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ome an essential 
omponent in dire
ting further mole
ularbiology resear
h.The goal of this resear
h is to dis
over stru
tural regularities in protein sequen
es by apply-ing the Subdue dis
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uss the potential signi�
an
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1 Introdu
tionThe topi
 of �nding biologi
ally meaningful patterns in sequen
es, se
ondary, and tertiary (three-dimensional) stru
tures of proteins and other ma
romole
ules is of interest to many biologi
al and
omputer s
ientists. In re
ent years, there has been an explosive amount of mole
ular biologyinformation obtained and deposited in various biologi
al databases. The problem of interpretingthis information is in
reasingly be
oming the limiting step in many mole
ular biology proje
ts.Without 
lues to the probable stru
ture and fun
tions of a new protein, further resear
h is oftenblo
ked.The Subdue knowledge dis
overy system has been shown to provide an e�e
tive means ofdis
overing patterns in several domains [4, 5, 7℄. The Subdue algorithm is based on the MinimumDes
ription Length (MDL) prin
iple with an inexa
t graph mat
h implementation. The Subduesystem 
an dis
over interesting patterns with either identi
al instan
es or instan
es of slightlydi�erent forms.Progress is being made in the �eld of sequen
e and stru
ture mat
hing and predi
tion forbiologi
al systems. However, there has not been suÆ
ient progress to provide a general stru
turepredi
tion method. Determining the primary stru
ture of a protein is already an automated labtask. On the other hand, determining the se
ondary and tertiary stru
ture of a protein in thelaboratory is still a 
ostly and time-
onsuming e�ort. Despite this, the number of protein stru
turesdetermined experimentally has in
reased dramati
ally as a result of re
ent advan
es in proteinengineering, 
rystallography, and NMR spe
tros
opy. As both the sequen
e and stru
ture databasesgrow, there is an urgent need for automating the extra
tion of useful information from su
h largedatabases.The goal of this resear
h is to dis
over stru
tural regularities in protein sequen
es by applyingSubdue to databases found in the Brookhaven Protein Data Bank (PDB). Using the results of thisappli
ation we will evaluate the potential bene�ts of applying Subdue to PDB and other similarmole
ular biology databases.
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ture in graph form.2 The Subdue Knowledge Dis
overy SystemWe have developed a method for dis
overing substru
tures in databases using the minimum de-s
ription length (MDL), embodied in the Subdue system. The minimum des
ription length (MDL)prin
iple introdu
ed by Rissanen [14℄ states that the best theory to des
ribe a set of data is thetheory whi
h minimizes the des
ription length of the entire data set. The MDL prin
iple has beenused for de
ision tree indu
tion, image pro
essing, 
on
ept learning from relational data, and learn-ing models of non-homogeneous engineering domains. We de�ne the minimum des
ription lengthof an input graph to the minimum number of bits ne
essary to 
ompletely des
ribe the graph.Subdue dis
overs substru
tures that 
ompress the des
ription length of the original data andrepresent stru
tural 
on
epts in the data. On
e a substru
ture is dis
overed, the substru
ture isused to simplify the data by repla
ing instan
es of the substru
ture with a pointer to the newlydis
overed substru
ture. The dis
overed substru
tures allow abstra
tion over detailed stru
turesin the original data. Iteration of the substru
ture dis
overy and repla
ement pro
ess 
onstru
tsa hierar
hi
al des
ription of the stru
tural data in terms of the dis
overed substru
tures. Thishierar
hy provides varying levels of interpretation that 
an be a

essed based on the spe
i�
 goalsof the data analysis.The substru
ture dis
overy system represents stru
tural data as a labeled graph. Obje
ts inthe data map to verti
es or small subgraphs in the graph, and relationships between obje
ts mapto dire
ted or undire
ted edges in the graph. A substru
ture is a 
onne
ted subgraph withinthe graphi
al representation. This graphi
al representation serves as input to the substru
ture
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Figure 2: Instan
es of the substru
ture.dis
overy system. Figure 1 shows a geometri
 example of su
h an input graph. The obje
ts inthe �gure (e.g., T1, S1, R1) be
ome labeled verti
es in the graph, and the relationships (e.g.,on(T1,S1), shape(C1,
ir
le)) be
ome labeled edges in the graph. The graphi
al representationof the substru
ture dis
overed by Subdue from this data is also shown in Figure 1.An instan
e of a substru
ture in an input graph is a set of verti
es and edges from the inputgraph that mat
h, graph theoreti
ally, to the graphi
al representation of the substru
ture. Forexample, the instan
es of the substru
ture in Figure 1 are shown in Figure 2.The substru
ture dis
overy algorithm used by Subdue is a 
omputationally-
onstrained beamsear
h. The algorithm begins with the substru
ture mat
hing a single vertex in the graph. Ea
hiteration, the algorithm sele
ts the best substru
ture a

ording to the MDL heuristi
 and in
remen-tally expands the instan
es of the substru
ture. The new unique substru
tures be
ome 
andidatesfor further expansion. The algorithm sear
hes for the best substru
ture until all possible substru
-tures have been 
onsidered or the total amount of 
omputation ex
eeds a given limit. Evaluationof ea
h substru
ture is determined by the MDL heuristi
; spe
i�
ally, by how mu
h the des
rip-tion length of the database is redu
ed when substru
ture instan
es are repla
ed by pointers to thesubstru
ture de�nition.Be
ause instan
es of a substru
ture 
an appear in di�erent forms throughout the database, aninexa
t graph mat
h is used to identify substru
ture instan
es. Subgraphs are 
onsidered to beinstan
es of a substru
ture de�nition if the 
ost of transforming the subgraph into a graph thatis isomorphi
 with the substru
ture de�nition does not ex
eed a user-de�ned threshold. Transfor-mations between graphs 
an in
lude addition or deletion of verti
es, addition or deletion of edges,vertex label substitutions and edge label substitutions.Subdue dis
overs substru
tures that 
ompress the amount of information ne
essary to 
on
ep-tually des
ribe the database. To allow Subdue to dis
over substru
tures of parti
ular interest to a



s
ientist in a given domain, the user 
an dire
t the sear
h with expert-supplied ba
kground knowl-edge. Ba
kground knowledge 
an take the form of known substru
ture models to spe
i�
ally lo
atein the database, or graph mat
h rules to adjust the 
ost of ea
h inexa
t graph mat
h test. Unlikeother existing approa
hes to graph-based dis
overy [3, 12, 15, 18, 20℄, Subdue is e�e
tive at �ndinginteresting and repetitive substru
tures in any stru
tural database with or without domain-spe
i�
guidan
e.On
e a substru
ture is dis
overed, the substru
ture is used to simplify the data by repla
inginstan
es of the substru
ture with a pointer to the newly dis
overed substru
ture. The dis
overedsubstru
tures allow abstra
tion over detailed stru
tures in the original data. Iteration of the sub-stru
ture dis
overy and repla
ement pro
ess 
onstru
ts a hierar
hi
al des
ription of the stru
turaldata in terms of the dis
overed substru
tures. This hierar
hy provides varying levels of interpre-tation that 
an be a

essed based on the spe
i�
 goals of the data analysis [4℄. In addition tothe appli
ation des
ribed in this paper, Subdue has been su

essfully applied with and withoutdomain knowledge to databases in domains in
luding image analysis, CAD 
ir
uit analysis, Chi-nese 
hara
ter databases, program sour
e 
ode, 
hemi
al rea
tion 
hains, and arti�
ially-generateddatabases. Evaluation of these appli
ations is des
ribed elsewhere [4, 8℄.3 Proteins and the Brookhaven Protein Data Bank3.1 Overview of ProteinsProteins are involved in a greater number and greater variety of 
ellular events than any of the othertypes of biomole
ules. Along with nu
lei
 a
ids (DNA and RNA), they 
arry the information thatdetermines what happens in a 
ell of a living organism [2℄. Ea
h protein is di�erent from every otherprotein in terms of its stru
ture and fun
tion. There is also mu
h similarity between proteins, themost 
ommon aspe
t of whi
h is that all proteins are 
omposed from twenty amino a
ids. Aminoa
ids are therefore the basi
 building blo
ks of all proteins. The general stru
tural formula for anamino a
id is shown in Figure 3. There are twenty di�erent R groups in the 
ommonly o

urringamino a
ids.



R

H N2 C COOH

HFigure 3: General stru
tural formula for amino a
ids.3.2 Stru
tural Hierar
hy in ProteinsFamiliarity with various aspe
ts of protein stru
ture is indispensable to the eventual understandingof mu
h of the bio
hemi
al dynami
s of a living organism. There are three levels (aspe
ts) ofstru
ture that apply to all proteins. They are: (1) the primary level, whi
h refers to the sequen
eof the amino a
ids in the protein; (2) the se
ondary level, whi
h refers to the geometri
 orientationof the protein ba
kbone; and (3) the tertiary level, whi
h refers to the 
omplete, three-dimensionalar
hite
ture of the protein.3.2.1 Primary Stru
tureThe identity and sequen
e of amino a
ids are the most fundamental stru
tural 
hara
teristi
s of anyprotein. Ea
h amino a
id residue in a 
hain is linked to its neighbors in a head-to-tail fashion. The
hain starts at the amino terminus (N-terminus) and ends at the 
arboxyl terminus (C-terminus).The naturally o

urring proteins generally 
ontain varying amounts of the twenty 
ommonamino a
ids and have an average length of 100-150 residues [19℄. Fun
tional properties of ea
hprotein are a 
onsequen
e of its amino a
id sequen
e. The identity and total number of aminoa
id residues are important, but the order in whi
h the residues are linked together is of greatestimportan
e. It is the sequen
e of residues that determines the overall three-dimensional shape ofthe mole
ule, whi
h in turn determines how that mole
ule will fun
tion.3.3 Se
ondary Stru
tureThe parti
ular type of orientation assumed by a protein 
hain is the result of the pattern of freerotation around the bonds of the 
hain involving the �-
arbon atoms. Three major types of



Figure 4: �-helix. Figure 5: parallel �-sheet. Figure 6: anti-parallel �-sheet.orientation are found in naturally o

urring protein 
hains: heli
al, sheet, and random. The heli
aland sheet forms are ordered arrangements, while the random forms are random arrangements. Theper
entage of �-helix 
ontent in proteins is quite variable, ranging from 0% to 80-90%. In globularproteins (e.g., proteins, in their native state, exist as 
ompa
t spheroidal mole
ules), �-heli
es havean average span of about eleven residues with up to �fty-three residues found in a helix.There are two arrangements of strands in a sheet. If two neighboring strands are aligned in thesame dire
tion from one terminus to the other, the arrangement is termed a parallel sheet. If thetwo are aligned in opposite dire
tion, the arrangement is termed an anti-parallel sheet. In globularproteins, �-sheets 
onsist of from two to as many as �fteen strands, with an average of six strands.The number of residues in a �-sheet is up to �fteen residues long, with an average of six residues.Figures 4, 5, and 6 depi
t a sample �-helix, parallel �-sheet, and anti-parallel �-sheet.3.4 Tertiary Stru
tureThe tertiary stru
ture of a protein is its three-dimensional arrangement; in parti
ular, the foldingof its se
ondary stru
ture elements, together with the spatial disposition of its R group (or side
hain). Ea
h of them is unique and highly 
ompli
ated. Most proteins have a signi�
ant amountof both �-helix and �-sheet, in varying proportions and 
ombinations.In some proteins, espe
ially in enzymes (e.g., groups of proteins having 
atalyti
 fun
tions),there is part of the protein that has a unique three-dimensional stru
tural feature and is 
ru
ialfor the fun
tion of the protein. This part is usually 
alled a site (su
h as 
atalyti
, 
ofa
tor, andregulatory site) in the ma
romole
ule. Understanding the detailed three-dimensional stru
ture ofa biomole
ule and of these sites 
ru
ial for understanding the fun
tion of a parti
ular protein.



3.5 Brookhaven Protein Data BankThe Protein Data Bank (PDB) database is 
ompiled at Brookhaven National Laboratory [1℄. It is anar
hive of experimentally determined three-dimensional stru
tures of biomole
ules. The majorityof the �les represent protein stru
tures determined by X-ray 
rystallography or NMR spe
tros
opy.Every PDB �le may be viewed as a 
olle
tion of re
ord types. We examined the following typesof re
ords: SEQRES, HELIX, SHEET, and ATOM. The SEQRES re
ords 
ontain the amino a
idsequen
e of residues in the protein along with other related identi�
ation information. The HELIXre
ords are used to identify the position of heli
es in the protein. The residues where the helixstarts and ends are noted, as well as the type of the heli
es. The SHEET re
ords are used toidentify the position of sheets in the protein. The residues where ea
h strand of a sheet starts andends are noted. The sense (relative orientation) of a strand with respe
t to the previous strandin the sheet is also provided. The sense is 0 if the strand is the �rst of a sheet. The sense is 1 ifstrand n is parallel to strand n-1 in the same sheet, and is -1 if anti-parallel. Finally, the ATOMre
ords 
ontain the orthogonal (X, Y, Z) 
oordinates (in �A) for ea
h atom of ea
h residue in theprotein. The 
hoi
e of origin is not 
onsistent between databases and does not e�e
t the 
oding ofthe input graph for Subdue.Both the HELIX and SHEET re
ords are now being generated automati
ally by PDB using theKabs
h and Sander algorithm [10℄. The algorithm uses a set of simple and physi
ally motivated 
ri-teria for se
ondary stru
ture assignments and provides an unambiguous and physi
ally meaningfulde�nition of se
ondary stru
ture.4 Appli
ation of Subdue to PDB databasesThe main goal of this resear
h is to identify biologi
ally meaningful patterns in the Brookhavenprotein database using Subdue. In parti
ular, the dis
overy goal is to �nd distin
t stru
turalpatterns in 
ategories of proteins or their 
hains.The PDB �les used in this study are based on the July 1997 PDB release 
ontaining over 6,000�les. The majority of the �les represent protein stru
tures determined by X-ray 
rystallography orNMR spe
tros
opy. The remaining PDB �les 
ontain stru
tures determined for DNA, RNA, andother ma
romole
ules.



To a

omplish the goal of dis
overing distin
t patterns in 
ategories of proteins, two main groupsof data sets are maintained in this parti
ular study. The �rst one 
ontains all the protein PDB�les with no dupli
ate sequen
es (about 4,000 PDB �les). This represents a global data set. These
ond data set 
ontains groups of PDB �les for ea
h parti
ular 
ategory of proteins (65, 103, and68 PDB �les for hemoglobin, myoglobin, and ribo nu
lease A 
ategories, respe
tively).To apply Subdue to the PDB, pre-pro
essing programs are used to extra
t stru
tural informa-tion from ea
h PDB �le in the data set. The pro
essed �les are then input to Subdue. For ea
hgroup of proteins, the primary, se
ondary, and tertiary stru
ture patterns are identi�ed by Subdue.These patterns are used as ba
kground knowledge patterns in another iteration of dis
overy fromthe global data set.4.1 Representation of Stru
ture InformationWe now turn our attention to methods of representing PDB data as a graph suitable for input toSubdue.4.1.1 Pre-pro
essing PDB �lesThe �rst step in our dis
overy approa
h is to pre-pro
ess the PDB �le to extra
t stru
tural infor-mation. The primary stru
ture information is extra
ted from the SEQRES re
ords of ea
h PDB�le. Ea
h line starting with the SEQRES keyword 
ontains the list of amino a
ids in the orderof the sequen
e from N- to C-terminus. Information other than this sequen
e is not used in thedis
overy. A portion of a sample PDB �le is listed in the Appendix. For example, the followingtwo sample PDB lines 
ontain the sequen
e: ALA ASN LYS THR ARG GLU LEU CYS MET LYSSER LEU GLU HIS ALA LYS VAL ASP:SEQRES 1 150 ALA ASN LYS THR ARG GLU LEU CYS MET 1ASH 139SEQRES 2 150 LYS SER LEU GLU HIS ALA LYS VAL ASP 1ASH 140To 
onvert this information to a graph, ea
h amino a
id is represented as a graph vertex. Thevertex number in
rements a

ording to the order of the sequen
e from N-terminus to C-terminus.The vertex label is the name of the amino a
id. An edge labeled \bond" is added between adja
entamino a
ids in a sequen
e.



As the se
ond step, we extra
t the se
ondary stru
ture of a protein by listing the o

urren
es ofheli
es and strands along the primary sequen
e. The helix information is extra
ted from the HELIXre
ords of ea
h PDB �le. Ea
h line starting with the HELIX keyword 
ontains information aboutwhere the helix starts and ends, along with information about the helix type. Our pre-pro
essingprogram 
onverts this information into a Subdue graph. Ea
h helix in a PDB �le is representedwith a vertex labeled \h", followed by the helix type and length (number of amino a
ids in thehelix minus one).The strand information is extra
ted from the SHEET re
ords of ea
h PDB �le. Ea
h linestarting with the SHEET keyword 
ontains information about where a parti
ular strand of a sheetstarts and ends. The sense or the relative orientation (parallel or anti-parallel) of a strand to theprevious one in a sheet is also extra
ted. The 
orresponding Subdue graph represents ea
h strandas a vertex labeled \s" followed by the orientation of the strand and the length of the strand (givenin the PDB �le). The prepro
essing program then sorts the o

urren
e of the se
ondary stru
tureelements (heli
es and strands) from N-terminus to C-terminus. The edge between two 
onse
utiveverti
es is labeled \sh" if they belong to the same PDB �le.For example, the following simpli�ed PDB lines indi
ate that the des
ribed protein has a right-handed helix (with a length of 10), followed by another right-handed helix (with a length of 10),followed by the �rst strand of the sheet (with a sense of 0 and a length of 7), followed by anotherright-handed helix (with a length of 10), followed by the se
ond and third strands of the sheet (withlength of 8 and 10, respe
tively). Both strand two and strand three have senses of -1.HELIX 1 THR 3 MET 13 1HELIX 2 ASN 24 ASN 34 1HELIX 3 SER 50 GLN 60 1SHEET 1 LYS 41 HIS 48 0SHEET 2 MET79 THR 87 -1SHEET 3 ASN 94 LYS 104 -1The input to Subdue for this example is shown below, where \v" indi
ates a vertex followedby the vertex number and label, and \e" indi
ates an edge followed by the 
onne
ting verti
es andedge label.



v 1 h 1 10 | the �rst right-handed helixv 2 h 1 10 | the se
ond right-handed helixv 3 s 0 7 | the �rst strand of the sheetv 4 h 1 10 | the third right-handed helixv 5 s -1 8 | the se
ond strand anti-parallel to the �rstv 6 s -1 10 | the third strand anti-parallel to the se
onde 1 2 she 2 3 she 3 4 she 4 5 she 5 6 shIn the PDB �le, three-dimensional features of the protein are represented as the X, Y, andZ 
oordinates of ea
h atom in the protein. Ea
h line starting with the ATOM keyword 
ontainsinformation about the amino a
id name, sequen
e number, and X, Y, and Z 
oordinates of ea
hatom in the amino a
id. To simplify the representation of the three-dimensional stru
ture featuresof a protein, only the ba
kbone �-
arbon 
oordinates are extra
ted. For example, the followingfour simpli�ed PDB lines 
ontain ba
kbone �-
arbon 
oordinates for ALA, ASN, LYS, and THR:ATOM CA ALA 1 10.369 0.997 10.519ATOM CA ASN 2 6.691 0.239 9.830ATOM CA LYS 3 6.677 1.983 6.389ATOM CA THR 4 9.693 -0.188 5.372The pre-pro
essing program 
omputes the pair-wise distan
e between ea
h ba
kbone �-
arbon.A Subdue graph is then generated in the following manner: ea
h amino a
id �-
arbon is representedas a vertex. If the distan
e between two �-
arbons is greater than 6 �A, the information is dis
arded.Otherwise, edges between two �-
arbons are 
reated and labeled as \vs" (very short, distan
e � 4�A), or \s" (short). The Subdue graph for our sample �le is shown below.v 1 CA ALA | �-
arbon of ALAv 2 CA ASN | �-
arbon of ASNv 3 CA LYS | �-
arbon of LYSv 4 CA THR | �-
arbon of THRe 2 1 vs | very short distan
e between v 2 (ASN) and v 1 (ALA)e 3 1 s | short distan
e between v 3 (LYS) and v 1 (ALA)e 4 1 s | short distan
e between v 4 (THR) and v 1 (ALA)e 3 2 vs | very short distan
e between v 3 (LYS) and v 2 (ASN)e 4 2 s | short distan
e between v 4 (THR) and v 2 (ASN)e 4 3 vs | very short distan
e between v 4 (THR) and v 3 (LYS)



4.2 Rationale for Representation Choi
esThe goal of this resear
h is to apply the Subdue knowledge dis
overy system to �nd biologi
allymeaningful patterns from the PDB database. In order to a

omplish this goal, 
hoi
es must bemade to represent the biologi
al information in a graphi
 form that 
an be used as input to theSubdue dis
overy system. These representational 
hoi
es must ful�ll the following 
riteria forthe goal of the dis
overy: (1) The patterns identi�ed by Subdue must be representative for ea
h
ategory of proteins; (2) The patterns dis
overed by Subdue should dis
riminate one 
ategory ofproteins from those of other 
ategories. The pre-pro
essing steps des
ribed in the previous se
tionsare designed to extra
t useful information from the PDB and represent them in the Subdue inputformat, as simply and yet as 
ompletely as possible.For the purpose of identifying primary stru
ture patterns of proteins alone, a natural represen-tation would be a linear graph with nodes (or verti
es) 
orresponding to the amino a
id residuenames, and edges 
orresponding to the peptide bonds between the 
onse
utive residues.For the helix se
ondary stru
ture, there are mainly three kinds of information residing in a PDB�le. They are: (1) the type of the helix; (2) the amino a
id residues involved; and (3) the startingand ending points (e.g., the length of the helix). We 
an 
apture this information by a variety ofmethods, but some representations would pla
e undue emphasis on irrelevant information su
h asthe helix name or type. The representation we 
hoose allows for equal emphasis on ea
h part ofthe stru
tural de�nition. Results obtained from this study indi
ate that the level of abstra
tionwe en
ode allows for e�e
tive identi�
ation of distin
t se
ondary stru
ture patterns in 
ategoriesof proteins. A similar rationale applies to the representation of PDB SHEET information.For the tertiary stru
ture features of a protein, the orthogonal 
oordinates for ea
h atom ofea
h residue are given in a PDB �le. The several hundred atoms of even a very small protein makeunderstanding the detailed stru
ture of a protein a 
onsiderable e�ort. The most instru
tive methodof representing a protein stru
ture is the ba
kbone of the protein, whi
h 
an be represented using its�-
arbon atoms. One representation would map the absolute 
oordinate position of ea
h �-
arbonto a residue in the primary sequen
e. However, the absolute 
oordinates fail to represent the fa
tthat when 
hoosing di�erent origins, the same types of obje
ts will have di�erent 
oordinates.We over
ome this diÆ
ulty by using pair-wise distan
es between all �-
arbons in a protein. Anen
oding of the exa
t distan
e is avoided be
ause the a

ura
y of protein X-ray of NMR stru
ture



determination is limited by its resolution, and be
ause the detailed protein geometry 
an 
hangewith varying environmental 
onditions. Empiri
al results showed that our \very short" label (�4 �A) 
aptures the distan
es between all 
onse
utive residues, along with a few other �-
arbons in
lose 
onta
t. The \short" label in
ludes all other �-
arbons that have spatial proximity. The 6�A 
ut-o� is 
hosen based on experien
e gained from NMR stru
tural study [17℄. For those havingdistan
e greater than 6 �A, the long-range intera
tion is not 
onsidered as part of the immediateenvironment, and therefore the distan
e information is dis
arded.5 Experimental ResultsIn our experiment, we use Subdue to dis
over patterns within a given 
ategory of proteins or their
hains. On
e the patterns are dis
overed, they are en
oded as ba
kground knowledge and used tosear
h the global database for instan
es of the pattern.5.1 Dis
overed Primary Stru
ture PatternsThe results of Subdue applied to the primary stru
tures for the hemoglobin, myoglobin, andrubonu
lease A proteins are summarized in Table 1, and the dis
overed sequen
es are listed inFigure 5.1. For ea
h dis
overed pattern, the table lists the sear
h beam width and the number ofinstan
es found in the sample data set and in the global database (all proteins not in
luded in thesample set). The sequen
e patterns identi�ed for the hemoglobin, myoglobin, and ribonu
lease Aproteins are unique to these 
lasses of proteins. Noti
e that the hemoglobin and myoglobin proteinsshare little sequen
e similarity. However, as dis
ussed later, they do share a great deal of similarityin their overall se
ondary stru
tural patterns.5.2 Dis
overed Se
ondary Stru
ture PatternsThe top three se
ondary stru
tural patterns dis
overed by Subdue for the hemoglobin, myoglobin,and ribonu
lease A proteins are listed in Table 2. A sampling of the dis
overed patterns is givenin Figure 5.2, listed from N-terminus to C-terminus. In this list edges are represented by \->" andare labeled \sh". Patterns are ordered a

ording to how well they 
ompress the original graph:pattern 1 has the highest value, followed by pattern 2 and pattern 3. The number of instan
es of



Table 1: The dis
overed sequen
e patterns in the sample data sets.Data Set (# of PDB) Exp. Parameter Dis
overed Pattern (# of instan
es insample data set / global)Hemoglobin (65) Beam 50 Hemo sequen
e1 (63 / 0)Myoglobin (103) Beam 50 Myoglo sequen
e2 (67 / 0)Ribonu
lease A (68) Beam 50 Ribonu
lease A sequen
e3 (59 / 0)

Hemo sequen
eTHR LYS THR TYR PHE PRO HIS PHE ASP LEU SER HIS GLY SER ALA GLN VAL LYS GLY HIS GLY LYSLYS VAL ALA ASP ALA LEU THR ASN ALA VAL ALA HIS VAL ASP ASP MET PRO ASN ALA LEU SERALA LEU SER ASP LEU HIS ALA HIS LYS LEU ARG VAL ASP PRO VAL ASN PHE LYS LEU LEU SER HISCYS LEU LEU VAL THR LEU ALA ALA HIS LEU PRO ALA GLU PHE THR PRO ALA VAL HIS ALA SERLEU ASP LYS PHE LEU ALA SER VAL SER THR VAL LEU THR SER LYS TYRMyoglo sequen
eVAL LEU SER GLU GLY GLU TRP GLN LEU VAL LEU HIS VAL TRP ALA LYS VAL GLU ALA ASP VALALA GLY HIS GLY GLN ASP ILE LEU ILE ARG LEU PHE LYS SER HIS PRO GLU THR LEU GLU LYS PHEASP ARG Ribonu
lease A sequen
eGLY GLN THR ASN CYS TYR GLN SER TYR SER THR MET SER ILE THR ASP CYS ARG GLU THR GLYSER SER LYS TYR PRO ASN CYS ALA TYR LYS THR THR GLN ALA ASN LYS HIS ILE ILE VAL ALA CYSGLU GLY ASN PRO TYR VAL PRO VAL HIS PHE ASP ALA SER VALFigure 7: Dis
overed sequen
es for hemoglobin, myoglobin, and ribonu
lease A.



Hemo s 1 0.0: h_1_14 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_20Hemo s 2 0.0: h_1_14 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18Hemo s 3 0.0: h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_20Hemo s 1 0.1: h_1_14 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_23Hemo s 1 0.2: h_1_15 -> h_1_15 -> h_1_6 -> h_1_1 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_20Hemo s 1 0.3: h_1_15 -> h_1_15 -> h_1_6 -> h_1_1 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_20Myo s 1 0.0: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_9 -> h_1_18 -> h_1_25Myo s 1 0.1: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_9 -> h_1_18 -> h_1_25Myo s 1 0.2: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_23Myo s 1 0.3: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_23Ribo s 1 0.0: h_1_10 -> h_1_10 -> s_0_7 -> s_0_7 -> h_1_10 -> s_0_3 -> s_0_3-> s_-1_4 -> s_-1_4Ribo s 1 0.1: h_1_12 -> s_0_6 -> s_0_6 -> h_1_10 -> s_0_3 -> s_0_3 -> s_-1_4-> s_-1_4 -> s_-1_8 -> s_-1_1 -> s_-1_10 -> s_-1_10 -> s_-1_8 -> s_-1_8-> s_-1_5 -> s_-1_3Ribo s 1 0.2: h_1_10 -> h_1_12 -> s_0_6 -> s_0_6 -> h_1_10 -> s_0_3 -> s_0_3-> s_-1_4 -> s_-1_4 -> s_-1_8 -> s_-1_1 -> s_-1_10 -> s_-1_10 -> s_-1_8-> s_-1_8 -> s_-1_5 -> s_-1_3Ribo s 1 0.3: h_1_10 -> h_1_10 -> s_0_7 -> h_1_10 -> s_0_3 -> s_-1_4 -> s_-1_8-> s_-1_8 -> s_-1_6H M s 1 0.0: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_9 -> h_1_18 -> h_1_25H M s 1 0.1: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_9 -> h_1_18 -> h_1_25H M s 1 0.2: h_1_15 -> h_1_14 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_20H M s 1 0.3: h_1_14 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_23Figure 8: Dis
overed se
ondary patterns for hemoglobin, myoglobin, and ribonu
lease A.ea
h pattern dis
overed in the spe
i�ed dataset (e.g., Hemo, Myo, and Ribo A) is indi
ated alongwith the number of instan
es found in other 
ategories of proteins in the global data set. Severalexe
utions of Subdue are tested with varying values for allowable graph dissimilarity (T). Thesigni�
an
e of these results will be dis
ussed later in the paper.To identify the degree of similarity between the se
ondary stru
tural patterns of the hemoglobinand myoglobin proteins, all the PDB �les from these two data sets are 
ombined to form ahemoglobin-myoglobin (H M) data set. The top three patterns dis
overed by Subdue in this
ombined data set are also shown in Table 2. The number of instan
es of ea
h pattern in thehemoglobin and myoglobin data sets is also indi
ated. Noti
e the great amount of stru
tural sim-ilarity between proteins in the hemoglobin and myoglobin databases that is dis
overed when 20%or 30% of the graph de�nitions 
an vary from instan
e to instan
e (T=0.2 or T=0.3). In these
ases as many 
ommon stru
tures are found between these 
lasses of proteins as are found withina single 
lass of proteins.



Table 2: The dis
overed se
ondary stru
ture patterns in the sample data sets (NA = Not Analyzed).Database Threshold Pattern 1 Pattern 2 Pattern 3(#instan
es/global) (#instan
es/global) (#instan
es/global)Hemoglobin T=0.0 Hemo s 1 0.0 Hemo s 2 0.0 Hemo s 3 0.0(50 / 0) (52 / 0) (50 / NA)T=0.1 Hemo s 1 0.1 Hemo s 2 0.1 Hemo s 3 0.1(51 / NA) (58 / NA) (52 / NA)T=0.2 Hemo s 1 0.2 Hemo s 2 0.2 Hemo s 3 0.2(90 / NA) (98 / NA) (92 / NA)T=0.3 Hemo s 1 0.3 Hemo s 2 0.3 Hemo s 3 0.3(95 / NA) (107 / NA) (100 / NA)Myoglobin T=0.0 Myo s 1 0.0 Myo s 2 0.0 Myo s 3 0.0(81 / 0) (82 / 0) (81 / 0)T=0.1 Myo s 1 0.1 Myo s 2 0.1 Myo s 3 0.1(81 / NA) (84 / NA) (81 / NA)T=0.2 Myo s 1 0.2 Myo s 2 0.2 Myo s 3 0.2(83 / NA) (84 / NA) (83 / NA)T=0.3 Myo s 1 0.3 Myo s 2 0.3 Myo s 3 0.3(83 / NA) (84 / NA) (84 / NA)Ribonu
lease A T=0.0 Ribo A s 1 0.0 Ribo A s 2 0.0 Ribo A s 3 0.0(25 / 0) (25 / 0) (25 / 0)T=0.1 Ribo A s 1 0.1 Ribo A s 2 0.1 Ribo A s 3 0.1(27 / NA) (27 / NA) (27 / NA)T=0.2 Ribo A s 1 0.2 Ribo A s 2 0.2 Ribo A s 3 0.2(27 / NA) (27 / NA) (27 / NA)T=0.3 Ribo A s 1 0.3 Ribo A s 2 0.3 Ribo A s 3 0.3(36 / NA) (36 / NA) (36 / NA)H M T=0.0 H M s 1 0.0 H M s 2 0.0 H M s 3 0.0(0 / 81) (0 / 82) (0 / 81)T=0.1 H M s 1 0.1 H M s 2 0.1 H M s 3 0.1(0 / 81) (0 / 82) (0 / 81)T=0.2 H M s 1 0.2 H M s 2 0.2 H M s 3 0.2(54 / 83) (51 / 83) (62 / 83)T=0.3 H M s 1 0.3 H M s 2 0.3 H M s 3 0.3(89 / 83) (98 / 83) (98 / 83)



Figure 9: Complete stru
ture of ahemoglobin protein. Figure 10: Dis
overed protein stru
ture ofa hemoglobin protein (N-terminus �! C-terminus).5.3 Dis
overed Tertiary Stru
tural PatternsPreliminary results obtained for the tertiary stru
tural pattern dis
overy indi
ate that Subdue �ndssmall patterns involving two or three residues in the proteins. These patterns are not biologi
allymeaningful and do not ful�ll the goal of dis
overing distin
t 3-D patterns in a 
ategory of proteins.Future work will fo
us on dis
overy in this area.5.4 Summary of ResultsSubdue results obtained for the se
ondary stru
tural pattern dis
overy in 
ategories of proteinsare summarized here. Figure 9 presents an overall view of a hemoglobin protein. Figure 10 showsthe part of the proteins where the Subdue-dis
overed pattern for the hemoglobin protein exists,and Figure 11 shows the s
hemati
 views of the best pattern (e.g., pattern 1 with threshold of 0.0)dis
overed by Subdue for the hemoglobin proteins. Similarly, Figure 12 presents an overall viewof a myoglobin protein, and Figures 13 and 14 show the Subdue-dis
overed pattern within themyoglobin protein and the s
hemati
 views of the highest-valued dis
overed pattern. Figures 15through 17 present similar results for the ribonu
lease A protein. In ea
h 
ase, the se
ondarystru
tural elements are listed from N-terminus of the protein to C-terminus.



Figure 11: S
hemati
 view of dis
overed pattern in hemoglobin protein.

Figure 12: Complete stru
ture of a myo-globin protein. Figure 13: Dis
overed protein stru
turein myoglobin protein (N-terminus �! C-terminus).

Figure 14: S
hemati
 view of dis
overed pattern in myoglobin pattern.



Figure 15: Complete stru
ture of a ri-boglobin protein. Figure 16: Dis
overed protein stru
ture ofa riboglobin protein (N-terminus �! C-terminus).

Figure 17: S
hemati
 view of dis
overed pattern in riboglobin pattern (N-terminus�! C-terminus).



6 Dis
ussionIn this study, the Subdue knowledge dis
overy system is applied to the Brookhaven Protein DataBank (PDB) to identify biologi
ally interesting patterns in 
ategories of proteins. Results obtainedfrom the hemoglobin, myoglobin, and ribonu
lease A protein data sets are dis
ussed in this se
tion.6.1 Hemoglobin and Myoglobin ProteinsHemoglobin and myoglobin are 
hosen in this study be
ause they have the advantage of familiarity.These proteins are used widely to illustrate nearly every important feature of protein stru
ture,fun
tion, and evolution [6℄. Hemoglobin is the oxygen 
arrier of the blood, whereas myoglobin isthe oxygen storage protein of the mus
le. One mole
ule of hemoglobin has four protein 
hains: �1,�2, �1, and �2 
hains (also known as A, C, B, and D 
hains, respe
tively). In some spe
ies, the two� 
hains (or A and C 
hains) are identi
al and the two � 
hains (or B and D 
hains) are identi
al.Myoglobin has one protein 
hain, of about the same size as ea
h of the four hemoglobin 
hains.Detailed analysis of the results obtained for the se
ondary stru
tural patterns of the hemoglobinproteins indi
ates that there are mainly two types of patterns in the hemoglobin data set. Type 1in
ludes the two best se
ondary stru
tural patterns (Hemo s 1 0.0 and Hemo s 1 0.1 in Table 2).They 
onsist of eight heli
es with various lengths. All the heli
es are right-handed �-helix. Type2 patterns in
lude the other two dis
overed patterns (Hemo s 1 0.2 and Hemo s 1 0.3 in Table 2).One distin
t feature of this type is that one helix is very short (length 1).The o

urren
e of the instan
es for ea
h 
ategory of proteins is mapped ba
k to the PDB �lewhere the pattern exists. When mapped into the individual 
hains of the PDB, type 1 patternsare found to belong to the � 
hains (or B and D 
hains) of the hemoglobins. Most of the type 2patterns are from the � 
hains (or A and C 
hains) of the hemoglobins.Detailed analysis of the se
ondary stru
tural patterns identi�ed for the myoglobin proteins indi-
ates that there is one dominant pattern (Myo s 1 0.0, Myo s 1 0.1, Myo s 1 0.2, and Myo s 1 0.3in Table 2). This pattern 
onsists of eight heli
es with various lengths. All of the heli
es are type1. When the pattern is mapped ba
k to the PDB �le, it is found that this pattern appears in amajority of the myoglobin proteins in the data set.The patterns identi�ed from the hemoglobin-myoglobin data set indi
ate that the myoglobin



se
ondary stru
tural patterns share a great deal of similarity with those of the hemoglobin proteins.This is shown in the results obtained using a threshold of 0.2 and 0.3 (H M s 1 0.2, H M s 2 0.2,H M s 3 0.2, H M s 1 0.3, H M s 2 0.3, and H M s 3 0.3 in Table 2).The primary sequen
e patterns identi�ed for the hemoglobin and myoglobin proteins show mu
hless degree of similarity. However, as dis
ussed in the previous paragraphs, they do share great simi-larity in their overall se
ondary stru
ture patterns. A
tually, the patterns of the hemoglobin protein� 
hains and that of the myoglobin are identi
al (both type and length) for the middle six heli
es.The hemoglobin � 
hain has a very short helix in the middle (h 1 1). In the hemoglobin 
hains, thelast helix is 
onsiderably shorter (e.g., �ve amino a
ids shorter) than that of the myoglobin protein
hain.This is 
onsistent with the results obtained from geneti
 studies. Geneti
 studies suggest thatthe genes of the hemoglobin and myoglobin proteins evolved by divergen
e from one an
estral gene[6℄. The last helix of the hemoglobin 
hains is shorter than the one in the myoglobin proteins.One of the heli
es has almost disappeared in the � 
hains of the hemoglobin proteins. It hasbeen suggested that this disappearan
e may be due to a random evolutionary pro
ess, be
ause theabsen
e of the helix was harmless. The disappearan
e may also have some fun
tional reasons forproperly positioning the heli
es for the 
onformational 
hanges (e.g., from deoxy- to oxy-) neededin the hemoglobin proteins.6.2 Ribonu
lease A proteinsThe ribonu
lease A proteins are 
hosen in this study be
ause they also play a spe
ial role as a modelprotein to examine the enzyme stru
ture-fun
tion relationships. The results obtained for the se
-ondary stru
tural pattern show that the patterns all in
lude three heli
es about the same size (e.g.,with a length of 10 or 12). However, it is noted that all these dis
overed patterns (Ribo A s 1 0.0,Ribo A s 1 0.1, Ribo A s 1 0.2, and Ribo A s 1 0.3) have several strands appearing twi
e. De-tailed analysis of the PDB �les for whi
h these dupli
ates exist has been performed. It is foundthat these dupli
ates are the same strand but are observed as parti
ipating in the formation ofdi�erent sheets. Therefore they have dupli
ated entries in the PDB �les. It is not 
lear why someof the ribonu
lease A proteins do not have these dupli
ates. Possible reasons are the following: (1)These strands may appear to only parti
ipate in the formation of one sheet, instead of two, under



some experimental 
onditions; or (2) The resolution of the X-ray 
rystallographi
 stru
ture maynot be high enough to observe the hydrogen-bonding patterns needed to group strands to sheets.The se
ondary stru
tural patterns for the ribonu
lease A proteins were mapped ba
k into thePDB �les. It is observed that several ribonu
lease S proteins have the same patterns as those inribonu
lease A proteins. This is 
onsistent with the fa
t that ribonu
lease S is a 
omplex 
onsistingof two fragments (S-peptide and S-protein) of the ribonu
lease A proteins. The pattern in theribonu
lease S 
omes from the S-protein fragment.6.3 Summary of ResultsResults obtained for the hemoglobin, myoglobin, and ribonu
lease A protein data sets indi
ate thatthe se
ondary stru
ture patterns dis
overed by Subdue are representative to its 
ategory. Thepatterns identi�ed for ea
h sample 
ategory 
overed a majority of the proteins in that 
ategory(33 of the 50 analyzed hemoglobin proteins, 67 of the 89 myoglobin proteins, and 35 of the 52ribonu
lease A proteins 
ontained the dis
overed patterns). Detailed analysis of those that do nothave the pattern indi
ates that there are many possible reasons. The stru
ture of a protein isa�e
ted by many fa
tors. The a

ura
y of the stru
ture is a�e
ted by the quality of the proteinsample, experimental 
onditions, and human error. Dis
repan
ies may also be due to physiologi
aland bio
hemi
al reasons. Stru
ture of the same protein mole
ule may di�er from one spe
ies toanother. The protein may also be defe
tive. For example, si
kle-
ell anemia is the 
lassi
 exampleof a geneti
 hemoglobin disease. The defe
tive protein does not have the right stru
ture to performits normal fun
tion.Dr. Steve Sprang, a mole
ular biologist at the University of Texas Southwestern Medi
al Center,evaluated the patterns dis
overed by the Subdue system. This s
ientist was asked to review theoriginal database and the dis
overed substru
tures, and determine if the dis
overed 
on
epts wereindi
ative of the data and interesting dis
overies. Dr. Sprang indi
ated that Subdue did �nd aninteresting pattern in the data that was previously unknown and suggests new information aboutthe mi
ro-evolution of su
h proteins in mammals [16℄.The se
ondary stru
ture patterns dis
overed are also distin
t to ea
h protein 
ategory. Theglobal data set is sear
hed to identify the possible existen
e of the dis
overed pattern from ea
h
ategory. Results indi
ate that there is no exa
t mat
h of the best patterns of one 
ategory in



other 
ategory of proteins (Table 2). However, the 
urrent version of Subdue has the limitation inthat when a parti
ular pattern is sear
hed for in the database, only exa
t size mat
hes are lo
ated.Therefore, the dis
overy pro
ess may overlook those proteins having some similar stru
ture patterns.6.4 Comparison with Related StudiesThere are several appli
ations of pattern sear
h in proteins on the se
ondary stru
ture level.Mit
hell et al. [13℄ use an algorithm that identi�es subgraph isomorphism in protein stru
ture.They represent the protein stru
tures as an undire
ted labeled graph, where the se
ondary stru
-ture elements in a protein and the distan
e and angular relationships between them 
orrespond tothe nodes and edges of a graph. Their program, POSSUM A, allows one to determine whether aquery (or prede�ned) pattern is 
ontained within a 
omplete protein stru
ture. This program isalso limited to performing an exa
t mat
h when sear
h for a spe
i�
 pattern in the database.The approa
h of Grindley et al. [9℄ uses the same representation s
heme and �nds maximal
ommon substru
tures between two proteins on the se
ondary stru
ture level. This approa
h
an therefore highlight areas of stru
tural overlap between proteins. In Ko
h et al. [11℄, thegraph is 
onsidered without expli
itly using geometri
 
riteria su
h as distan
es and angles in thegraph des
ription. The verti
es represent the heli
es and strands assigned by the DSSP algorithm.The edges are 
al
ulated on the basis of 
onta
ts between the atoms belonging to the respe
tivese
ondary stru
ture elements. By applying these representations of the protein stru
ture, theyfound that it 
ould be useful in sear
hing for stru
turally distantly related proteins. This methodhas not yet been tested systemati
ally on the PDB database. Most of these studies fo
us onidentifying similar patterns in a group of proteins using prede�ned patterns. Subdue will performsimilar tasks when the inexa
t graph mat
h routine is in
orporated into its prede�ned substru
turefun
tionality.7 Con
lusionsThe number of protein stru
tures known in atomi
 detail has in
reased from one in 1960 to morethan 6,000 in 1997. More and more frequently, a newly determined stru
ture is similar in itsse
ondary and tertiary folds to a known one. The sear
h for 
ommon and distin
t patterns in sets



of proteins has be
oming an essential pro
edure in the investigation of protein stru
tures.Finding a signature for a group of proteins allows re
ognition of su
h a protein, and provides abasis for inferring fun
tions of similar proteins. The substru
tures dis
overed by Subdue representsu
h a signature for a 
lass of proteins, as shown in this paper. The degree of similarity betweendi�erent 
ategories of proteins may be used for dis
overing biologi
ally interesting relationships.In addition, generating a hierar
hi
al view of the data using multiple iterations of Subdue aids inunderstanding the protein from the individual building blo
k amino a
ids and stru
tures.Results obtained in this study indi
ate that the level of abstra
tion for the tertiary stru
turewhi
h emphasizes its se
ondary stru
tures is suitable for representing ea
h 
ategory of proteins.Through the vertex and edge labelling, essential information on sequential relationships on these
ondary stru
ture element is en
oded. The stru
tural motifs 
onsisting of se
ondary stru
tureelements (e.g., helix, sheet) are shown to be responsible for the fun
tion of proteins. The se
ondarystru
tural patterns in ea
h 
ategory of proteins 
an therefore be used as a signature for its 
lass. Theinexa
t graph mat
h algorithm implemented in Subdue is useful for �nding the similar patternsamong di�erent proteins of the same 
ategory and a
ross di�erent proteins in related 
ategories.The results obtained in this study indi
ate that the Subdue system is suitable for knowledgedis
overy in mole
ular stru
tural databases. It should be noted, however, that the results obtainedare 
riti
ally dependent on the se
ondary stru
ture information used and on the de�nitions ofthe stru
tural features and its graph representation. Planned future work applying Subdue tothe Brookhaven and other related mole
ular biology databases in
ludes using a more detailed and
onsistent des
ription of the se
ondary stru
ture, possibly using resour
es outside PDB. In addition,it is well known that the tertiary or the 3D stru
ture of proteins is extremely 
omplex. Proteintertiary stru
ture 
omparison still remains a major goal in mole
ular biology. To apply Subduefor dis
overy of tertiary stru
tural patterns, a more suitable representation s
heme is needed. Thisrepresentation s
heme should 
onsider the fa
t that the detailed 3D stru
tures are not identi
aleven for protein pairs that have identi
al sequen
es. This deviation is attributed to di�erent
rystal forms, to experimental 
onditions, and to human error. It may also be a mere re
e
tion of
onformational 
exibility of protein stru
tures. The tertiary stru
ture 
omparison for a site (e.g.,a 
atalyti
 site or other regulatory site) 
omposed of mu
h smaller sets of atoms in proteins is agood starting point.
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COMPND 6 MOL_ID: 2; 1RBJ 9COMPND 7 MOLECULE: TETRA-(DEOXY-ADENYLATE); 1RBJ 10COMPND 8 CHAIN: B; 1RBJ 11COMPND 9 SYNONYM: D(PA)4 1RBJ 12SOURCE MOL_ID: 1; 1RBJ 13SOURCE 2 ORGANISM_SCIENTIFIC: BOS TAURUS; 1RBJ 14SOURCE 3 ORGANISM_COMMON: BOVINE; 1RBJ 15SOURCE 4 ORGAN: PANCREAS; 1RBJ 16SOURCE 5 MOL_ID: 2; 1RBJ 17SOURCE 6 SYNTHETIC: YES 1RBJ 18EXPDTA X-RAY DIFFRACTION 1RBJ 19AUTHOR T.-P.KO,R.WILLIAMS,A.MCPHERSON 1RBJ 20REVDAT 1 07-DEC-95 1RBJ 0 1RBJ 21JRNL AUTH T.-P.KO,R.WILLIAMS,A.MCPHERSON 1RBJ 22JRNL TITL THE CRYSTAL STRUCTURE OF A RIBONUCLEASE B + D(PA)4 1RBJ 23JRNL TITL 2 COMPLEX 1RBJ 24JRNL REF TO BE PUBLISHED 1RBJ 25JRNL REFN 0353 1RBJ 26REMARK 1 1RBJ 27REMARK 2 1RBJ 28REMARK 2 RESOLUTION. 2.7 ANGSTROMS. 1RBJ 29...REMARK 18 EXPERIMENTAL DETAILS. 1RBJ 70REMARK 18 DATE OF DATA COLLECTION : 11-SEP-84 1RBJ 71REMARK 18 MONOCHROMATIC (Y/N) : Y 1RBJ 72REMARK 18 LAUE (Y/N) : Y 1RBJ 73REMARK 18 WAVELENGTH OR RANGE (A) : 1.54 1RBJ 74REMARK 18 DETECTOR TYPE : CAD4 DIFFRACTOMETER 1RBJ 75REMARK 18 DETECTOR MANUFACTURER : ENRAF-NONIUS 1RBJ 76REMARK 18 INTENSITY-INTEGRATION SOFTWARE : ORESTES 1RBJ 77REMARK 18 DATA REDUNDANCY : 2. 1RBJ 78REMARK 18 MERGING R VALUE (INTENSITY) : 0.04 1RBJ 79REMARK 19 1RBJ 80REMARK 19 SOLVENT CONTENT (VS) : 52. % 1RBJ 81DBREF 1RBJ A 1 124 SWS P00656 RNP_BOVIN 27 150 1RBJ 82SEQRES 1 A 124 LYS GLU THR ALA ALA ALA LYS PHE GLU ARG GLN HIS MET 1RBJ 83SEQRES 2 A 124 ASP SER SER THR SER ALA ALA SER SER SER ASN TYR CYS 1RBJ 84SEQRES 3 A 124 ASN GLN MET MET LYS SER ARG ASN LEU THR LYS ASP ARG 1RBJ 85SEQRES 4 A 124 CYS LYS PRO VAL ASN THR PHE VAL HIS GLU SER LEU ALA 1RBJ 86SEQRES 5 A 124 ASP VAL GLN ALA VAL CYS SER GLN LYS ASN VAL ALA CYS 1RBJ 87SEQRES 6 A 124 LYS ASN GLY GLN THR ASN CYS TYR GLN SER TYR SER THR 1RBJ 88SEQRES 7 A 124 MET SER ILE THR ASP CYS ARG GLU THR GLY SER SER LYS 1RBJ 89SEQRES 8 A 124 TYR PRO ASN CYS ALA TYR LYS THR THR GLN ALA ASN LYS 1RBJ 90SEQRES 9 A 124 HIS ILE ILE VAL ALA CYS GLU GLY ASN PRO TYR VAL PRO 1RBJ 91SEQRES 10 A 124 VAL HIS PHE ASP ALA SER VAL 1RBJ 92SEQRES 1 B 4 A A A A 1RBJ 93FTNOTE 1 1RBJ 94FTNOTE 1 CIS PROLINE - PRO A 93 1RBJ 95FTNOTE 2 1RBJ 96FTNOTE 2 CIS PROLINE - PRO A 114 1RBJ 97HELIX 1 1 ALA A 4 HIS A 12 1 1RBJ 98HELIX 2 2 TYR A 25 SER A 32 1 1RBJ 99HELIX 3 3 LEU A 51 VAL A 54 1 1RBJ 100HELIX 4 4 ALA A 56 SER A 59 5 1RBJ 101



SHEET 1 A 3 VAL A 43 VAL A 47 0 1RBJ 102SHEET 2 A 3 MET A 79 GLU A 86 -1 N CYS A 84 O ASN A 44 1RBJ 103SHEET 3 A 3 TYR A 97 LYS A 104 -1 N LYS A 104 O MET A 79 1RBJ 104SHEET 1 B 4 LYS A 61 VAL A 63 0 1RBJ 105SHEET 2 B 4 CYS A 72 GLN A 74 -1 N GLN A 74 O LYS A 61 1RBJ 106SHEET 3 B 4 HIS A 105 ALA A 109 -1 N VAL A 108 O TYR A 73 1RBJ 107SHEET 4 B 4 HIS A 119 VAL A 124 -1 N VAL A 124 O HIS A 105 1RBJ 108SSBOND 1 CYS A 26 CYS A 84 1RBJ 109SSBOND 2 CYS A 40 CYS A 95 1RBJ 110SSBOND 3 CYS A 58 CYS A 110 1RBJ 111SSBOND 4 CYS A 65 CYS A 72 1RBJ 112CRYST1 44.450 44.450 156.500 90.00 90.00 90.00 P 41 21 2 8 1RBJ 113ORIGX1 1.000000 0.000000 0.000000 0.00000 1RBJ 114ORIGX2 0.000000 1.000000 0.000000 0.00000 1RBJ 115ORIGX3 0.000000 0.000000 1.000000 0.00000 1RBJ 116SCALE1 0.022497 0.000000 0.000000 0.00000 1RBJ 117SCALE2 0.000000 0.022497 0.000000 0.00000 1RBJ 118SCALE3 0.000000 0.000000 0.006390 0.00000 1RBJ 119ATOM 1 N LYS A 1 36.389 16.107 -8.387 1.00 32.74 1RBJ 120ATOM 2 CA LYS A 1 37.658 16.352 -7.691 1.00 32.62 1RBJ 121ATOM 3 C LYS A 1 37.503 16.207 -6.162 1.00 31.98 1RBJ 122ATOM 4 O LYS A 1 36.585 15.542 -5.629 1.00 35.79 1RBJ 123ATOM 5 CB LYS A 1 38.202 17.767 -8.009 1.00 30.19 1RBJ 124ATOM 6 CG LYS A 1 37.227 18.915 -7.617 1.00 27.96 1RBJ 125ATOM 7 CD LYS A 1 37.436 20.261 -8.367 1.00 24.01 1RBJ 126ATOM 8 CE LYS A 1 36.205 21.169 -8.325 1.00 20.51 1RBJ 127ATOM 9 NZ LYS A 1 36.522 22.614 -8.380 1.00 19.21 1RBJ 128ATOM 10 N GLU A 2 38.295 17.033 -5.500 1.00 24.81 1RBJ 129ATOM 11 CA GLU A 2 38.220 17.139 -4.117 1.00 21.16 1RBJ 130ATOM 12 C GLU A 2 36.933 17.817 -3.834 1.00 20.44 1RBJ 131ATOM 13 O GLU A 2 36.885 19.052 -3.816 1.00 21.89 1RBJ 132ATOM 14 CB GLU A 2 39.345 18.064 -3.654 1.00 24.97 1RBJ 133ATOM 15 CG GLU A 2 39.480 18.250 -2.130 1.00 27.00 1RBJ 134ATOM 16 CD GLU A 2 39.264 16.995 -1.354 1.00 29.64 1RBJ 135ATOM 17 OE1 GLU A 2 38.489 16.114 -1.726 1.00 30.83 1RBJ 136ATOM 18 OE2 GLU A 2 39.986 16.973 -0.245 1.00 29.06 1RBJ 137ATOM 19 N THR A 3 35.865 17.059 -3.686 1.00 19.53 1RBJ 138ATOM 20 CA THR A 3 34.605 17.736 -3.412 1.00 19.30 1RBJ 139...ATOM 1036 C4 A B 204 36.984 33.924 -8.337 0.48 16.81 1RBJ1155TER 1037 A B 204 1RBJ1156CONECT 194 193 642 1RBJ1157CONECT 310 309 727 1RBJ1158CONECT 446 445 842 1RBJ1159CONECT 496 495 547 1RBJ1160CONECT 547 496 546 1RBJ1161CONECT 642 194 641 1RBJ1162CONECT 727 310 726 1RBJ1163CONECT 842 446 841 1RBJ1164MASTER 55 4 0 4 7 0 0 6 1035 2 8 11 1RBJ1165END 1RBJ1166END 1RBJ1166


