using three other 
domains that had discrete-valued attributes as well. Using 
this data set as the basis for comparison, we compared our 
system against yet another set of algorithms. Subdue 
came out as the one that performed consistently well 
across all three domains among systems capable of 
relational learning. 

Even though we carried out our explanation of the 
algorithm using flat domains exclusively, the approach 
works just as well in relational domains. We have plans to 

show results on relational domains and make comparisons 
to other systems in the near future. Another possibility for 
improvement is automation of the discovery of structural 
variances. As mentioned before, Subdue is able to 
consider such variation, but human input is required to 
define a threshold. We also plan on expanding the 
experimentation to include more domains and algorithms, 
and trying to determine when the MDL approach 
performs better or worse than other approaches. 
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