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1 IntrodutionThe topi of �nding biologially meaningful patterns in sequenes, seondary, and tertiary (three-dimensional) strutures of proteins and other maromoleules is of interest to many biologial andomputer sientists. In reent years, there has been an explosive amount of moleular biologyinformation obtained and deposited in various biologial databases. The problem of interpretingthis information is inreasingly beoming the limiting step in many moleular biology projets.Without lues to the probable struture and funtions of a new protein, further researh is oftenbloked.The Subdue knowledge disovery system has been shown to provide an e�etive means ofdisovering patterns in several domains [4, 5, 7℄. The Subdue algorithm is based on the MinimumDesription Length (MDL) priniple with an inexat graph math implementation. The Subduesystem an disover interesting patterns with either idential instanes or instanes of slightlydi�erent forms.Progress is being made in the �eld of sequene and struture mathing and predition forbiologial systems. However, there has not been suÆient progress to provide a general struturepredition method. Determining the primary struture of a protein is already an automated labtask. On the other hand, determining the seondary and tertiary struture of a protein in thelaboratory is still a ostly and time-onsuming e�ort. Despite this, the number of protein struturesdetermined experimentally has inreased dramatially as a result of reent advanes in proteinengineering, rystallography, and NMR spetrosopy. As both the sequene and struture databasesgrow, there is an urgent need for automating the extration of useful information from suh largedatabases.The goal of this researh is to disover strutural regularities in protein sequenes by applyingSubdue to databases found in the Brookhaven Protein Data Bank (PDB). Using the results of thisappliation we will evaluate the potential bene�ts of applying Subdue to PDB and other similarmoleular biology databases.
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objectFigure 1: Example substruture in graph form.2 The Subdue Knowledge Disovery SystemWe have developed a method for disovering substrutures in databases using the minimum de-sription length (MDL), embodied in the Subdue system. The minimum desription length (MDL)priniple introdued by Rissanen [14℄ states that the best theory to desribe a set of data is thetheory whih minimizes the desription length of the entire data set. The MDL priniple has beenused for deision tree indution, image proessing, onept learning from relational data, and learn-ing models of non-homogeneous engineering domains. We de�ne the minimum desription lengthof an input graph to the minimum number of bits neessary to ompletely desribe the graph.Subdue disovers substrutures that ompress the desription length of the original data andrepresent strutural onepts in the data. One a substruture is disovered, the substruture isused to simplify the data by replaing instanes of the substruture with a pointer to the newlydisovered substruture. The disovered substrutures allow abstration over detailed struturesin the original data. Iteration of the substruture disovery and replaement proess onstrutsa hierarhial desription of the strutural data in terms of the disovered substrutures. Thishierarhy provides varying levels of interpretation that an be aessed based on the spei� goalsof the data analysis.The substruture disovery system represents strutural data as a labeled graph. Objets inthe data map to verties or small subgraphs in the graph, and relationships between objets mapto direted or undireted edges in the graph. A substruture is a onneted subgraph withinthe graphial representation. This graphial representation serves as input to the substruture
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Figure 2: Instanes of the substruture.disovery system. Figure 1 shows a geometri example of suh an input graph. The objets inthe �gure (e.g., T1, S1, R1) beome labeled verties in the graph, and the relationships (e.g.,on(T1,S1), shape(C1,irle)) beome labeled edges in the graph. The graphial representationof the substruture disovered by Subdue from this data is also shown in Figure 1.An instane of a substruture in an input graph is a set of verties and edges from the inputgraph that math, graph theoretially, to the graphial representation of the substruture. Forexample, the instanes of the substruture in Figure 1 are shown in Figure 2.The substruture disovery algorithm used by Subdue is a omputationally-onstrained beamsearh. The algorithm begins with the substruture mathing a single vertex in the graph. Eahiteration, the algorithm selets the best substruture aording to the MDL heuristi and inremen-tally expands the instanes of the substruture. The new unique substrutures beome andidatesfor further expansion. The algorithm searhes for the best substruture until all possible substru-tures have been onsidered or the total amount of omputation exeeds a given limit. Evaluationof eah substruture is determined by the MDL heuristi; spei�ally, by how muh the desrip-tion length of the database is redued when substruture instanes are replaed by pointers to thesubstruture de�nition.Beause instanes of a substruture an appear in di�erent forms throughout the database, aninexat graph math is used to identify substruture instanes. Subgraphs are onsidered to beinstanes of a substruture de�nition if the ost of transforming the subgraph into a graph thatis isomorphi with the substruture de�nition does not exeed a user-de�ned threshold. Transfor-mations between graphs an inlude addition or deletion of verties, addition or deletion of edges,vertex label substitutions and edge label substitutions.Subdue disovers substrutures that ompress the amount of information neessary to onep-tually desribe the database. To allow Subdue to disover substrutures of partiular interest to a



sientist in a given domain, the user an diret the searh with expert-supplied bakground knowl-edge. Bakground knowledge an take the form of known substruture models to spei�ally loatein the database, or graph math rules to adjust the ost of eah inexat graph math test. Unlikeother existing approahes to graph-based disovery [3, 12, 15, 18, 20℄, Subdue is e�etive at �ndinginteresting and repetitive substrutures in any strutural database with or without domain-spei�guidane.One a substruture is disovered, the substruture is used to simplify the data by replainginstanes of the substruture with a pointer to the newly disovered substruture. The disoveredsubstrutures allow abstration over detailed strutures in the original data. Iteration of the sub-struture disovery and replaement proess onstruts a hierarhial desription of the struturaldata in terms of the disovered substrutures. This hierarhy provides varying levels of interpre-tation that an be aessed based on the spei� goals of the data analysis [4℄. In addition tothe appliation desribed in this paper, Subdue has been suessfully applied with and withoutdomain knowledge to databases in domains inluding image analysis, CAD iruit analysis, Chi-nese harater databases, program soure ode, hemial reation hains, and arti�ially-generateddatabases. Evaluation of these appliations is desribed elsewhere [4, 8℄.3 Proteins and the Brookhaven Protein Data Bank3.1 Overview of ProteinsProteins are involved in a greater number and greater variety of ellular events than any of the othertypes of biomoleules. Along with nulei aids (DNA and RNA), they arry the information thatdetermines what happens in a ell of a living organism [2℄. Eah protein is di�erent from every otherprotein in terms of its struture and funtion. There is also muh similarity between proteins, themost ommon aspet of whih is that all proteins are omposed from twenty amino aids. Aminoaids are therefore the basi building bloks of all proteins. The general strutural formula for anamino aid is shown in Figure 3. There are twenty di�erent R groups in the ommonly ourringamino aids.
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HFigure 3: General strutural formula for amino aids.3.2 Strutural Hierarhy in ProteinsFamiliarity with various aspets of protein struture is indispensable to the eventual understandingof muh of the biohemial dynamis of a living organism. There are three levels (aspets) ofstruture that apply to all proteins. They are: (1) the primary level, whih refers to the sequeneof the amino aids in the protein; (2) the seondary level, whih refers to the geometri orientationof the protein bakbone; and (3) the tertiary level, whih refers to the omplete, three-dimensionalarhiteture of the protein.3.2.1 Primary StrutureThe identity and sequene of amino aids are the most fundamental strutural harateristis of anyprotein. Eah amino aid residue in a hain is linked to its neighbors in a head-to-tail fashion. Thehain starts at the amino terminus (N-terminus) and ends at the arboxyl terminus (C-terminus).The naturally ourring proteins generally ontain varying amounts of the twenty ommonamino aids and have an average length of 100-150 residues [19℄. Funtional properties of eahprotein are a onsequene of its amino aid sequene. The identity and total number of aminoaid residues are important, but the order in whih the residues are linked together is of greatestimportane. It is the sequene of residues that determines the overall three-dimensional shape ofthe moleule, whih in turn determines how that moleule will funtion.3.3 Seondary StrutureThe partiular type of orientation assumed by a protein hain is the result of the pattern of freerotation around the bonds of the hain involving the �-arbon atoms. Three major types of



Figure 4: �-helix. Figure 5: parallel �-sheet. Figure 6: anti-parallel �-sheet.orientation are found in naturally ourring protein hains: helial, sheet, and random. The helialand sheet forms are ordered arrangements, while the random forms are random arrangements. Theperentage of �-helix ontent in proteins is quite variable, ranging from 0% to 80-90%. In globularproteins (e.g., proteins, in their native state, exist as ompat spheroidal moleules), �-helies havean average span of about eleven residues with up to �fty-three residues found in a helix.There are two arrangements of strands in a sheet. If two neighboring strands are aligned in thesame diretion from one terminus to the other, the arrangement is termed a parallel sheet. If thetwo are aligned in opposite diretion, the arrangement is termed an anti-parallel sheet. In globularproteins, �-sheets onsist of from two to as many as �fteen strands, with an average of six strands.The number of residues in a �-sheet is up to �fteen residues long, with an average of six residues.Figures 4, 5, and 6 depit a sample �-helix, parallel �-sheet, and anti-parallel �-sheet.3.4 Tertiary StrutureThe tertiary struture of a protein is its three-dimensional arrangement; in partiular, the foldingof its seondary struture elements, together with the spatial disposition of its R group (or sidehain). Eah of them is unique and highly ompliated. Most proteins have a signi�ant amountof both �-helix and �-sheet, in varying proportions and ombinations.In some proteins, espeially in enzymes (e.g., groups of proteins having atalyti funtions),there is part of the protein that has a unique three-dimensional strutural feature and is ruialfor the funtion of the protein. This part is usually alled a site (suh as atalyti, ofator, andregulatory site) in the maromoleule. Understanding the detailed three-dimensional struture ofa biomoleule and of these sites ruial for understanding the funtion of a partiular protein.



3.5 Brookhaven Protein Data BankThe Protein Data Bank (PDB) database is ompiled at Brookhaven National Laboratory [1℄. It is anarhive of experimentally determined three-dimensional strutures of biomoleules. The majorityof the �les represent protein strutures determined by X-ray rystallography or NMR spetrosopy.Every PDB �le may be viewed as a olletion of reord types. We examined the following typesof reords: SEQRES, HELIX, SHEET, and ATOM. The SEQRES reords ontain the amino aidsequene of residues in the protein along with other related identi�ation information. The HELIXreords are used to identify the position of helies in the protein. The residues where the helixstarts and ends are noted, as well as the type of the helies. The SHEET reords are used toidentify the position of sheets in the protein. The residues where eah strand of a sheet starts andends are noted. The sense (relative orientation) of a strand with respet to the previous strandin the sheet is also provided. The sense is 0 if the strand is the �rst of a sheet. The sense is 1 ifstrand n is parallel to strand n-1 in the same sheet, and is -1 if anti-parallel. Finally, the ATOMreords ontain the orthogonal (X, Y, Z) oordinates (in �A) for eah atom of eah residue in theprotein. The hoie of origin is not onsistent between databases and does not e�et the oding ofthe input graph for Subdue.Both the HELIX and SHEET reords are now being generated automatially by PDB using theKabsh and Sander algorithm [10℄. The algorithm uses a set of simple and physially motivated ri-teria for seondary struture assignments and provides an unambiguous and physially meaningfulde�nition of seondary struture.4 Appliation of Subdue to PDB databasesThe main goal of this researh is to identify biologially meaningful patterns in the Brookhavenprotein database using Subdue. In partiular, the disovery goal is to �nd distint struturalpatterns in ategories of proteins or their hains.The PDB �les used in this study are based on the July 1997 PDB release ontaining over 6,000�les. The majority of the �les represent protein strutures determined by X-ray rystallography orNMR spetrosopy. The remaining PDB �les ontain strutures determined for DNA, RNA, andother maromoleules.



To aomplish the goal of disovering distint patterns in ategories of proteins, two main groupsof data sets are maintained in this partiular study. The �rst one ontains all the protein PDB�les with no dupliate sequenes (about 4,000 PDB �les). This represents a global data set. Theseond data set ontains groups of PDB �les for eah partiular ategory of proteins (65, 103, and68 PDB �les for hemoglobin, myoglobin, and ribo nulease A ategories, respetively).To apply Subdue to the PDB, pre-proessing programs are used to extrat strutural informa-tion from eah PDB �le in the data set. The proessed �les are then input to Subdue. For eahgroup of proteins, the primary, seondary, and tertiary struture patterns are identi�ed by Subdue.These patterns are used as bakground knowledge patterns in another iteration of disovery fromthe global data set.4.1 Representation of Struture InformationWe now turn our attention to methods of representing PDB data as a graph suitable for input toSubdue.4.1.1 Pre-proessing PDB �lesThe �rst step in our disovery approah is to pre-proess the PDB �le to extrat strutural infor-mation. The primary struture information is extrated from the SEQRES reords of eah PDB�le. Eah line starting with the SEQRES keyword ontains the list of amino aids in the orderof the sequene from N- to C-terminus. Information other than this sequene is not used in thedisovery. A portion of a sample PDB �le is listed in the Appendix. For example, the followingtwo sample PDB lines ontain the sequene: ALA ASN LYS THR ARG GLU LEU CYS MET LYSSER LEU GLU HIS ALA LYS VAL ASP:SEQRES 1 150 ALA ASN LYS THR ARG GLU LEU CYS MET 1ASH 139SEQRES 2 150 LYS SER LEU GLU HIS ALA LYS VAL ASP 1ASH 140To onvert this information to a graph, eah amino aid is represented as a graph vertex. Thevertex number inrements aording to the order of the sequene from N-terminus to C-terminus.The vertex label is the name of the amino aid. An edge labeled \bond" is added between adjaentamino aids in a sequene.



As the seond step, we extrat the seondary struture of a protein by listing the ourrenes ofhelies and strands along the primary sequene. The helix information is extrated from the HELIXreords of eah PDB �le. Eah line starting with the HELIX keyword ontains information aboutwhere the helix starts and ends, along with information about the helix type. Our pre-proessingprogram onverts this information into a Subdue graph. Eah helix in a PDB �le is representedwith a vertex labeled \h", followed by the helix type and length (number of amino aids in thehelix minus one).The strand information is extrated from the SHEET reords of eah PDB �le. Eah linestarting with the SHEET keyword ontains information about where a partiular strand of a sheetstarts and ends. The sense or the relative orientation (parallel or anti-parallel) of a strand to theprevious one in a sheet is also extrated. The orresponding Subdue graph represents eah strandas a vertex labeled \s" followed by the orientation of the strand and the length of the strand (givenin the PDB �le). The preproessing program then sorts the ourrene of the seondary strutureelements (helies and strands) from N-terminus to C-terminus. The edge between two onseutiveverties is labeled \sh" if they belong to the same PDB �le.For example, the following simpli�ed PDB lines indiate that the desribed protein has a right-handed helix (with a length of 10), followed by another right-handed helix (with a length of 10),followed by the �rst strand of the sheet (with a sense of 0 and a length of 7), followed by anotherright-handed helix (with a length of 10), followed by the seond and third strands of the sheet (withlength of 8 and 10, respetively). Both strand two and strand three have senses of -1.HELIX 1 THR 3 MET 13 1HELIX 2 ASN 24 ASN 34 1HELIX 3 SER 50 GLN 60 1SHEET 1 LYS 41 HIS 48 0SHEET 2 MET79 THR 87 -1SHEET 3 ASN 94 LYS 104 -1The input to Subdue for this example is shown below, where \v" indiates a vertex followedby the vertex number and label, and \e" indiates an edge followed by the onneting verties andedge label.



v 1 h 1 10 | the �rst right-handed helixv 2 h 1 10 | the seond right-handed helixv 3 s 0 7 | the �rst strand of the sheetv 4 h 1 10 | the third right-handed helixv 5 s -1 8 | the seond strand anti-parallel to the �rstv 6 s -1 10 | the third strand anti-parallel to the seonde 1 2 she 2 3 she 3 4 she 4 5 she 5 6 shIn the PDB �le, three-dimensional features of the protein are represented as the X, Y, andZ oordinates of eah atom in the protein. Eah line starting with the ATOM keyword ontainsinformation about the amino aid name, sequene number, and X, Y, and Z oordinates of eahatom in the amino aid. To simplify the representation of the three-dimensional struture featuresof a protein, only the bakbone �-arbon oordinates are extrated. For example, the followingfour simpli�ed PDB lines ontain bakbone �-arbon oordinates for ALA, ASN, LYS, and THR:ATOM CA ALA 1 10.369 0.997 10.519ATOM CA ASN 2 6.691 0.239 9.830ATOM CA LYS 3 6.677 1.983 6.389ATOM CA THR 4 9.693 -0.188 5.372The pre-proessing program omputes the pair-wise distane between eah bakbone �-arbon.A Subdue graph is then generated in the following manner: eah amino aid �-arbon is representedas a vertex. If the distane between two �-arbons is greater than 6 �A, the information is disarded.Otherwise, edges between two �-arbons are reated and labeled as \vs" (very short, distane � 4�A), or \s" (short). The Subdue graph for our sample �le is shown below.v 1 CA ALA | �-arbon of ALAv 2 CA ASN | �-arbon of ASNv 3 CA LYS | �-arbon of LYSv 4 CA THR | �-arbon of THRe 2 1 vs | very short distane between v 2 (ASN) and v 1 (ALA)e 3 1 s | short distane between v 3 (LYS) and v 1 (ALA)e 4 1 s | short distane between v 4 (THR) and v 1 (ALA)e 3 2 vs | very short distane between v 3 (LYS) and v 2 (ASN)e 4 2 s | short distane between v 4 (THR) and v 2 (ASN)e 4 3 vs | very short distane between v 4 (THR) and v 3 (LYS)



4.2 Rationale for Representation ChoiesThe goal of this researh is to apply the Subdue knowledge disovery system to �nd biologiallymeaningful patterns from the PDB database. In order to aomplish this goal, hoies must bemade to represent the biologial information in a graphi form that an be used as input to theSubdue disovery system. These representational hoies must ful�ll the following riteria forthe goal of the disovery: (1) The patterns identi�ed by Subdue must be representative for eahategory of proteins; (2) The patterns disovered by Subdue should disriminate one ategory ofproteins from those of other ategories. The pre-proessing steps desribed in the previous setionsare designed to extrat useful information from the PDB and represent them in the Subdue inputformat, as simply and yet as ompletely as possible.For the purpose of identifying primary struture patterns of proteins alone, a natural represen-tation would be a linear graph with nodes (or verties) orresponding to the amino aid residuenames, and edges orresponding to the peptide bonds between the onseutive residues.For the helix seondary struture, there are mainly three kinds of information residing in a PDB�le. They are: (1) the type of the helix; (2) the amino aid residues involved; and (3) the startingand ending points (e.g., the length of the helix). We an apture this information by a variety ofmethods, but some representations would plae undue emphasis on irrelevant information suh asthe helix name or type. The representation we hoose allows for equal emphasis on eah part ofthe strutural de�nition. Results obtained from this study indiate that the level of abstrationwe enode allows for e�etive identi�ation of distint seondary struture patterns in ategoriesof proteins. A similar rationale applies to the representation of PDB SHEET information.For the tertiary struture features of a protein, the orthogonal oordinates for eah atom ofeah residue are given in a PDB �le. The several hundred atoms of even a very small protein makeunderstanding the detailed struture of a protein a onsiderable e�ort. The most instrutive methodof representing a protein struture is the bakbone of the protein, whih an be represented using its�-arbon atoms. One representation would map the absolute oordinate position of eah �-arbonto a residue in the primary sequene. However, the absolute oordinates fail to represent the fatthat when hoosing di�erent origins, the same types of objets will have di�erent oordinates.We overome this diÆulty by using pair-wise distanes between all �-arbons in a protein. Anenoding of the exat distane is avoided beause the auray of protein X-ray of NMR struture



determination is limited by its resolution, and beause the detailed protein geometry an hangewith varying environmental onditions. Empirial results showed that our \very short" label (�4 �A) aptures the distanes between all onseutive residues, along with a few other �-arbons inlose ontat. The \short" label inludes all other �-arbons that have spatial proximity. The 6�A ut-o� is hosen based on experiene gained from NMR strutural study [17℄. For those havingdistane greater than 6 �A, the long-range interation is not onsidered as part of the immediateenvironment, and therefore the distane information is disarded.5 Experimental ResultsIn our experiment, we use Subdue to disover patterns within a given ategory of proteins or theirhains. One the patterns are disovered, they are enoded as bakground knowledge and used tosearh the global database for instanes of the pattern.5.1 Disovered Primary Struture PatternsThe results of Subdue applied to the primary strutures for the hemoglobin, myoglobin, andrubonulease A proteins are summarized in Table 1, and the disovered sequenes are listed inFigure 5.1. For eah disovered pattern, the table lists the searh beam width and the number ofinstanes found in the sample data set and in the global database (all proteins not inluded in thesample set). The sequene patterns identi�ed for the hemoglobin, myoglobin, and ribonulease Aproteins are unique to these lasses of proteins. Notie that the hemoglobin and myoglobin proteinsshare little sequene similarity. However, as disussed later, they do share a great deal of similarityin their overall seondary strutural patterns.5.2 Disovered Seondary Struture PatternsThe top three seondary strutural patterns disovered by Subdue for the hemoglobin, myoglobin,and ribonulease A proteins are listed in Table 2. A sampling of the disovered patterns is givenin Figure 5.2, listed from N-terminus to C-terminus. In this list edges are represented by \->" andare labeled \sh". Patterns are ordered aording to how well they ompress the original graph:pattern 1 has the highest value, followed by pattern 2 and pattern 3. The number of instanes of



Table 1: The disovered sequene patterns in the sample data sets.Data Set (# of PDB) Exp. Parameter Disovered Pattern (# of instanes insample data set / global)Hemoglobin (65) Beam 50 Hemo sequene1 (63 / 0)Myoglobin (103) Beam 50 Myoglo sequene2 (67 / 0)Ribonulease A (68) Beam 50 Ribonulease A sequene3 (59 / 0)

Hemo sequeneTHR LYS THR TYR PHE PRO HIS PHE ASP LEU SER HIS GLY SER ALA GLN VAL LYS GLY HIS GLY LYSLYS VAL ALA ASP ALA LEU THR ASN ALA VAL ALA HIS VAL ASP ASP MET PRO ASN ALA LEU SERALA LEU SER ASP LEU HIS ALA HIS LYS LEU ARG VAL ASP PRO VAL ASN PHE LYS LEU LEU SER HISCYS LEU LEU VAL THR LEU ALA ALA HIS LEU PRO ALA GLU PHE THR PRO ALA VAL HIS ALA SERLEU ASP LYS PHE LEU ALA SER VAL SER THR VAL LEU THR SER LYS TYRMyoglo sequeneVAL LEU SER GLU GLY GLU TRP GLN LEU VAL LEU HIS VAL TRP ALA LYS VAL GLU ALA ASP VALALA GLY HIS GLY GLN ASP ILE LEU ILE ARG LEU PHE LYS SER HIS PRO GLU THR LEU GLU LYS PHEASP ARG Ribonulease A sequeneGLY GLN THR ASN CYS TYR GLN SER TYR SER THR MET SER ILE THR ASP CYS ARG GLU THR GLYSER SER LYS TYR PRO ASN CYS ALA TYR LYS THR THR GLN ALA ASN LYS HIS ILE ILE VAL ALA CYSGLU GLY ASN PRO TYR VAL PRO VAL HIS PHE ASP ALA SER VALFigure 7: Disovered sequenes for hemoglobin, myoglobin, and ribonulease A.



Hemo s 1 0.0: h_1_14 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_20Hemo s 2 0.0: h_1_14 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18Hemo s 3 0.0: h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_20Hemo s 1 0.1: h_1_14 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_23Hemo s 1 0.2: h_1_15 -> h_1_15 -> h_1_6 -> h_1_1 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_20Hemo s 1 0.3: h_1_15 -> h_1_15 -> h_1_6 -> h_1_1 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_20Myo s 1 0.0: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_9 -> h_1_18 -> h_1_25Myo s 1 0.1: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_9 -> h_1_18 -> h_1_25Myo s 1 0.2: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_23Myo s 1 0.3: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_23Ribo s 1 0.0: h_1_10 -> h_1_10 -> s_0_7 -> s_0_7 -> h_1_10 -> s_0_3 -> s_0_3-> s_-1_4 -> s_-1_4Ribo s 1 0.1: h_1_12 -> s_0_6 -> s_0_6 -> h_1_10 -> s_0_3 -> s_0_3 -> s_-1_4-> s_-1_4 -> s_-1_8 -> s_-1_1 -> s_-1_10 -> s_-1_10 -> s_-1_8 -> s_-1_8-> s_-1_5 -> s_-1_3Ribo s 1 0.2: h_1_10 -> h_1_12 -> s_0_6 -> s_0_6 -> h_1_10 -> s_0_3 -> s_0_3-> s_-1_4 -> s_-1_4 -> s_-1_8 -> s_-1_1 -> s_-1_10 -> s_-1_10 -> s_-1_8-> s_-1_8 -> s_-1_5 -> s_-1_3Ribo s 1 0.3: h_1_10 -> h_1_10 -> s_0_7 -> h_1_10 -> s_0_3 -> s_-1_4 -> s_-1_8-> s_-1_8 -> s_-1_6H M s 1 0.0: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_9 -> h_1_18 -> h_1_25H M s 1 0.1: h_1_15 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_9 -> h_1_18 -> h_1_25H M s 1 0.2: h_1_15 -> h_1_14 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_20H M s 1 0.3: h_1_14 -> h_1_15 -> h_1_6 -> h_1_6 -> h_1_19 -> h_1_8 -> h_1_18 -> h_1_23Figure 8: Disovered seondary patterns for hemoglobin, myoglobin, and ribonulease A.eah pattern disovered in the spei�ed dataset (e.g., Hemo, Myo, and Ribo A) is indiated alongwith the number of instanes found in other ategories of proteins in the global data set. Severalexeutions of Subdue are tested with varying values for allowable graph dissimilarity (T). Thesigni�ane of these results will be disussed later in the paper.To identify the degree of similarity between the seondary strutural patterns of the hemoglobinand myoglobin proteins, all the PDB �les from these two data sets are ombined to form ahemoglobin-myoglobin (H M) data set. The top three patterns disovered by Subdue in thisombined data set are also shown in Table 2. The number of instanes of eah pattern in thehemoglobin and myoglobin data sets is also indiated. Notie the great amount of strutural sim-ilarity between proteins in the hemoglobin and myoglobin databases that is disovered when 20%or 30% of the graph de�nitions an vary from instane to instane (T=0.2 or T=0.3). In theseases as many ommon strutures are found between these lasses of proteins as are found withina single lass of proteins.



Table 2: The disovered seondary struture patterns in the sample data sets (NA = Not Analyzed).Database Threshold Pattern 1 Pattern 2 Pattern 3(#instanes/global) (#instanes/global) (#instanes/global)Hemoglobin T=0.0 Hemo s 1 0.0 Hemo s 2 0.0 Hemo s 3 0.0(50 / 0) (52 / 0) (50 / NA)T=0.1 Hemo s 1 0.1 Hemo s 2 0.1 Hemo s 3 0.1(51 / NA) (58 / NA) (52 / NA)T=0.2 Hemo s 1 0.2 Hemo s 2 0.2 Hemo s 3 0.2(90 / NA) (98 / NA) (92 / NA)T=0.3 Hemo s 1 0.3 Hemo s 2 0.3 Hemo s 3 0.3(95 / NA) (107 / NA) (100 / NA)Myoglobin T=0.0 Myo s 1 0.0 Myo s 2 0.0 Myo s 3 0.0(81 / 0) (82 / 0) (81 / 0)T=0.1 Myo s 1 0.1 Myo s 2 0.1 Myo s 3 0.1(81 / NA) (84 / NA) (81 / NA)T=0.2 Myo s 1 0.2 Myo s 2 0.2 Myo s 3 0.2(83 / NA) (84 / NA) (83 / NA)T=0.3 Myo s 1 0.3 Myo s 2 0.3 Myo s 3 0.3(83 / NA) (84 / NA) (84 / NA)Ribonulease A T=0.0 Ribo A s 1 0.0 Ribo A s 2 0.0 Ribo A s 3 0.0(25 / 0) (25 / 0) (25 / 0)T=0.1 Ribo A s 1 0.1 Ribo A s 2 0.1 Ribo A s 3 0.1(27 / NA) (27 / NA) (27 / NA)T=0.2 Ribo A s 1 0.2 Ribo A s 2 0.2 Ribo A s 3 0.2(27 / NA) (27 / NA) (27 / NA)T=0.3 Ribo A s 1 0.3 Ribo A s 2 0.3 Ribo A s 3 0.3(36 / NA) (36 / NA) (36 / NA)H M T=0.0 H M s 1 0.0 H M s 2 0.0 H M s 3 0.0(0 / 81) (0 / 82) (0 / 81)T=0.1 H M s 1 0.1 H M s 2 0.1 H M s 3 0.1(0 / 81) (0 / 82) (0 / 81)T=0.2 H M s 1 0.2 H M s 2 0.2 H M s 3 0.2(54 / 83) (51 / 83) (62 / 83)T=0.3 H M s 1 0.3 H M s 2 0.3 H M s 3 0.3(89 / 83) (98 / 83) (98 / 83)



Figure 9: Complete struture of ahemoglobin protein. Figure 10: Disovered protein struture ofa hemoglobin protein (N-terminus �! C-terminus).5.3 Disovered Tertiary Strutural PatternsPreliminary results obtained for the tertiary strutural pattern disovery indiate that Subdue �ndssmall patterns involving two or three residues in the proteins. These patterns are not biologiallymeaningful and do not ful�ll the goal of disovering distint 3-D patterns in a ategory of proteins.Future work will fous on disovery in this area.5.4 Summary of ResultsSubdue results obtained for the seondary strutural pattern disovery in ategories of proteinsare summarized here. Figure 9 presents an overall view of a hemoglobin protein. Figure 10 showsthe part of the proteins where the Subdue-disovered pattern for the hemoglobin protein exists,and Figure 11 shows the shemati views of the best pattern (e.g., pattern 1 with threshold of 0.0)disovered by Subdue for the hemoglobin proteins. Similarly, Figure 12 presents an overall viewof a myoglobin protein, and Figures 13 and 14 show the Subdue-disovered pattern within themyoglobin protein and the shemati views of the highest-valued disovered pattern. Figures 15through 17 present similar results for the ribonulease A protein. In eah ase, the seondarystrutural elements are listed from N-terminus of the protein to C-terminus.



Figure 11: Shemati view of disovered pattern in hemoglobin protein.

Figure 12: Complete struture of a myo-globin protein. Figure 13: Disovered protein struturein myoglobin protein (N-terminus �! C-terminus).

Figure 14: Shemati view of disovered pattern in myoglobin pattern.



Figure 15: Complete struture of a ri-boglobin protein. Figure 16: Disovered protein struture ofa riboglobin protein (N-terminus �! C-terminus).

Figure 17: Shemati view of disovered pattern in riboglobin pattern (N-terminus�! C-terminus).



6 DisussionIn this study, the Subdue knowledge disovery system is applied to the Brookhaven Protein DataBank (PDB) to identify biologially interesting patterns in ategories of proteins. Results obtainedfrom the hemoglobin, myoglobin, and ribonulease A protein data sets are disussed in this setion.6.1 Hemoglobin and Myoglobin ProteinsHemoglobin and myoglobin are hosen in this study beause they have the advantage of familiarity.These proteins are used widely to illustrate nearly every important feature of protein struture,funtion, and evolution [6℄. Hemoglobin is the oxygen arrier of the blood, whereas myoglobin isthe oxygen storage protein of the musle. One moleule of hemoglobin has four protein hains: �1,�2, �1, and �2 hains (also known as A, C, B, and D hains, respetively). In some speies, the two� hains (or A and C hains) are idential and the two � hains (or B and D hains) are idential.Myoglobin has one protein hain, of about the same size as eah of the four hemoglobin hains.Detailed analysis of the results obtained for the seondary strutural patterns of the hemoglobinproteins indiates that there are mainly two types of patterns in the hemoglobin data set. Type 1inludes the two best seondary strutural patterns (Hemo s 1 0.0 and Hemo s 1 0.1 in Table 2).They onsist of eight helies with various lengths. All the helies are right-handed �-helix. Type2 patterns inlude the other two disovered patterns (Hemo s 1 0.2 and Hemo s 1 0.3 in Table 2).One distint feature of this type is that one helix is very short (length 1).The ourrene of the instanes for eah ategory of proteins is mapped bak to the PDB �lewhere the pattern exists. When mapped into the individual hains of the PDB, type 1 patternsare found to belong to the � hains (or B and D hains) of the hemoglobins. Most of the type 2patterns are from the � hains (or A and C hains) of the hemoglobins.Detailed analysis of the seondary strutural patterns identi�ed for the myoglobin proteins indi-ates that there is one dominant pattern (Myo s 1 0.0, Myo s 1 0.1, Myo s 1 0.2, and Myo s 1 0.3in Table 2). This pattern onsists of eight helies with various lengths. All of the helies are type1. When the pattern is mapped bak to the PDB �le, it is found that this pattern appears in amajority of the myoglobin proteins in the data set.The patterns identi�ed from the hemoglobin-myoglobin data set indiate that the myoglobin



seondary strutural patterns share a great deal of similarity with those of the hemoglobin proteins.This is shown in the results obtained using a threshold of 0.2 and 0.3 (H M s 1 0.2, H M s 2 0.2,H M s 3 0.2, H M s 1 0.3, H M s 2 0.3, and H M s 3 0.3 in Table 2).The primary sequene patterns identi�ed for the hemoglobin and myoglobin proteins show muhless degree of similarity. However, as disussed in the previous paragraphs, they do share great simi-larity in their overall seondary struture patterns. Atually, the patterns of the hemoglobin protein� hains and that of the myoglobin are idential (both type and length) for the middle six helies.The hemoglobin � hain has a very short helix in the middle (h 1 1). In the hemoglobin hains, thelast helix is onsiderably shorter (e.g., �ve amino aids shorter) than that of the myoglobin proteinhain.This is onsistent with the results obtained from geneti studies. Geneti studies suggest thatthe genes of the hemoglobin and myoglobin proteins evolved by divergene from one anestral gene[6℄. The last helix of the hemoglobin hains is shorter than the one in the myoglobin proteins.One of the helies has almost disappeared in the � hains of the hemoglobin proteins. It hasbeen suggested that this disappearane may be due to a random evolutionary proess, beause theabsene of the helix was harmless. The disappearane may also have some funtional reasons forproperly positioning the helies for the onformational hanges (e.g., from deoxy- to oxy-) neededin the hemoglobin proteins.6.2 Ribonulease A proteinsThe ribonulease A proteins are hosen in this study beause they also play a speial role as a modelprotein to examine the enzyme struture-funtion relationships. The results obtained for the se-ondary strutural pattern show that the patterns all inlude three helies about the same size (e.g.,with a length of 10 or 12). However, it is noted that all these disovered patterns (Ribo A s 1 0.0,Ribo A s 1 0.1, Ribo A s 1 0.2, and Ribo A s 1 0.3) have several strands appearing twie. De-tailed analysis of the PDB �les for whih these dupliates exist has been performed. It is foundthat these dupliates are the same strand but are observed as partiipating in the formation ofdi�erent sheets. Therefore they have dupliated entries in the PDB �les. It is not lear why someof the ribonulease A proteins do not have these dupliates. Possible reasons are the following: (1)These strands may appear to only partiipate in the formation of one sheet, instead of two, under



some experimental onditions; or (2) The resolution of the X-ray rystallographi struture maynot be high enough to observe the hydrogen-bonding patterns needed to group strands to sheets.The seondary strutural patterns for the ribonulease A proteins were mapped bak into thePDB �les. It is observed that several ribonulease S proteins have the same patterns as those inribonulease A proteins. This is onsistent with the fat that ribonulease S is a omplex onsistingof two fragments (S-peptide and S-protein) of the ribonulease A proteins. The pattern in theribonulease S omes from the S-protein fragment.6.3 Summary of ResultsResults obtained for the hemoglobin, myoglobin, and ribonulease A protein data sets indiate thatthe seondary struture patterns disovered by Subdue are representative to its ategory. Thepatterns identi�ed for eah sample ategory overed a majority of the proteins in that ategory(33 of the 50 analyzed hemoglobin proteins, 67 of the 89 myoglobin proteins, and 35 of the 52ribonulease A proteins ontained the disovered patterns). Detailed analysis of those that do nothave the pattern indiates that there are many possible reasons. The struture of a protein isa�eted by many fators. The auray of the struture is a�eted by the quality of the proteinsample, experimental onditions, and human error. Disrepanies may also be due to physiologialand biohemial reasons. Struture of the same protein moleule may di�er from one speies toanother. The protein may also be defetive. For example, sikle-ell anemia is the lassi exampleof a geneti hemoglobin disease. The defetive protein does not have the right struture to performits normal funtion.Dr. Steve Sprang, a moleular biologist at the University of Texas Southwestern Medial Center,evaluated the patterns disovered by the Subdue system. This sientist was asked to review theoriginal database and the disovered substrutures, and determine if the disovered onepts wereindiative of the data and interesting disoveries. Dr. Sprang indiated that Subdue did �nd aninteresting pattern in the data that was previously unknown and suggests new information aboutthe miro-evolution of suh proteins in mammals [16℄.The seondary struture patterns disovered are also distint to eah protein ategory. Theglobal data set is searhed to identify the possible existene of the disovered pattern from eahategory. Results indiate that there is no exat math of the best patterns of one ategory in



other ategory of proteins (Table 2). However, the urrent version of Subdue has the limitation inthat when a partiular pattern is searhed for in the database, only exat size mathes are loated.Therefore, the disovery proess may overlook those proteins having some similar struture patterns.6.4 Comparison with Related StudiesThere are several appliations of pattern searh in proteins on the seondary struture level.Mithell et al. [13℄ use an algorithm that identi�es subgraph isomorphism in protein struture.They represent the protein strutures as an undireted labeled graph, where the seondary stru-ture elements in a protein and the distane and angular relationships between them orrespond tothe nodes and edges of a graph. Their program, POSSUM A, allows one to determine whether aquery (or prede�ned) pattern is ontained within a omplete protein struture. This program isalso limited to performing an exat math when searh for a spei� pattern in the database.The approah of Grindley et al. [9℄ uses the same representation sheme and �nds maximalommon substrutures between two proteins on the seondary struture level. This approahan therefore highlight areas of strutural overlap between proteins. In Koh et al. [11℄, thegraph is onsidered without expliitly using geometri riteria suh as distanes and angles in thegraph desription. The verties represent the helies and strands assigned by the DSSP algorithm.The edges are alulated on the basis of ontats between the atoms belonging to the respetiveseondary struture elements. By applying these representations of the protein struture, theyfound that it ould be useful in searhing for struturally distantly related proteins. This methodhas not yet been tested systematially on the PDB database. Most of these studies fous onidentifying similar patterns in a group of proteins using prede�ned patterns. Subdue will performsimilar tasks when the inexat graph math routine is inorporated into its prede�ned substruturefuntionality.7 ConlusionsThe number of protein strutures known in atomi detail has inreased from one in 1960 to morethan 6,000 in 1997. More and more frequently, a newly determined struture is similar in itsseondary and tertiary folds to a known one. The searh for ommon and distint patterns in sets



of proteins has beoming an essential proedure in the investigation of protein strutures.Finding a signature for a group of proteins allows reognition of suh a protein, and provides abasis for inferring funtions of similar proteins. The substrutures disovered by Subdue representsuh a signature for a lass of proteins, as shown in this paper. The degree of similarity betweendi�erent ategories of proteins may be used for disovering biologially interesting relationships.In addition, generating a hierarhial view of the data using multiple iterations of Subdue aids inunderstanding the protein from the individual building blok amino aids and strutures.Results obtained in this study indiate that the level of abstration for the tertiary struturewhih emphasizes its seondary strutures is suitable for representing eah ategory of proteins.Through the vertex and edge labelling, essential information on sequential relationships on theseondary struture element is enoded. The strutural motifs onsisting of seondary strutureelements (e.g., helix, sheet) are shown to be responsible for the funtion of proteins. The seondarystrutural patterns in eah ategory of proteins an therefore be used as a signature for its lass. Theinexat graph math algorithm implemented in Subdue is useful for �nding the similar patternsamong di�erent proteins of the same ategory and aross di�erent proteins in related ategories.The results obtained in this study indiate that the Subdue system is suitable for knowledgedisovery in moleular strutural databases. It should be noted, however, that the results obtainedare ritially dependent on the seondary struture information used and on the de�nitions ofthe strutural features and its graph representation. Planned future work applying Subdue tothe Brookhaven and other related moleular biology databases inludes using a more detailed andonsistent desription of the seondary struture, possibly using resoures outside PDB. In addition,it is well known that the tertiary or the 3D struture of proteins is extremely omplex. Proteintertiary struture omparison still remains a major goal in moleular biology. To apply Subduefor disovery of tertiary strutural patterns, a more suitable representation sheme is needed. Thisrepresentation sheme should onsider the fat that the detailed 3D strutures are not identialeven for protein pairs that have idential sequenes. This deviation is attributed to di�erentrystal forms, to experimental onditions, and to human error. It may also be a mere reetion ofonformational exibility of protein strutures. The tertiary struture omparison for a site (e.g.,a atalyti site or other regulatory site) omposed of muh smaller sets of atoms in proteins is agood starting point.
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