
A Framework for Autonomous Mobile Robot Exploration and Map Learning
through the use of Place-Centr ic Occupancy Gr ids

G. Michael Youngblood YOUNGBLD@CSE.UTA.EDU
Lawrence B. Holder HOLDER@CSE.UTA.EDU
Diane J. Cook COOK@CSE.UTA.EDU
Computer Science and Engineering Department, The University of Texas at Arlington, Arlington, TX 76019 USA

Abstract

The Autonomous Intell igent Knowledge-
building Exploration (AIKE) system explores
how an autonomous mobile robotic agent using
sonar sensors and dead reckoning can learn a
map of a completely unknown environment.
AIKE generates grid-based maps based on the
notion of a "place" (i.e., a location separated
from other places by a confining gateway such as
a door or entryway). Empirical trials show that
the AIKE agent explores the environment with a
faster rate of knowledge acquisition than random
exploration, learning maps of higher accuracy by
reducing error propagation. The algorithm
produces a high level of similarity between maps
of the same location created from different agent
starting locations, making place recognition
easier and providing consistency in mapping. We
describe the AIKE system in the context of a
proposed architecture for autonomous map
learning, navigation, and map refinement. Our
approach is best suited to operate effectively in
large connected spaces such as office buildings
using small mobile robots.

1. Introduction

In this paper, we explore an important aspect of a
complete mobile robotic mapping system: autonomous
exploration and initial map learning. Our goal is to learn
a map of an unknown environment using a limited-sensor
mobile robot with no a priori knowledge opening the way
for more advanced techniques in continuous localization,
knowledge usage, and map refinement to build upon this
initial map knowledge.

Accurate representation of environments is important for
robot deployment. Robots assigned a task involving
travel within a specific environment will require either
prior knowledge of the environment or a method of
learning about the environment to allow successful
navigation and accomplishment of the task. A robot must
be able to maneuver within a designated area and interact

with components in a dynamic manner in order to achieve
advanced goals such as those involved in search and
rescue missions, foreign environment exploration,
mail/package delivery, guided tours, safety inspections,
maintenance, and many other mobile tasks.

A fundamental aspect of creating advanced mobile
robotic systems is the modeling framework for the robot's
map. Intuitively, humans think about the notion of a
place when they navigate. People are in one place, and
often desire to go to another place, which they can usually
visualize. The concern in this type of navigation is not
the distance between two objects, or which path to follow,
but identifying the next place needed to get closer to the
desired place. A person may start in a room and want to
go to another room. They can visualize where they want
to go, and they can see where they are currently located.
First, they find a gateway (i.e., a door or entryway) into
another place. Upon gateway traversal, they are now in a
new place. This procedure continues until the person
reaches their destination place. The same idea can be
applied to robotic navigation. If a robot perceives a room
as a place and centers that place in its own occupancy
grid, all other places can be mapped in a similar manner.
Gateways can then be located on maps and connections
between places can be topologically connected by the
gateways, yielding a network of places that could
represent buildings or other structured areas.

In our system, maps are learned using a combination of
techniques. A primary search algorithm leads the agent in
a rational manner around the space to create the place
occupancy grid. A frontier (the boundary of an
unexplored location) finding algorithm can assist if the
primary algorithm leads the agent into a cove, and
algorithms such as gateway determination, map
smoothing, and centroid determination further assist this
mapping.

We present an incremental approach to autonomous
exploration and map building of an unknown environment
by constructing occupancy grids (Elfes, 1989). We
introduce a complete mapping, navigation, and updating
system using a single or multiple robots, and describe a
framework for place-centric occupancy grids connected in

a topological network called place-centric occupancy
maps.

2. Conceptual Framework

We now describe our algorithms for map generation, use,
and update encapsulated in the AIKE (Autonomous
Intell igent Knowledge-building Exploration) and the
PIKE (Parallel Intelli gent Knowledge-building
Exploration) systems. We use simplified occupancy as a
basis for the maps. The notion of a place in the
occupancy grids is introduced to make the occupancy
grids place-centric.

2.1 Occupancy Gr ids

Figure 1. Occupancy grid overlay on an environment.

There are numerous papers describing in detail the
specifics of the occupancy grid framework and creation
dynamics (e.g., see Moravec, 1988). In our
implementation, each cell within the occupancy grid is
assigned one of three values: 0.0 (unoccupied), 0.5
(unknown), or 1.0 (occupied). Before mapping
commences, a blank map is created consisting of a grid
with all positions initialized to 0.5. The agent will then
move around in the environment using sonars or other
percepts to fill i n grid evidence. Occupancy evidence is
considered persistent. This prevents a majority of false
readings from removing previous evidence of occupation
due to having to rotate the robot in place for each pose
due to < 360° sonar coverage around the robot. This
technique may cause problems for noisy sonars to to
placing irreversibly incorrect data in the map, so the sonar
acquisition routines should get the best possible data
before commiting the data. In our experiments we found
this to be the best approach for our robots. Figure 1
ill ustrates a typical occupancy grid in the context of this
work.

2.2 Place-Centr ic Occupancy Maps

Locations such as a specific room, hallway, lecture hall ,
etc. are important artifacts of a building or structure. We
focus primarily on mapping structured areas such as
these, and the inherent structure of such places consists of
definite locations or places. The idea behind place-centric
occupancy grids is to capture information about a single

place in a single occupancy grid. This information is
stored in a graph vertex. Places can be connected to each
other through gateways, openings or connection points
from one place to another place such as doorways,
entryways, or portals. We create a topological graph by
mapping place-centric graph vertices and connecting them
through gateway edges. Figure 2 ill ustrates a building
and the associated topological place-centric occupancy
grid graph.

Figure 2. Place-centric occupancy grid.

There is only one place represented per occupancy grid.
A map consists of many occupancy grids connected
together. The use of a topological network for
representation allows for easy use of path planning and
search algorithms as well as other existing graph
algorithms. As an extension, each vertex could store not
only the place occupancy grid, but also information such
as place features, names, and GPS coordinates. A series
of maps could also be stored for tracking a dynamically
changing environment.

2.3 The Autonomous Intelli gent Knowledge-Building
Exploration (AIKE) Agent

The AIKE agent architecture consists of three main
modes of operation: exploration, navigation, and
refinement. In exploration mode, the agent explores an
environment and creates a map of that environment, the
robot uses those generated maps in navigation mode to
perform a task, and, since the world is dynamic, an agent
in refinement mode will perform refinement of places to
update or improve the maps.

Exploration involves creating the map of a building with
no a priori knowledge. The first step is to open the map
structure to allow for mapping of places. Then, the agent
maps a place by creating a place-centric occupancy grid,
determining what extra information needs to be collected
for this place, and storing the map and all i nformation in a
structure. Next, the agent determines the gateways
available from the place, stores this information in the
structure, and then follows the gateways, mapping each
location and creating structures to add to the map. Upon
completion a machine-usable map representation is
generated and stored for future use. Figure 3 ill ustrates
this cycle.

 Figure 3. AIKE exploration mode flow.

Navigation mode is a utili ty mode. The agent is primarily
interested in reaching the location required for the
specified task. Once at the goal location, additional
functions may be called on to perform tasks not defined
by the AIKE software. Flags in the map structure can
signal to the AIKE software that there may be unique
handling requirements for the current place. For example,
the agent may desire to use an elevator. An elevator
handling routine may be called to allow the agent to use
the elevator and then return the agent back to the AIKE
software.

Figure 4. AIKE navigation mode flow.

Once a goal is given, the first step for the agent is to
determine its location. It will perform exploration of the
current place and then compare the current place to all of
the places in the current map. The best match will be

used as the starting location. A path to the goal place will
be generated and traversed. Along the path, the agent will
continually check its current location to make a best effort
to ensure it is moving along the proper path. If the agent
gets lost, it will initiate exploration and place matching to
try to locate itself. If the agent cannot localize itself
within a map it will resort to exploration to build a map.
Once at the goal, the agent may execute additional outside
routines to complete the task. Figure 4 ill ustrates the flow
for navigation mode.

Refinement mode is a special case of the exploration
mode. In refinement mode existing maps are updated to
reflect changes and greater map detail . Continuous
localization routines are used to ensure correct placement
within the maps. The AIKE agent incorporates the
necessary components for building, using, and updating
robotic maps. It provides an extensible framework for
mobile robot usage and task assignments combined with
the key aspect of environmental mobili ty.

2.4 The Parallel Intelli gent Knowledge-Building
Exploration (PIKE) System

The PIKE System is an extension of the AIKE
architecture for multiple agents. PIKE acts as a command
and control center for multiple robot collaboration and
coordination. It serves as a central repository for location
maps, preferably stored by GPS coordinates. PIKE
coordinates map refinement by granting requests for
mode shifts by agents to refinement mode. In this manner
only one agent may update a particular place and provide
updated maps back to the PIKE System. PIKE monitors
agents in exploration mode and can facilitate coordination
efforts for potential map merging.

PIKE is implemented through a concurrent server that
registers agents via Ethernet connections. A token system
is used for each place within a map to allow for
refinement mode shifts - only one agent is allowed to be
in refinement mode per map place. The map library is
maintained in a database and maps are issued to registered
agents upon request. As newer maps are available, map
updates are performed. Multiagent coordination consists
of tracking each agent's position and preventing agents
from colli ding at gateways. PIKE can cause any
registered agent to "pause" or "halt." PIKE also provides
feedback to the observer on the status of all registered
agents.

An advanced feature of the PIKE System is the abili ty to
assist in parallel mapping of a building by performing
map merging on generated maps. This can be
accomplished by looking for structural similarities in
maps and piecing a complete map together from parts.
PIKE could direct agents to follow certain gateways that
have not been explored, but identified by multiple agents.
Throughout this paper, the "map" refers to a local map
built by one agent. Multiple local maps can be merged to
form a global map.

Create a blank building map

Map a place

Determine place
 information

Create place structure and
store all i nformation

Determine gateways and
store information

Follow gateway

Update building map

Determine location

Get goal

Follow path through
 places to goal

Compare place to places in
 current map

Map current location

Determine path
to goal

Lost?
yes

Special routine
needed? Special routine

yes
no

no
Task routine

Goal

3. The Environment

Mapping in our experiments was conducted by two RWI
Pioneer 1 robots. The robots are controlled by Pentium-
based notebook computers running the Saphira 6.1f
software with a C++ interface using the Pioneer
Application Interface (PAI) libraries. All measurements
were taken by instrument and were not estimated. For the
current system, unknown environments are assumed to be
comprised of orthogonal walls. For our experiments,
borders are composed of either cinder block wall or
reinforced cardboard. Gateways are classified as an
accessible opening greater than 50 cm and less than 110
cm wide. Only one environment with a gateway was
tested in our experiments, which does lead to another
space.

Our algorithms were tested using a Pioneer 1 robot
manufactured by Real World Interface, Inc. Due to a lack
of 360° sonar coverage, in order for the Pioneer 1 robot to
gain a complete view of its surroundings for a single
position in space it must rotate in a complete circle for
each pose. To compensate for sonar inaccuracies and
specular reflections, we take a series of readings from
each sonar and keep the lowest valid returned value.
Each sonar reading updates occupancy values of grid
locations that overlap the corresponding sonar cone.

4. Autonomous Mapping of Places

 We now present the mapping mechanism used in the
AIKE system. Algorithms for mapping, including the
direction decision algorithm, as well as the assisting
algorithms that find frontiers, smooth maps, and find
gateways are described.

4.1 The Mapping Method

Maps are created by initializing an occupancy grid map
for a certain place with occupancy values of 0.5. These
values will be updated during exploration. Because sonar
readings outside of two meters are often inaccurate, the
map is updated by a 2 meter square local bounding grid.
This local map, centered at the robot's current position
(pose), slides around the map to perform updates. The
size of each grid space within both the entire map and the
local map is 10 cm². Figure 5 shows a sample occupany
grid for a single robot with a map and moving local grid.

Mapping starts by collecting occupancy evidence from
the robot's sonars and updating the local grid. Updating is
performed by the interpretation of sonar readings as
described in section 4. Due to specular reflections and
noisy sensors, occupancy values are persistent. If
occupancy was not persistent, overlap in sensor
information would cause all l ocal grids to appear falsely
unoccupied. AIKE creates a grid map from occupancy
evidence indicated by sonar readings. After the local grid
is mapped, it is used to update the map. Using the map
and the local grid the robot decides upon the next position
to occupy, and moves to that location. The mapping
continues until the place has been completely explored.

Figure 5. Occupancy grid.

Mapping completion is often hard to determine from
information available within a system. The agent may be
stuck in a cove and cannot see other unexplored areas.
The boundary of unexplored territory is called a frontier
(Yamauchi, 1998). If stuck, before the agent declares that
mapping is complete, it should try to find any frontiers.
This is accomplished by performing an increasing spiral
search within the map starting from the current position of
the agent. If there is a frontier, and thus more unexplored
space, then the robot will need to move to new locations
in the unexplored space. This means that a continuous
localization and movement routine is necessary such as
the method presented by Sebastian Thrun et al. (1998) or
the Continuous Localization software available from the
Navy Center for Applied research in Artificial
Intell igence (www.aic.nrl.navy.mil/~adams/cont-loc;
Schultz and Adams, 1998). For our experiments,
mapping terminates when no frontiers remain in the
agent’s local grid.

After the map is complete and a place-centric occupancy
grid has been created, some map cleanup may be needed.
It is important that all generated maps look similar even if
mapping started from distinct starting positions. All maps
will need to be centered within the map by finding the
centroid of the place and realigning it to the center of the
map so that subsequent maps learned from the same place
maintain the same reference point (their centroid).

At this point, gateways are determined, and mapping
moves to the next place. Gateways are determined by
identifying gaps in walls that meet a specified size
threshold. New places connected by gateways are added
to the search list. All of the mapped places should be
linked into a topological map representing the current
building or structure. A global tagging method (e.g.,
GPS) may be fixed to the network to assist in map
retrieval based on global position.

The method presented in this study builds a map from a
local grid moving with the agent through the current place
until it i s fully explored. Frontier finding, gateway
determination, and centroid determination will improve
map quali ty and assist in continuing exploration.

4.2 Pr imary Mapping Algor ithm

Mapping is performed by functions MapPlace and
DetermineMoveDirection. MapPlace first calculates the
local grid position, then updates the local grid with sonar
information and applies local grid information back to the
map. Exploration is performed by determining the next
direction for the agent to move. For our experiments, the
robot moves 0.5 m at each step.

Figure 6. MapPlace algorithm.

The direction in which to move next is determined by the
function DetermineMoveDirection (the choices are North,
South, East, or West). The agent cannot move to an
occupied space or back to the previous location. The
linear distance to the closest large obstacle, unknown
location or edge of the map is calculated for each of the
four move directions. If an obstacle is closer than the
other criteria, a terminal value is set indicating that
mapping is complete in that direction. AIKE then favors
the farthest distance of the remaining criteria, based on a
desire to move to the farthest unknown. Whichever
direction is available and has the most distant feature will
be selected for the next move.

MapPlace moves the agent to the new location and
continues mapping. If no valid moves are possible, it will
map the same location. If two consecutive
DetermineMoveDirection calls yield no valid moves,

mapping is complete. Pseudocode for these functions is
shown in Figures 6 and 7.

Figure 7. DetermineMoveDirection function.

4.3 Gateway Determination

Finding the gateways within a map is important for
linking connected regions. To identify gateways, we look
for gaps within the map. Each sequence of unoccupied
cells in a grid row or column that is greater than the wall
smoothing threshold, but less than the maximum gateway
size, is marked as a gateway. The procedure is then
repeated for the columns of the map. This procedure will
identify all unoccupied regions within a specified size that
are vertically or horizontally aligned with the map as

procedure MAP-PLACE(x, y, theta, localGrid, localMap)
 inputs: x, integer x location
 y, integer y location
 theta, integer (0-360) angle
 localGrid, 2D float array
[MAX_LOCAL_X][MAX_LOCAL_Y]
 localMap, 2D float array [MAX_X][MAX_Y]
 static: flag, boolean
 move, direction { N,E,S,W, neutral}

flag ← false
move ← neutral direction
 // Default valid direction -- non-biased to N,E,S,W

while move is valid direction
begin
 updateLocalGrid(x,y,localMap,localGrid)
 // Put local map info on local grid for location
 mapLocalGrid(localGrid)
 // Build local occupancy grid with robot
 updateLocalMap(x,y,localMap,localGrid)
 // Put local grid info on local map for location

 move ← determineMoveDirection(x,y,localGrid,localMap,move)
 // Determine next move

 if move is valid direction
 moveAgent(move,theta,x,y,localMap)
 // Move robot to new location
 flag ← false
 else if flag is true
 end
 else
 flag ← true
 move ← neutral direction

function determineMoveDirection(x,y,localGrid,localMap,move)
returns direction
inputs: x, integer x location
 y, integer y location
 localGrid, 2D float array
[MAX_LOCAL_X][MAX_LOCAL_Y]
 localMap, 2D float array [MAX_X][MAX_Y]
 move, direction { N,E,S,W, neutral}
 static: NorthRange, boolean; EastRange, boolean; SouthRange,
 boolean; WestRange, boolean; NorthDistance, integer;
 EastDistance, integer; SouthDistance, integer; WestDistance,
 integer; MaximumDistance, integer

for each direction in the order { North, East, South, West}
 {North, East, South, West}Range ← true if the block adjacent to
agent in that direction does not have any obstacles located in a box
bounded by a left and right value and a depth distance relative
to the agent within the localGrid; otherwise, false

for each direction in the order { North, East, South, West}
 {North, East, South, West}Distance ← the distance to the first
unknown grid location or end of the map in a box bounded by a left
and right value within the localMap

 ** If the distance to an obstacle greater than a defined
threshold level of occupancy is determined before the other
criteria, then a terminal value indicating that mapping is
complete in that direction is assigned to that direction

MaximumDistance ← max{ NorthDistance, EastDistance,
 SouthDistance, WestDistance}

if NorthDistance, EastDistance, SouthDistance, and WestDistance =
terminal values

return NONE

if NorthRange = true and NorthDistance = MaximumDistance
return NORTH

if EastRange = true and EastDistance = MaximumDistance
return EAST

if SouthRange = true and SouthDistance = MaximumDistance
return SOUTH

if WestRange = true and WestDistance = MaximumDistance
return WEST

otherwise return NONE

gateways, and will add the area connected by the gateway
to the exploration search list.

4.4 Wall Smoothing and Centroid Determination

These procedures are useful for accurate map generation.
The wall smoothing algorithm fills gaps in the map
marked as occupied space. The net effect is to fill holes
due to sensor imperfections, and to smooth continuous
walls and surfaces in the map. Wall smoothing is
accomplished by marking grid cells as occupied when
they are surrounded by occupied cells within a threshold
distance away. The centroid function determines the
center location for the bounding box of the mapped area.
These values can be used to align multiple maps of the
same place, regardless of the robot starting position.

The algorithms presented here create the foundation for
the AIKE mapping capabiliti es. The next section presents
the results of applying this approach.

5. Experimental Results

This section presents the results of seven different initial
mapping trials we performed in experimentation, six used
the algorithms presented in the previous sections and one
replaced the direction decision with a random choice,
tested using three different environments. These trials
were used to map places to test the map learning abili ty of
the base algorithms. Gateway determination and full map
building system implementation is still in progress. All
mapping exercises were performed in the UT Arlington
Robotics Lab.

5.1 Err or Propagation

As with many robots, the Pioneer 1 robots are subject to a
certain amount of error in positioning and alignment. As
the robot moves around the environment, these errors
compound. Because we are exploring unknown
environments, there is no frame of reference to adjust for
these errors. Error propagation is reduced by careful
calibration and ensuring that every trial starts with the
robot facing true north, but error still exists in the mapped
results due to these inaccuracies in robot movement.

5.2 Places

The experiments focus on mapping three created
environments. The first is a simple rectangular room with
a single gateway called the "Gateway Place." The second
is a room shaped like the letter 'L' and is aptly named the
" 'L' Place." The last is a room with irregular walls and an
obstacle free-floating in the space. This last environment
is called the "Complex Place."

All three environments have a baseline map created from
the actual room layout, scaled to the mapped grid size.
These maps are shown in Figure 8. All robot-produced
maps were compared to these baseline images. The best
fit was determined from the final map produced in each
trial. Only pixels within the boundary of the room
outline, inclusive of the boundary line, were compared.

The number of exact matching pixels were counted at
each stage and divided by the total number of baseline
pixels to determine the level of accuracy.

Gateway Place ‘L’ Place Complex Place

Figure 8. Baseline maps for tested places.

5.3 Gateway Place Experiments

The gateway place was used for three different trials. The
first two trials used the algorithms presented in the
previous section. The last trial replaced the
DetermineMoveDirection choice of robot move direction
with a random choice. Each trail had a different starting
location in the place.

Figure 9. Gateway place map acquisition (AIKE vs. random).

Trial 1 Trial 2 Random Trial

Figure 10. Final Mapping Results for Gateway Place

In this experiment, AIKE yielded an 89% accuracy to the
baseline in 16 steps taking 31 minutes and 14 seconds for
the first trial and 86.9% accuracy in 15 steps taking 32
minutes and 57 seconds for the second. Both of these
results are better than the random exploration, which
produced a map with 84.4% after 20 steps taking 46
minutes and 1 second. Figure 9 graphs the map
acquisition rate for the three trials. Figure 10 shows the
acquired maps. Trial one shows a 4.6% accuracy
improvement, and completed mapping nine minutes and
11 seconds faster than the random trial. It is important to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0:
00

:0
0

0:
01

:2
6

0:
02

:5
3

0:
04

:1
9

0:
05

:4
6

0:
07

:1
2

0:
08

:3
8

0:
10

:0
5

0:
11

:3
1

0:
12

:5
8

0:
14

:2
4

0:
15

:5
0

0:
17

:1
7

0:
18

:4
3

0:
20

:1
0

0:
21

:3
6

0:
23

:0
2

0:
24

:2
9

0:
25

:5
5

0:
27

:2
2

0:
28

:4
8

0:
30

:1
4

0:
31

:4
1

0:
33

:0
7

0:
34

:3
4

0:
36

:0
0

0:
37

:2
6

0:
38

:5
3

0:
40

:1
9

0:
41

:4
6

0:
43

:1
2

0:
44

:3
8

0:
46

:0
5

0:
47

:3
1

0:
48

:5
8

0:
50

:2
4

Time

%
 o

f
b

as
el

in
e

co
m

p
le

te

Planned 1

Planned 2

Random

map quickly to minimize error propagation caused by
excessive robot movement.

5.4 'L ' Place Experiments

The 'L' place was used for two different trials. Both trials
used the AIKE algorithms presented in the previous
chapter. Trial one took 35 steps yielding an 84.1%
accuracy to the baseline in one hour 30 minutes and 28
seconds. Trial two yielded a map with 89.7% accuracy to
a baseline in 38 steps taking one hour 41 minutes and 16
seconds.

A comparison of the mapping results for the 'L' place
trials is presented in Figure 11. The rate of map
acquisition is still high. Of interest are the plateaus in the
acquisition plot for trial two. These are due to periods of
time where the robot was backtracking over previously
explored territory. During those times there was not a
significant amount of knowledge discovery. Figure 12
shows the acquired maps.

Figure 11. 'L' place map acquisition.

Trial 1 Trial 2

Figure 12. Final Mapping Results for ‘L’ Place

5.5 Complex Place

The complex place was used for two trials. Again, both
trials used the AIKE algorithms. Trial one took 41 steps
to finish with an 89.2% accuracy to the baseline taking
one hour 37 minutes and 18 seconds. It took 35 steps to
complete the map in trial two with a 90.0% accuracy
taking one hour 21 minutes and 45 seconds. The
composite knowledge discovery graph is presented in
Figure 13.

These experimental results indicate that the AIKE
algorithms yield more efficient explorations than random
exploration, with good map acquisition accuracy. AIKE

produces maps of high similarity even when starting from
different initial mapping locations and using different
robots. Although not experimentally presented here, the
algorithmic framework we described for gateway
determination produced many false gateways in
experimentation, map smoothing proves to be only a
marginal improvement when the initial data acquisition is
good, but centroid centering greatly improved consistency
between maps in the same referential frame. These
algorithms represent a completely autonomous approach
to exploration and map generation, without joystick
control or predefined exploration paths.

Figure 13. Complex place map acquisition.

Trial 1 Trial 2

Figure 14. Final Mapping Results for Complex Place

A feature that bears note in the data is the increase in
complexity of the mapping paths for robots in trials that
had to explore in a predominately westward direction.
Due to the directional bias in the algorithms, westward
exploration is often hindered by the tendency to be pulled
back to a northeasterly direction. Changing the
directional bias or employing a heuristic could counteract
this phenomenon. An adaptive directional bias approach
may reduce mapping time and improve overall efficiency.

6. Related Work

Much research has focused on robot exploration and map
learning. Many of the original work and subsequent
discoveries in grid-based mapping have been done by
Moravec (1988), Elfes (1989), and recently Yamauchi
(1998). Kortenkamp (1994) performed some of the first
experiments in gateway usage and determination.
Yamauchi and Langley’s (1996) work in place learning
motivated our approach, but recently Sebastian Thrun
(1998) has developed a system for continuous localization
that gave us a need to fill . Our approach is designed to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0:
01

:2
6

0:
04

:1
9

0:
07

:1
2

0:
10

:0
5

0:
12

:5
8

0:
15

:5
0

0:
18

:4
3

0:
21

:3
6

0:
24

:2
9

0:
27

:2
2

0:
30

:1
4

0:
33

:0
7

0:
36

:0
0

0:
38

:5
3

0:
41

:4
6

0:
44

:3
8

0:
47

:3
1

0:
50

:2
4

0:
53

:1
7

0:
56

:1
0

0:
59

:0
2

1:
01

:5
5

1:
04

:4
8

1:
07

:4
1

1:
10

:3
4

1:
13

:2
6

1:
16

:1
9

1:
19

:1
2

1:
22

:0
5

1:
24

:5
8

1:
27

:5
0

1:
30

:4
3

1:
33

:3
6

1:
36

:2
9

1:
39

:2
2

1:
42

:1
4

1:
45

:0
7

1:
48

:0
0

Time

%
 o

f
b

as
el

in
e

co
m

p
le

te

Map 1 Map 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0:
00

:0
0

0:
02

:5
3

0:
05

:4
6

0:
08

:3
8

0:
11

:3
1

0:
14

:2
4

0:
17

:1
7

0:
20

:1
0

0:
23

:0
2

0:
25

:5
5

0:
28

:4
8

0:
31

:4
1

0:
34

:3
4

0:
37

:2
6

0:
40

:1
9

0:
43

:1
2

0:
46

:0
5

0:
48

:5
8

0:
51

:5
0

0:
54

:4
3

0:
57

:3
6

1:
00

:2
9

1:
03

:2
2

1:
06

:1
4

1:
09

:0
7

1:
12

:0
0

1:
14

:5
3

1:
17

:4
6

1:
20

:3
8

1:
23

:3
1

1:
26

:2
4

1:
29

:1
7

1:
32

:1
0

1:
35

:0
2

1:
37

:5
5

1:
40

:4
8

1:
43

:4
1

Time

%
 o

f b
as

el
in

e
co

m
p

le
te

Map 1 Map 2

provide the beginning maps for an advanced navigation
and map refinement system so that a robot would not have
to be “ joysticked” through the environment, but could
initiall y explore it on its own. PIKE was motivated by the
multiple robot map learning collaboration in the research
of Lopez et al. (1997).

7. Conclusions and Future Work

In this paper, we have demonstrated that a mobile robot
can be used to build an accurate map with no a priori
knowledge and no human intervention. In particular, we
show that an algorithmic approach using a limited sensor
mobile robot can produce maps that are 84% - 90%
accurate to a known baseline of that environment. Two
robots of the same type were used in experimentation—
the ‘L’ Place trial 2 was run with a different robot than the
other trials with similar results. The abili ty to produce
maps of high similarity from different initial positions and
with different robots is evident in the results. Autonomous
mobile robotic exploration and mapping of place-centric
occupancy grids is realizable as indicated by this research.

The initial results of this effort are promising, but also
point to areas where continued research is needed. The
immediate future work would involve the creation of a
robust continuous localization system for the RWI
Pioneer 1 robot, which will make possible implementation
of the frontier finding algorithm and improved mapping
capabiliti es. Accurate gateway determination is also
necessary for the creation of the mapping structure
described here and is a problem which when solved in
combination with the algorithms and methods presented
here will allow for the creation of a fully autonomous
mapping system.

Acknowledgements

A note of gratitude to Dr. Pat Langley whose visit at UTA
inspired the direction of this research.

References

Elfes, A. (1989). Using Occupancy Grids for Mobile
Robot Perception and Navigation. IEEE Computer, June,
46-57.

Konolige, K. G. (1997). Saphira Manual Version 6.1.

Kortenkamp, D., and Weymouth, T. (1994). Topological
mapping for mobile robots using a combination of sonar
and vision sensing. Proceedings of the Twelfth National
Conference on Artificial Intelligence, 979-984.

Kortenkamp, D., Bonasso, R., and Murphy, R., eds.
(1998). Artificial Intell igence and Mobile Robots,
Cambridge, MA: MIT Press.

Langley, P. and Pfleger, K. (1995). Case-base
acquisition of place knowledge. Proceedings of the
Twelfth International Conference on Machine Learning,
244-352. Lake Tahoe, CA: Morgan Kaufmann.

Langley, P., Pfleger, K., and Sahami, M. (1997). Lazy
Acquisition of Place Knowledge. Artificial Intelligence
Review, 11, 315-342.

Lopez, M., Lopez de Mantaras, R., and Sierra, C. (1997).
Incremental map generation by low cost robots based on
possibili ty/necessity grids. Proceedings of the Thirteenth
International Conference on Uncertainty in AI, 351-357.

Lu, F. and Mili os, E. (1997). Globally consistent range
scan alignment for environmental mapping. Autonomous
Robots, 4, 333-349.

Moravec, H. P. (1988). Sensor fusion in certainty grids
for mobile robots. AI Magazine, 61-74.

Moravec, H. and Blackwell , M. (1993). Learning Sensor
Models for Evidence Grids. CMU Robotics Institute 1991
Annual Research Review.

Schultz and Adams. (1988). Continuous Localization
Using Evidence Grids. Proc. of the IEEE International
Conference on Robotics and Automation, IEEE.

Thrun, S., Fox, D., and Burgard, W. (1998). A
Probabili stic Approach to Concurrent Mapping and
Localization for Mobile Robots. Machine Learning, 31,
29-53 and Autonomous Robots, 5, 253-271 (joint issue).

Thrun, S., Gutmann, J., Fox, D., Burgard, W., and
Kuipers, B. (1998). Integrating Topological and Metric
Maps for Mobile Robot Navigation: A Statistical
Approach. Proceedings of the Fifteenth National
Conference on Artificial Intelligence, 989-995.

Yamauchi, B. (1998). Frontier Based Exploration Using
Multiple Robots. Agents, 47-53.

Yamauchi, B. and Langley, P. (1996). Place Learning in
Dynamic Real-World Environments. Proceedings of
RoboLearn-96: International Workshop for Learning in
Autonomous Robots, 123-129.

Youngblood, G. M. (1999). Autonomous Mobile Robot
Exploration and Mapping of Place-Centric Occupancy
Grids, thesis. The University of Texas at Arlington.

