

Attribute Value Selection Based on Minimum Description Length

Istvan Jonyer JONYER@ACM.ORG
Lawrence B. Holder HOLDER@CSE.UTA.EDU
Diane J. Cook COOK@CSE.UTA.EDU
Department of Computer Science and Engineering, University of Texas at Arlington, Box 19015, Arlington, TX 76019

Abstract
We introduce a new method for attribute value
selection, which is driven by the minimum
description length principle. We demonstrate the
viability of the approach on the Wisconsin breast
cancer data set, show a working exa mple and
evaluate the approach against earlier systems.
Comparisons on different domains are also
given. Empirical results show that our approach
consistently outperforms competing machine
learning algorithms on domains with all numeric,
all discrete and mixed attributes types.

1. Introduction

Attribute value selection is of central importance in data
mining and machine learning algorithms for learning class
hypotheses. When learning models, a learning algorithm
must choose the attributes, and for each attribute, its
values, to maximize the model’s performance according
to some metric. Attribute value selection is concerned
with selecting the values to be included for each attribute
in a model. Selecting the best values for each attribute has
a direct effect on the model’s performance.

One well known benchmark is C4.5 (Quinlan, 1993)
which uses information gain to order attributes and select
attribute values to construct a decision tree. Other
methods include linear discrimination (Wen-Hua,
Madigan, & Scott, 2002), multi-surface separation
(Wolberg & Mangasarian, 1990) and nearest neighbor
(Zhang, 1992). Most of these are rooted in statistics, and
are designed specifically for data sets with numeric
attributes. C4.5 is one method that has employed
information theory successfully while not restricted to
numeric domains.

This paper introduces a new method for attribute value
selection, which is driven by the minimum description
length principle (Rissanen 1989). We demonstrate the
viability of the approach on the Wisconsin breast cancer
domain, and show comparisons with earlier systems. We
also show results on other domains which contain discrete
attributes as well.

A number of different approaches to attribute value
selection exist. Information gain has been utilized in
decision tree induction, regression and other statistical
methods are used to build statistical models, and the list
goes on. Even description length has been utilized for
guiding the search for hypotheses (Cameron-Jones &
Quinlan, 1994). To our knowledge, however, the MDL
principle has not been applied directly to attribute value
selection.

In the next section we give background and further
motivation for our research. We then describe the
algorithm in detail followed by examples and
experimental results. We conclude with a discussion of
the results and directions for future work.

2. Attribute Value Selection Based on MDL

Our approach is based on an algorithm for discovering
frequent substructures in graphs, called Subdue (Cook and
Holder 2000). Subdue is based on information theory, and
seeks to minimize the description length of the entire data
set. We imagine an agent wishing to communicate a data
set to its counterpart. One option is to convert the data to
a bit stream, and send it. A better way might be to identify
common parts in the data that may be abstracted out and
sent separately. This way, at least that common pattern is
not repeated needlessly. This is consistent with Occam’s
razor, which states that “entities should not be multiplied
without necessity.” Its modern interpretation is the
minimum description length principle, which was
introduced by Rissanen (1989).

Subdue is able to identify static patterns in any input
graph. It can also discover patterns that may vary in their
structure from instance to instance by a user-defined
threshold. Such a variance may also be applied to numeric
vertex labels. The problem with discovering patterns in
this way is that the user has to make a guess as to what
amount of threshold will produce the best results.

This work attempts to remove the need for tweaking a
threshold while allowing for flexibility in the types of
patterns to be learned. In this work we are not concerned
with structural variances, only with varying values for
attributes across instances of the learned pattern. For
simplicity, we will refer to attributes with multiple values

as variables, as opposed to attributes with a single value
to which Subdue was formerly restricted. In essence, we
are looking to develop a way for Subdue to learn
variables.

Subdue is an algorithm that is especially well suited for
learning in complex data sets, because it represents data
as a graph. It can, however, handle flat, feature-vector-
based data sets just as well. Such databases can be
represented as a graph by converting each feature vector
into a star-like graph in which a central node serves as the
anchor from which edges originate with attribute labels,
and terminate in vertices having the attribute value as
their label.

Even though the results presented here apply to graphs of
any degree of complexity, we chose to restrict our
discussion to flat data sets for several reasons: (1)
competing approaches typically work on flat data
exclusively; (2) using flat data makes comparisons
possible, and reported results by competitors on the same
data is readily available in the literature; (3) there are
more, readily available, popular data sets of this type; (4)
the explanation may be easier to follow. To simplify the
discussion, we use terminology that refers to features of
the database, not its graph representation.

Many techniques exist for selecting attribute values that
are descriptive of one class and not the other. Linear and
surface-based separation techniques can be useful but
only in numeric domains, or where categorical values can
be ordered naturally. Problems can still arise if the classes
cannot be separated in such a manner, like in the case of a
normal distribution where the negative class consists of
outliers. Neural networks and nearest neighbor algorithms
may overcome this, but human expertise is essential for
good results. More sophisticated statistical methods can
achieve better results, but they only work on numeric
domains. Table 2 compares the performance of 15 such
techniques on the Wisconsin Breast Cancer domain.

Several considerations led us to experiment with using the
MDL principle for selecting values for attributes. First,
Subdue was already using this heuristic successfully, so it
made sense to extend this approach to attribute values. A
literature search revealed that the MDL heuristic has not
been applied to this problem directly. In addition, the
MDL approach has the advantage of being able to handle
discrete attribute values as well as numeric ones. Since
Subdue is a general purpose algorithm, this is an
important point.

The next section describes the algorithm in detail,
including graph encoding, exact MDL computation, and
an example. It also includes a discussion on the
algorithm’s complexity.

3. The Learning Algorithm

The learning algorithm works by performing a beam
search for the hypothesis that minimizes the description
length of the input data set. In a very high-level view, the
algorithm considers each attribute and calculates the
description length for each. The best attribute is selected
and becomes a partial hypothesis. This partial hypothesis
is successively extended by adding other attributes to it.
To select the best attribute to add, all remaining attributes
that are not in the hypothesis are recomputed as part of
the hypothesis. The best attribute selected this time is
likely to provide additional reduction in description
length. If so, it is added to the hypothesis. This process
continues until no more attributes can be added, or the
best attribute does not provide a decrease in description
length. Figure 1 shows the pseudo-code for the algorithm.

But how are values selected for the attribute that
minimizes the description length? The number of possible
subsets of values for a given attribute is exponential. We
can, however, apply the observation that the most
reduction in description length is provided by values that
occur more frequently. Hence, attribute values have a
ranking based on their frequency. This ranking is local to
each attribute over the positive examples. That is, it does
not take into account negative instances, and does not
assume anything about the global performance of each
attribute value. This ranking, however, allows us to

Subdue(graph G, int Beam, int Limit)
 queue Q = { v | vertex v has a unique label in G }
 bestSub = first substructure in Q
 repeat
 newQ = {}
 for each substructure S in Q
 newSubs = ExtendSubstructure(S)
 newQ = newQ U newSubs
 Limit = Limit - 1
 Q = substructures in newQ with top Beam MDL scores
 if best substructure in Q better than bestSub
 then bestSub = best substructure in Q
 until Q is empty or Limit <= 0
 return bestSub

ExtendSubstructure(substructure S)
 for each remaining attribute Ai
 newSubs ← SelectAttributeValues(S, Ai)
 return newSubs

SelectAttributeValues(substructure P, attribute A)
 values V = {v | value v is unique in A}
 compute frequency of each v in V, and determine if A
 is continuous or discrete
 if A is continuous, compute mean
 add attribute A to substructure P with values V
 evaluate substructure P using MDL
 bestP ← P
 repeat
 if A is continuous
 remove v from V that is farthest from mean
 if A is discrete
 remove v from V that occurs least frequently
 evaluate substructure P using MDL
 if P is better than bestP
 bestP ← P
 until |V| = 1
 return bestP

Figure 1. Algorithm pseudo-code.

consider only a number of subsets of values that is linear
in the number of positive examples.

Attribute values are selected as follows. Attribute values
are ranked based on their frequency, then the attribute is
evaluated by successively removing the lowest ranked
value. The set of values that evaluates the best are kept.

For continuous values such a ranking may not be
practical, since each value may be unique. Here, we use a
heuristic that assumes that numeric attributes have a
central tendency, and we seek to eliminate outliers. That
is, we compute the mean of the attribute’s values, and
successively eliminate the value that is farthest from the
mean.

Our algorithm detects continuous attributes by checking
to see if each value in the attribute is a number. If so, the
attribute is handled as continuous, otherwise as discrete.
This method relieves the user from having to designate
attribute types.

3.1. MDL Encoding of Graphs

As mentioned previously, in this paper we are only
discussing feature vectors. The following discussion on
graph encoding, however, is applicable to general graphs
without restriction, and is an extension of the encoding
due to Cook and Holder (1994).

The description length of a graph is based on its
adjacency matrix representation. A graph having v
vertices, numbered from 0 to v – 1, has a v × v adjacency
matrix. The adjacency matrix A can have only two types
of entries, 0 or 1, A[i, j] = 0 representing no edges
between vertices i and j, and A[i, j] = 1 representing at
least one edge (possibly more) between vertices i and j.
Undirected edges are represented by a single directed
edge with the directed flag set to 0.

Labels are stored in two separate tables which contain lv
unique vertex labels, and le unique edge labels. The
encoding of a graph is broken down into three parts,
described in more detail below. First, we compute the
number of bits (vbits) to encode the vertex labels in the
graph. Second, we compute the number of bits (rbits) to
encode the rows in the adjacency matrix. Finally, we
compute the number of bits (ebits) to encode the edges in
the graph. The final description length of the graph is the
sum of the vbits, rbits and ebits. Also, we have to
differentiate between the encoding DL(S) of the subgraph
S and the encoding DL(G|S) of the input graph G
compressed with the subgraph S. Rbits and ebits are the
same, only vbits is different. While this encoding has not
been proven minimal, it has been considerably refined to
minimize the encoding.

vbits(S) is the number of bits needed to encode the vertex
labels of subgraph S. Each vertex in the subgraph has a
label, and the vertices are assumed to be encoded in the
order in which they appear in the adjacency matrix.

First we need to specify the number of vertices in the
subgraph, which can be done in (lg v) bits. Then, the v
labels can be represented in (v lg lv) bits. The original
encoding contained only these bits. With the
introduction of variables we need additional bits to
properly encode information about a variable’s range.

Variables are represented by multiple vertex labels for
discrete variables, and by a range specified by two
numeric labels for continuous variables. Hence, for
each vertex, we need one bit to decide if the vertex is a
variable (v). If so, another bit is needed to decide if the
variable is continuous. The number of discrete variables
is d, while the number of continuous variables in c. For
continuous variables we only need one extra label since
each vertex already has one label. Therefore, (c lg lv)
gives the number of bits needed to specify each extra
label for each continuous variable. For discrete
variables, we need to specify the unique labels that a
discrete variable can take on as a value. Let the number
of unique values for a discrete variable i be ui. Again,
since one label is already specified for each vertex, (ui –
1) additional unique vertices need to be specified, each
requiring lg lv bits. The sum-term in the equation below
gives the final number of bits needed to specify each
extra unique label for each discrete variable. Therefore,

[]∑
=

∗−+−

+∗+++++=

d

i v
l

i
u

i
u

v
lcdcv

v
lvvSvbits

1
lg)1()1lg(

)lg(lglg)(

vbits(G|S) is the numb er of bits needed to encode the
vertex labels of the input graph G compressed by the
substructure S. Just as in the subgraph, each vertex in
the graph has a label, and the vertices are assumed to be
encoded in the order they appear in the adjacency
matrix. First we need to specify the number of vertices
in the graph, which can be done in (lg v) bits. Then, the
v labels can be represented in (v lg lv) bits.

When compressing graph G with subgraph S, if there
are any variables in an instance of subgraph S
abstracted out of the input graph, then the pointer
replacing the subgraph instance in the input graph has
to reflect which variable values were abstracted out
from the instance of the subgraph. For s instances of the
subgraph, lg(ui–1) bits are needed to specify which
unique labels were replaced in each instance of the
subgraph. Therefore,

[])
1

)1lg(*(lg

)0)((lglg)|(

∑
+

=
−+

∗>+++=

dc

i iuss

dcvlvvSGvbits

rbits is the number of bits needed to encode the rows of
the adjacency matrix A. To do this, we apply a variant
of the encoding scheme used by Quinlan and Rivest

(Quinlan and Rivest 1980). This scheme is based on the
observation that most graph representations of real-
world domains are sparse. In other words, most vertices
in the graph are connected to only a small number of
other vertices. Therefore, a typical row in the adjacency
matrix will have much fewer 1s than 0s. We define k i to
be the number of 1s in row i of adjacency matrix A, and
b = maxi(k i) (that is, the most 1s in any row). An entry
of 0 in A means that there are no edges from vertex i to
vertex j, and an entry of 1 means that there is at least
one edge between vertices i and j. Undirected edges are
recorded in only one direction (that is, just like directed
edges). If there is an undirected edge between nodes i
and j such that i < j, then the edge is recorded in entry
A[i, j] and omitted in entry A[j, i]. A flag is used to
signal if an edge is directed or undirected, which is
accounted for in ebits. rbits is calculated as follows.

(1) Given that k i 1s occur in the ith row’s bit string of

length v, only

ik
v

 strings of 0s and 1s are possible.

Since all of these strings have equal probability of

occurrence,

ik
v

lg bits are needed to specify which

combination is equivalent to row i. The value of v is
known from the vertex encoding, but the value of k i
needs to be encoded for each row. This can be done
in lg(b + 1) bits.

(2) To be able to read the correct number of bits for
each row, we need to encode the maximum number
of 1s any given row in A can have. This number is b,
but since it is possible to have zero 1s, the number of
different values is b + 1. We need lg(b + 1) bits to
represent this value. Therefore,

)1lg(
1

lg)1lg(++∑
=

++=

b
v

i ik
v

brbits

∑
=

+++=

v

i ik
v

bv
1
lg)1lg()1(

ebits is the number of bits needed to encode the edges
represented by A[i, j] = 1. The number of bits needed to
encode a single entry A[i, j] is (lg m) + e(i, j)[1 + lg le],
where e(i, j) is the number of edges between the
vertices i and j in the graph and m = maxi,j e(i, j)—the
maximum number of edges between any two vertices i
and j in the graph. The (lg m) bits are needed to encode
the maximum number of edges between vertices i and j.
For each edge we need (lg m) bits to specify the actual
number of edges, and [1 + lg le] bits are needed per
edge to encode the edge label and the directed flag (1
bit). The total number of edges is e, and K is the
number of 1s in the adjacency matrix A. Therefore,

[]∑
=

∑
=

+++=
v

i

v

j eljiemjiAmebits
1 1

]lg1)[,()](lg,[lg

∑
=

∑
=

+++=
v

i

v

j
mjiAelem

1 1
lg],[)lg1(lg

mKele lg)1()lg1(+++=

The description length of the graph G compressed by
substructure S is

DL(G) = DL(G|S) + DL(S)

where

DL(G|S) = vbits(G|S) + rbits(G|S) + ebits(G|S)

DL(S) = vbits(S) + rbits(S) + ebits(S)

The formula for computing the description length in
concept learning given positive and negative inputs is

DL(G+,G-) = DL(G+|H) + DL(H) + DL(G-) – DL(G- |H)

where DL(H) is the description length of the hypothesis,
G+ is the positive input set, G- is the negative input set,
DL(G+|H) is the positive input set compressed by the
hypothesis, DL(G- |H) is the negative input set
compressed by the hypothesis, and DL(G+,G-) is the
positive and negative input sets compressed by the
hypothesis. DL(H) + DL(G+|H) expresses the number of
bits needed to encode the hypothesis plus parts of the
positive input that are not described by the hypothesis.
DL(G-) – DL(G- |H) is the number of bits needed to
describe the portion of the negative input that is described
by the hypothesis.

For the rationale behind this formula we refer back to our
two agents wishing to communicate the database from
one to another. As before, one needs to send the
hypothesis H and the rest of the positive input that is not
described by H. This can be done in DL(G+|H) + DL(H)
bits. If H covers negative examples as well, one needs to
communicate those examples as exceptions from our rule
H. This requires DL(G-) – DL(G- |H) bits, which is the
part of the negative input that is covered by H.

3.2. Example with Encoding Computation

In this section we give a working example for the
algorithm and the above description length encoding
calculation. We use the Wisconsin Breast Cancer database
which is introduced in detail in section 4.1. We start by
converting the database to graph representation. Each of
its feature vectors are converted into a star-like graph with
a center vertex out of which nine edges emanate for the
attributes, terminating in nine vertices which represent the
attribute values. For instance, the vector 7, 4, 6, 4, 6, 1, 4,
3, 1 translates to the graph shown in figure 2. For a less
crowded appearance, we replaced the attribute names on
the edges with numbers according to table 2. The positive
input graph consists of 452 such graphs for each of the

benign cases, and the negative input graph consists of 241
graphs for the malignant cases.

Figure 2. Graph representation of vector 7, 4, 6, 4, 6, 1, 4, 3, 1.

We start the example at the entry point of the Select-
AttributeValues() function and execute the first iteration
of the repeat-loop using a substructure that already has 2
attributes, as shown in figure 3. The vertex labels show
the continuous value ranges selected for those attributes.

Figure 3. Graph representation.
The SelectAttributeValues() function is passed the
substructure shown in figure 3 and the attribute Clump
Thickness which has actual values ranging from 1 to 8.
The function determines that the attribute is continuous,
and computes its mean, which is 2.82. The attribute is
added to the substructure using all its values (1..8). The
next step is to evaluate this new substructure by
calculating its description length.

First, we compute the description length of the
substructure (S). The table of vertex labels has 13 entries
(“Case”, 10 integer values, and 2 floating-point numbers).
Hence, lv = 13. S contains four vertices (v = 4), three
continuous variables (c = 3), and no discrete variables (d
= 0). Therefore,
 vbits(S) = lg 4 + 4(lg 13) + 4 + 3 + 0 + (3)lg 13 = 34.90

The adjacency matrix has 4 rows, such that k1 = 3, k2 = 0,
k3 = 0, k4 = 0, b = maxi(k i) = 3. Therefore,
 rbits(S) = (4 + 1)lg(3 + 1) + lg 4 = 12

The table of edge labels has the names of the nine
attributes, so le = 9. There are three edges in the subgraph
(e = 3), and the maximum number of edges between any
two vertices is one (m = 1). There are a total of three ones
in the adjacency matrix (K = 3). Hence,
 ebits(S) = 3(1 + lg 9) + (3 + 1)(lg 1) = 12.51
 DL(S) = 23.80 + 12 + 12.51 = 59.41

Next we compute the description length of the positive
input graph G+ compressed using substructure S. The
number of vertices in the compressed input graph can be
computed as the number of positive examples times
number of vertices per example minus the number of
vertices covered by S times number of instances covered
by S plus number of instances covered by S. That is, v =
(452)(10) – (410)(4) + 410 = 3290. The last term accounts
for each vertex that was added to the graph in place of
each substructure abstracted out. For the three continuous
variables, u1 = 2, u2 = 2, u3 = 8, while s = 410.
 vbits(G|S) = lg 3290 + 3290(lg 13) + ((3 + 0) > 0)(lg 410
+ 1151.01) = 11.68 + 12174.45 + (1)(1159.69) = 13345.8

The adjacency matrix has 3290 rows, such that b =
maxi(k i) = 9. Therefore,

39420.57

)(42)(86.670)(410)(60.610932.4

9
3290

(42)
6

3290
(410)0)(3291)lg(1

=

++=

++=

S)|rbits(G

There are 410 graphs with 6 edges and 42 with 9 edges
making e = 2838. The maximum number of edges
between any two vertices is one (m = 1). There are a total
of 2838 ones in the adjacency matrix (K = 2838). Hence,
 ebits(G|S) = 2838 (1 + lg 9) + (2839)(lg 1) = 11834.25
 DL(G|S) = 13345.8 + 39420.56 + 11834.25 = 64600.61

We do not follow the computation for the negative graph
since that is very similar to the previous calculations.
Substructure S covers a single negative example. The total
encoding comes to DL(G+,G-) = 64939.54 bits.

Continuing with our example, the SelectAttributeValues()
function enters the repeat-loop. Since the attribute is
continuous, the value farthest from the mean (2.82) is
removed. This value is “8”, shrinking the attribute’s range
to [1..7]. The evaluation results in DL(G+,G-) = 64909.77
bits, which is slightly better than the previous
substructure, so it becomes the new best substructure. The
repeat-loop continues until all but one value remains in
the attribute, at which point the function returns the best
substructure that was created using the best set of values.

3.3. Complexity

The algorithm has to select values for each of the a
attributes Aj, each of which has v(Aj) unique values. If the
data set has s number of positive examples, then the upper
bound on v(Aj) is s. Computing the rank of values can be
done in one pass. Selecting the values for all attributes is
hence O(as). Since the partial hypothesis is extended a
times (for a attributes), the upper bound is O(a2s).

4. Experiments

4.1. The Wisconsin Breast Cancer Database

The Wisconsin breast cancer database was obtained from
the University of Wisconsin Hospitals, Madison from Dr.
William H. Wolberg, through the UCI Machine Learning
Repository (Keogh, Blake & Merz, 1998). The data set
contains description for 693 cases of breast cancer of two
classes: 452 benign and 241 malignant cases. The data set
has nine continuous numeric attributes—excluding the
class attribute—with values as shown in table 2.

A comparison table describing accuracies from various
systems on the Wisconsin Breast Cancer domain reported
in the literature is shown in Table 1. It lists predictive
accuracies reported for each algorithm, which were
obtained using 10-fold cross validation as reported by the
sources cited in the right column. In our tests we used a

Case

4 6 4 6 1 4

7 1

3

1
2

3 4 5 6 7 8
9

Case [1..2]
 Mitoses

[1..2]
Uniformity of Cell Size

Table 1. Comparison with other approaches on the breast cancer domain.

Rank Algorithm Accuracy Accuracy Reported by
1 Probit 97.2% Wen-Hua et al, 2002
2 RLP 97.07% Brodley & Utgoff, 1995
3 Gaussian Process 97.0% Wen-Hua et al, 2002
4 Feature Minimization 96.92% Brodley & Utgoff, 1995
5 GSBE 96.77% Brodley & Utgoff, 1995
6 SVM 96.7% Wen-Hua et al, 2002
7 Multi-surface separation (3 planes) 1 95.9% Wolberg & Mangasarian, 1990
8 Subdue 95.67% Authors
9 FOIL 94.8% Authors
10 C4.5 94.4% Liu & Setiono, 1996
11 Neural Networks 93.3–95.61% Taha & Ghosh, 1997
12 1-nearest neighbor 1 93.7% Zhang, 1992
13 Multi-surface separation (1 plane) 1 93.5% Wolberg & Mangasarian, 1990
14 Linear Discriminant 92.9% Wen-Hua et al, 2002
15 Logistic regression 92.3% Wen-Hua et al, 2002

 1 These experiments worked with only 369 examples (200 training cases, tested on the other 169 cases).

90/10 split between training and test sets. As we can see,
Subdue outperforms 7 out of 14 other systems, with an
accuracy of 95.67%. The ones that do better are mostly
statistical systems (such as RLP, GSBE, Gaussian
process, multi-surface separation, etc.) specifically
designed for continuous-valued domains. Even these are
only 1.5% more accurate, at best. C4.5, a general-purpose
system (i.e., one that also handles discrete-valued
attributes) that is considered a benchmark in machine
learning, did worse than Subdue, with only 94.4%
prediction accuracy.

Table 2. Breast cancer attributes.

Attribute Name Value Range
1 Clump Thickness 1 - 10
2 Uniformity of Cell Size 1 - 10
3 Uniformity of Cell Shape 1 - 10
4 Marginal Adhesion 1 - 10
5 Single Epithelial Cell Size 1 - 10
6 Bare Nuclei 1 - 10
7 Bland Chromatin 1 - 10
8 Normal Nucleoli 1 - 10
9 Mitoses 1 - 10

Aside from predictive accuracy, an algorithm is also
judged by how simple it is for the human data miner to
interpret its findings. Humans prefer systems that describe
most of the data using small, simple rules. To see how
Subdue fares at producing quality rules, we performed a
classification task using all examp les for training and
testing. Subdue terminated after finding 6 rules which
describe benign cases with 98.12% accuracy. The best 2
rules achieved 96.39% accuracy.

Figure 4 shows the textual description of the best rule that
covers 399 benign cases and 1 malignant case (a

misclassification). Since this rule covers over 92% of all
cases, it gives a good idea of how benign and malignant
cases differ. A graphical depiction is shown in Figure 5.
Benign cases are represented by the lower dark area.

Rule 1: 1 = Clump Thickness = 8, AND
1 = Uniformity Of Cell Size = 2, AND
1 = Uniformity Of Cell Shape = 4, AND
1 = Marginal Adhesion = 10, AND
1 = Single Epithelial Cell Size = 5, AND
1 = Bare Nuclei = 5, AND
1 = Bland Chromatin = 7, AND
1 = Normal Nucleoli = 2, AND
1 = Mitoses = 2

Figure 4. Rule #1 for the breast cancer domain.

$0

$0

$0

$1

$1

$1

1 2 3 4 5 6 7 8 9

Attributes

Figure 5. Graphical representation of rule #1 for the breast
cancer domain.

4.2. Effects of Data Skew

Concept learning in Subdue works by attempting to learn
rules that describe the positive examples well while not
describing any of the negative examples. That is, an
example is classified as negative if the hypothesis found
for the positive examples does not classify it as positive.
Some systems, like C4.5, find hypotheses for both
positive and negative classes. Since this is not the case
with Subdue, the choice of positive versus negative
examples may make a difference in the rules generated,

10-

5-

1-

and their accuracy. Our experiments show that this is in
fact the case. Table 3 shows the results in terms of
predictive accuracy, rule complexity (average rule count),
and time spent learning in all 10 runs of the cross
validation.

Table 3. Experiment result for switched class attributes.

Positive Cases Accuracy Rule
Count

Run time
(h:m)

Benign 452 95.67% 5.8 0:18
Malignant 241 94.23% 10.8 2:01

As Table 3 shows, the average rule count almost doubled
when malignant cases were presented as positive
examples. Rule #4, depicted graphically in Figure 6, gives
us an insight into what is happening. As the figure shows,
cases are classified as benign only if all attributes have a
value that falls within the dark strip in the middle. If
malignant cases were to be described (i.e. value ranges
above and below the dark stripe), two separate ranges
were necessary for attributes 1, 2, 3, 5, 6, and 7. Subdue
can only assign a single range per attribute per rule. In
other words, when switching classes from positive to
negative, the difference lies in having to learn outliers
versus the central, contiguous ranges.

Accuracy was also affected slightly which is due to the
number of examples available in each class. There are 452
benign cases and only 241 malignant cases. The accuracy
of the hypothesis is directly dependent on the number of
positive examples.

Running times also differed greatly. When benign cases
were positive, the computation lasted 18 minutes, while it
took over 2 hours to compute the rules when the class
labels were switched.

At present, there is no way for Subdue to automatically
detect which class would be better handled as positive.
The user simply has to try it both ways, unless some
intelligence about the database is already available.

The effects of data skew may also affect other learning
algorithms. To test this, we performed an experiment on
FOIL in which we swapped the positive and negative
examples in the breast cancer domain. The results were
actually reverse compared to Subdue. FOIL achieved a
94.8% accuracy using 11.7 rules on average when
malignant cases were positive, while its performance
slightly decreased to 94.23% using 10.1 rules on average
when the examples were swapped. As we can see,
swapping positive and negative examples had a smaller
effect on FOIL’s performance, although FOIL needed
significantly more rules to construct its hypotheses and
was also less accurate than Subdue.

Learning outliers versus central tendencies may be
avoided in most cases, since experts tend to label their
examples of interest as positive. Problems arise when the
difference is not clear or arbitrary. This is the case in the

breast cancer domain, where one expert may label
malignant tumors as positive while others may pick
benign as positive.

$0

$0

$0

$1

$1

$1

1 2 3 4 5 6 7 8 9

Attributes

Figure 6. Graphical representation of rule #4

for the breast cancer domain.

4.3. Other Comparisons

We also evaluated Subdue on domains that have non-
numeric attributes. We were particularly interested in how
Subdue compared against other systems that were
specifically designed for relational domains. We selected
FOIL (Cameron-Jones & Quinlan, 1994) and Progol
(Muggleton, 1995), which are prominent inductive logic
learning systems. Both have had great success in a wide
variety of domains. We also wanted to know how our
approach measures up against an algorithm that was
designed for flat domains. For this we used C4.5.

We selected the vote, diabetes and credit domains to serve
as the basis for our comparison. The vote domain is the
Congressional Voting Records Database available from
the UCI machine learning repository. It contains only
discrete-valued attributes, having values y, n, and u (for
yes, no, and unknown). The diabetes domain is the Pima
Indians Diabetes Database, which contains 7 continuous-
valued attributes. The credit domain is the German Credit
Dataset from the Statlog Project Databases, also available
from the UCI repository. The credit data set contains 13
discrete and 7 continuous-valued attributes.

Table 4. Comparison of Subdue, FOIL, Progol and C4.5.

 Vote Diabetes Credit
FOIL 93.02% 70.66% 68.60%
Progol 94.19% 63.68% 63.20%
C4.5 94.48% 74.62% 70.90%
Subdue 94.23% 70.94% 71.30%

Predictive accuracies are shown in Table 4, which were
generated using 10-fold cross-validation. As evident from
the table, Subdue outperformed the two ILP systems in all
three domains, and was the best on the credit domain.
C4.5, however, did significantly better on the diabetes
domain than the other three systems. We performed tests
to determine the statistical significance of the difference
in performance of the competing systems against Subdue.
The results for the Vote domain, shown in table 5,
indicate that all four algorithms performed quite similarly.

10-

5-

1-

Confidence values indicate low statistical significance,
especially when comparing Subdue and Progol. Tests for
the Diabetes domain, shown in table 6, indicate that FOIL
and Subdue performed almost identically, while both
significantly outperformed Progol. C4.5 did even better.
Tests for the Credit domain, shown in table 7, tell us that
Subdue significantly outperformed both FOIL and Progol,
while doing only slightly better than C4.5.

Table 5. Significance tests for the Vote domain.

 ∆ Error ± σ Confidence
Subdue – FOIL -1.21% ± 6.51% 71.44%
Subdue – Progol -0.05% ± 4.78% 51.22%
Subdue – C4.5 0.25% ± 4.93% 56.16%

Table 6. Significance tests for the Diabetes domain.

 ∆ Error ± σ Confidence
Subdue – FOIL -0.29% ± 9.76% 53.58%
Subdue – Progol -7.26% ± 8.81% 98.58%
Subdue – C4.5 3.68% ± 9.88% 86.51%

Table 7. Significance tests for the Credit domain.

 ∆ Error ± σ Confidence
Subdue – FOIL -2.70% ± 4.99% 93.94%
Subdue – Progol -8.10% ± 4.63% 99.98%
Subdue – C4.5 -0.40% ± 4.88% 59.93%

5. Discussion and Conclusions

In this paper we introduced an algorithm for selecting
attribute values based on description length for both
discrete and continuous attribute types. We described the
algorithm in detail, showed the encoding computation and
illustrated it with an example. We used the Wisconsin
breast cancer database to show the viability of the
approach and compared it with other systems reported in
the literature. Subdue outperformed 7 of 14 systems cited
among which were general purpose machine learning
algorithms. The systems that did better than Subdue used
mainly statistical approaches that can only handle
numerical domains. Using this domain we also showed
that Subdue produces rules of high quality that are simple
and describe much of the data.

We also evaluated our algorithm using three other
domains that had discrete-valued attributes as well. Using
this data set as the basis for comparison, we compared our
system against yet another set of algorithms. Subdue
came out as the one that performed consistently well
across all three domains among systems capable of
relational learning.

Even though we carried out our explanation of the
algorithm using flat domains exclusively, the approach
works just as well in relational domains. We have plans to

show results on relational domains and make comparisons
to other systems in the near future. Another possibility for
improvement is automation of the discovery of structural
variances. As mentioned before, Subdue is able to
consider such variation, but human input is required to
define a threshold. We also plan on expanding the
experimentation to include more domains and algorithms,
and trying to determine when the MDL approach
performs better or worse than other approaches.

Acknowledgment

This research is partially supported by a Defense
Advanced Research Projects Agency grant managed by
the Air Force Rome Laboratory under contract F30602-
01-2-0570.

References

Brodley, C.E. & Utgoff, P.E. (1995). Multivariate Decision
Trees. Machine Learning, Volume 19 (1), pages 45–77.

Cameron-Jones, R. M., & Quinlan, J. R. (1994). Efficient Top-
down Induction of Logic Programs. SIGART Bulletin. Vol.
5, 1:33-42.

Cook, D. J. & Holder, L. B. (1994). Substructure Discovery
Using Minimum Description Length and Background
Knowledge. In Journal of Artificial Intelligence Research,
Volume 1, pages 231-255.

Evaluation / Characterization of Classification Algorithms.
Statlog Project, Universidade do Porto.
http://www.liacc.up.pt/ML/statlog/

Keogh, E., Blake, C. L. & Merz, C. J. (1998). UCI Repository of
machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science.

Liu, H. & Setiono, R. (1996). A probabilistic approach to feature
selection: A filter solution. In Proceedings of the Thirteenth
International Conference on Machine Learning. Morgan
Kaufmann.

Muggleton, S. (1995). Inverse Entailment and Progol. New
Generation Computing Volume 13 245-86.

Quinlan, J.R. (1993). C4.5: Programs for machine learning,
Published by Morgan Kaufmann Publishers, London,
England. 1993.

Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry.
World Scientific Publishing Company.

Taha, I. & Ghosh, J. (1997). Evaluation and ordering of rules
extracted from feedforward networks. In Proceedings of the
IEEE International Conference on Neural Networks, pages
221–226.

Wen-Hua, J., Madigan, D., & Scott, S. (2002). On Bayesian
Learning of Sparse Classifiers. Avaya Labs Research.

Wolberg, W.H. & Mangasarian, O.L. (1990). Multisurface
method of pattern separation for medical diagnosis applied to
breast cytology. Proceedings of the National Academy of
Sciences, Volume 87, pages 9193–9196.

Zhang, J. (1992). Selecting typical instances in instance-based
learning. In Proceedings of the Ninth International Machine
Learning Conference pages 470–479.

