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Abstract

The overfit problem in empirical learning
and the utility problem in explanation-based
learning describe a similar phenomenon: the
degradation of performance due to an in-
crease in the amount of learned knowledge.
Plotting the performance of learned knowl-
edge during the course of learning (the per-
formance response) reveals a common trend
for several learning methods. Modeling this
trend allows a control system to constrain
the amount of learned knowledge to achieve
peak performance and avoid the general util-
ity problem. Experiments evaluate a partic-
ular empirical model of the trend, and analy-
sis of the learners derive several formal mod-
els. If, as evidence suggests, the general util-
ity problem can be modeled using the same
mechanisms for different learning paradigms,
then the model serves to unify the paradigms
into one framework capable of comparing and
selecting different learning methods based on
predicted achievable performance.

1 INTRODUCTION

As machine learning methods acquire increasing
amounts of knowledge based on imperfect instances,
the proliferation of low-utility knowledge increases,
and performance degrades. The general utility problem
in machine learning refers to the degradation of per-
formance due to increasing amounts of learned knowl-
edge [Holder, 1990]. This term derives from the wutil-
ity problem used by Minton [1988] to describe this
phenomenon in analytical learning, but generalizes to
other machine learning paradigms.

Other researchers have observed the ubiquity of the

utility problem in machine learning paradigms. Yoo
and Fisher [1991] compare the utility problem in ana-
lytical learning to the problems of noise and overfit in
empirical learning. This paper investigates the mech-
anisms underlying the general utility problem and at-
tempts to unify empirical and explanation-based learn-
ing within the context of this problem. The next sec-
tion introduces a tool for analyzing the general utility
problem called the performance response. Section 3
uses the performance response in experimentation with
several empirical learning methods, and Section 7.2
provides similar experimental results with analytical
learning. Results indicate a global trend in the perfor-
mance response of several different learners suffering
from the general utility problem.

The ability to model this trend would allow a con-
trol system to constrain the learning method to learn
just enough knowledge to achieve peak performance
and avoid the general utility problem. Section 6 intro-
duces and evaluates the Model-Based Adaptive Con-
trol (MBAC) system that fits a parabolic model to
the performance response trend. In order to obtain
increased model accuracy and avoid the need for per-
formance response sampling, formal models of the per-
formance response trend are necessary. Section 7 de-
scribes several such formal models. Section 8 con-
cludes by considering the commonality of the perfor-
mance response model in several learning paradigms
and the possibility of unifying different paradigms
based on this model.

2 PERFORMANCE RESPONSE

A useful tool for analyzing the general utility problem
in machine learning is the performance response. The
performance response is the performance of the learned
knowledge measured during the course of learning.
Figure 1 illustrates the typical performance response of
a learning method that suffers from the general utility
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Figure 1: Performance response indicative of the gen-
eral utility problem.

problem.

The horizontal axis of the performance response mea-
sures the amount of learned knowledge. The units
along this axis represent the change in learned knowl-
edge made by a knowledge transformation. A knowl-
edge transformation is a decomposition of the learn-
ing method into less complex operations affecting the
learned knowledge. For example, one decomposition
of a splitting algorithm is a single split, and one de-
composition of a neural network learning algorithm is
a cycle. Since a knowledge transformation may not
always increase the amount of learned knowledge in
terms of the size of the set of knowledge, an increase
along this axis more generally represents a refinement
of existing knowledge.

The vertical axis of the performance response mea-
sures the performance of the learned knowledge af-
ter each transformation. The measure of performance
depends upon the learning method. Different meth-
ods attempt to improve different dimensions of per-
formance. For example, a neural network primarily
attempts to improve classification accuracy, while an
explanation-based learning method attempts to im-
prove problem-solving speed. Other performance mea-
sures on the learned knowledge include the complexity
and storage cost of the knowledge. The classification
accuracy of empirical learners and the problem-solving
speed of analytical learners are the focus of this work.

As an example, Figure 2 illustrates three performance
responses obtained from the ID3 empirical learner
[Quinlan, 1986] on the DNF2 domain [Pagallo and
Haussler, 1990]. ID3 constructs a decision tree from
the training data by splitting the data at a node. Split-
ting continues until satisfaction of a stopping criterion.
Each performance response in Figure 2 represents a
different traversal (node split order) of the decision
tree. Performance is classification accuracy, and the
amount of learned knowledge increases with the num-
ber of splits. Each performance response is an average
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Figure 2: Performance responses for three traversals
of a decision tree induced from the DNF2 domain.

over ten trials. Each trial consists of selecting random
training and testing sets, generating the decision tree
using the training set, and measuring accuracy after
each split using the testing set.

As Figure 2 reveals, the order of the knowledge trans-
formations is important for perceiving the desired per-
formance response trend in Figure 1. The following
sections discuss this issue in more depth. When learn-
ing proceeds from general to specific, the performance
response follows the trend in Figure 1. Holder [1991a]
plots the performance responses for several learning
methods and shows that the trend is common to the
methods. The next two sections provide a more for-
mal understanding of the mechanisms that cause this
trend in the performance response. Section 7.1 ana-
lyzes empirical learning methods, and Section 7.2 an-
alyzes analytical methods. In both cases, the per-
formance response trend results from two contribut-
ing forces and depends on a precise definition of the
amount of learned knowledge in terms of the generality
of this knowledge.

3 EMPIRICAL LEARNING
RESPONSES

The general utility problem in empirical learning re-
lates to the overfit problem. Overfit occurs when the
learning method identifies errant patterns in the train-
ing data. Errant patterns may arise due to noise in
the training data or inadequate stopping criteria of
the method. As demonstrated below, splitting, set-
covering and neural network learning methods suffer
from overfit.
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Figure 3: Performance response of ID3.

3.1 SPLITTING METHODS

Splitting methods recursively split the set of training
data by choosing an appropriate feature or feature-
value pair. The knowledge produced by a splitting
method can be represented as a decision tree. The
learned knowledge changes every time the method
makes a split; therefore, one choice for the x-axis of
the performance response is the number of splits. The
y-axis (performance) measures the classification accu-
racy of the knowledge after each split, as measured
using a separate set of test data.

ID3 [Quinlan, 1986] induces decision trees by recur-
sively splitting the given set of training instances. The
ID3 performance response in Figure 3 plots the accu-
racy of the decision tree on a separate set of testing
instances after each split. Splits are performed in a
breadth-first order, deferring overfit to the later splits.
Figure 3 shows the performance response of ID3 on the

Flag! and DNF2 domains using the node-purity stop-
ping criterion. As the figure illustrates, this stopping
criterion causes overfit, and the performance responses
follow the trend of Figure 1.

Two tree-pruning techniques have been developed to
combat overfit: pre-pruning and post-pruning. Pre-
pruning constrains the stopping criterion to prevent
splitting of impure nodes when no feature provides
a significant increase in information resulting from a
split. Post-pruning uses the pure-nodes stopping cri-
terion to generate the decision tree, but then removes
subtrees of the resulting tree to improve performance.

Quinlan [1986] developed a pre-pruning technique
for ID3 based on the chi-square statistic (x?). Al
though chi-square pre-pruning reduces the number of
splits, overfit behavior is still evident. Increasing
the confidence value may further reduce the number
of splits, but does not eliminate overfit. Quinlan’s
[1987] reduced-error post-pruning technique removes
subtrees from the original decision tree until accuracy
decreases on a separate set of pruning instances. The
reduced-error pruning alleviates most of the overfit,
but on average the accuracy of the resulting tree is
less than the peak accuracy of the performance re-
sponse (see Table 1 in Section 5). Actual plots of these
versions of ID3 can be found in [Holder, 1991a].

The PLS1 program [Rendell, 1983] is similar to ID3,
but performs binary splits on feature-value pairs. At
each iteration, PLS1 chooses the split that maximizes
a probabilistic dissimilarity measure until the measure
is no longer positive. The measure includes a factor
t, that reduces the dissimilarity according to error in
the data. Typical values for ¢, are between 1 and 2.

Since PLS1 chooses to split only if the maximum dis-
similarity is positive, the ¢, constant can be used to re-
strict the amount of splitting. Thus, t, in PLS1 plays a
role analogous to the confidence level in the chi-square
pre-pruning technique for ID3. Figure 4 shows the per-
formance responses of PLS1 on the same domains used
for ID3 with t, = 1.5. Plots for other values of ¢, are
in [Holder, 1991a]. As with the chi-square pruning of
ID3, increasing t, reduces the number of splits made
by PLS1, but the tendency to overfit is still evident
(see Table 1 in Section 5).

3.2 SET-COVERING METHODS

Set-covering methods construct a hypothesis which de-
scribes a subset of the training instances, and then
applies the same method on the remaining training

'The Flag domain is available from the UC Irvine ma-
chine learning databases.
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Figure 4: PLS1 performance response.

instances. Since set-covering methods typically learn
disjunctive normal form (DNF) expressions for the hy-
potheses, the dimension used to measure the amount
of learned knowledge is the number of disjuncts in the
induced hypothesis.

During experimentation with the AQ system (specif-
ically, AQ15), Michalski [1989] found that repetitive
application of AQ can yield less accurate hypotheses
than a more conservative application strategy com-
bined with a more flexible inference mechanism than
exact matching. Michalski compared the accuracy of
the complete DNF hypothesis produced by AQ to trun-
cated versions of the same hypothesis. The first trun-
cated version of the hypothesis consists of the single
disjunct covering the most examples (best disjunct).
The second truncated version of the hypothesis con-
sists of only those disjuncts covering more than one
unique example (unigue > 1). The truncated hypothe-
ses use a simple matching procedure for classifying un-
covered and multiply-covered examples (see [Michal-
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Figure 5: Performance response of AQ in three medical
domains.

ski, 1989] for details).

Although based on only four points, Figure 5 ap-
proximates the performance response of AQ in three
medical domains (Lymphography, Breast Cancer and
Primary Tumor) averaged over four trials. Figure 5
demonstrates that AQ also suffers from the general
utility problem with increasing numbers of disjuncts,
and the response curves indicate the same trend as in
Figure 1.

The CN2 program [Clark and Niblett, 1989] is another
set-covering empirical learning method. CN2 produces
an ordered DNF hypothesis in the form of a deci-
sion list. Analyzing the hypotheses produced by CN2,
Holte et al. [1989] reveal that the accuracy of the hy-
pothesis degrades with the addition of small disjuncts.
Because they are motivated from a small number of ex-
amples, small disjuncts are typically more error prone
than large disjuncts. Therefore, CN2 suffers from the
general utility problem due to the increasing amounts
of low utility (small disjunct) knowledge.

3.3 NEURAL NETWORK METHODS

Neural networks learn from training data by present-
ing the feature values of an instance to the input
layer, comparing the output layer’s prediction to the
instance’s class, and updating the connection weights
according to the difference. One method for updating
the weights in such a network is error back-propagation
[Rumelhart et al., 1986]. Each error back-propagation
pass through the training instances is called a cycle.

As the number of cycles increases, the network more
accurately classifies the training instances. However,
overfit eventually occurs as the network learns the
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Figure 6: BackProp performance response.

training instances too precisely, degrading accuracy
on the test data. To analyze the overfit of the back-
propagation neural network, the performance response
measures accuracy of the network after every five cy-
cles.

Figure 6 shows the performance response of the error
back-propagation neural network (BackProp) on the
Flag and DNF2 domains. For these experiments, the
learning rate n was set at 0.5, and the network con-
tained one hidden layer with four units. The choice
of learning rate was arbitrary, because with a high
enough learning rate, the number of hidden units de-
termines the complexity of the function learnable by
the network and, therefore, the extent of possible over-
fit [Karnin, 1990]. The output layer has two units, one
for each of the two classes. The input layer has one
unit for each feature-value pair in the domain. The
network correctly classifies an instance if the output
signals are within 0.1 of their desired values.

The BackProp response on the Flag and DNF2 do-
mains follows the general utility problem trend as in
Figure 1. Table 1 in Section 5 reveals that on average
the network at the initial peak performs better than
the final network.

4 ANALYTICAL LEARNING
RESPONSES

In experimentation with the MORRIS analytical learn-
ing system, Minton found that performance eventually
degrades with increasing numbers of learned macro-
operators [Minton, 1985]. Minton called this phe-
nomenon the wutility problem and offered the PRODIGY
system as a solution [Minton, 1988]. PRODIGY main-
tains empirical estimates of rule utility and discards
rules whose utility value becomes negative.

Experimentation with the SOAR [Tambe and Rosen-
bloom, 1989] and EcGs [Mooney, 1989] analytical
learning systems indicates similar results. Tambe and
Rosenbloom suggest restricting the expressiveness of
the learned rules so that the complexity of the match
is kept linear in the number of matching conditions.
Mooney recommends limited use of the learned rules.

Although experimentation with the above analytical
learning systems confirms the existence of the util-
ity problem, the experiments typically do not show
the performance response of the system. This section
plots the performance response of a simple analytical
learner in Figure 7. The analytical learner consists
of a forward-chaining planner and a STRIPS-like plan
generalizer [Fikes et al., 1972]. Two domains are used
in the experimentation: blocks and robot. The blocks
domain consists of four operators for stacking and un-
stacking blocks. The robot domain consists of eight
operators allowing the robot to move boxes within a
layout of connected rooms.

The experiments proceed by solving a training prob-
lem in the domain, generalizing the resulting plan,
adding the generalized plan to the set of available op-
erators, and then measuring the amount of CPU time
needed to solve a separate set of test problems using
the augmented set of operators. The x-axis of the per-
formance response is the number of learned macrops.
The y-axis measures the inverse CPU time needed to
solve the set of test problems. Inverse CPU time al-
lows an increase along the y-axis to reflect an increase
in planner performance.

Figure 7 plots the performance response of the plan-
ner while learning macrops in the blocks and robot
domains. Although erratic in the blocks domain, both
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Figure 7: Planner performance response.

responses follow the trend of the general utility prob-
lem.

5 TRENDS

The previous sections verify the existence of the gen-
eral utility problem in several machine learning meth-
ods. Furthermore, the performance responses of these
methods follow the general trend illustrated in Fig-
ure 1. Adopting this trend as a model of the per-
formance response permits the control of the general
utility problem by constraining the amount of learned
knowledge to reside at the point corresponding to the
peak performance.

Tables 1 and 2 quantify the possible performance
gains by using this model-based control of the amount
of learned knowledge. Each entry in the tables is
the percentage final performance of peak performance

(2::11 x 100) averaged over ten performance response

Table 1: Percentage final performance of peak for in-
ductive learners.

Domain
Method BC | Flag | Flare | Vote | DNF2
ID3 91.2 | 88.2 95.0 97.6 93.6

ID3 Chi 99.0 89.0 | 88.5 | 944 | 98.1 94.4
ID3 Chi 99.9 90.8 | 89.9 | 96.1 | 97.0 97.2
ID3 Red-Err 98.6 | 95.4 | 98.7 | 99.7 | 100.3

PLS1t, =1.0 | 87.9 | 96.3 97.7 98.1 92.8
PLS1t, =15 | 924 | 97.6 98.5 98.9 92.8
PLS1t, =20 | 946 | 984 98.5 99.3 95.6
BP4 82.8 | 89.8 88.2 92.6 91.1
Table 2: Percentage final performance of peak for
Planner.
Domain
Method | Blocks | Robot
Planner 67.4 76.1
curves.

Table 1 lists entries for several of the previously de-
scribed empirical learning methods on five different
domains?. Table 2 lists entries for the Planner ana-
lytical learner on two domains. Note that the entries
in Table 2 can be arbitrarily deflated by allowing the
analytical learner to acquire more macrops.

As shown in Tables 1 and 2, the final performance is
less than the peak performance for all but one case. A
majority of the values are statistically significant, and
in the cases where the significance is low, the peak
of the performance response is no worse than the fi-
nal performance. Thus, the ability to constrain the
amount of learned knowledge to the point correspond-
ing to peak performance will improve the performance
of the learner. Although individual methods exist for
alleviating the general utility problem in each particu-
lar learning method, the performance response model
offers a general method for avoiding the general utility
problem in many machine learning methods.

6 EMPIRICAL MODELS

The performance response plots of previous sections
show that several learning methods follow the behavior
of the general utility problem in Figure 1. The results
in the previous section show that learning methods
will benefit from controlling the amount of knowledge
learned. Maintaining a model of the trend would allow
a control system to determine the necessary amount of

2The Breast Cancer (BC), Flare and Voting (Vote) do-
mains are from the UC Irvine machine learning databases.



Table 3: Actual peak performance minus MBAC peak
performance for empirical learners using the parabolic
model. The standard deviation of the parabolic model

appears in parentheses.

BC Flag
ID3 0.000(0.042) | 0.003(0.063)
PLS1 | 0.012(0.037) | 0.002(0.041)
BP4 | 0.020(0.138) | 0.031(0.085)
BP8 0.003(0.077) | 0.043(0.096)
BP16 | 0.018(0.112) | 0.006(0.093)
Flare Vote
ID3 0.004(0.017) | 0.019(0.076)
PLS1 | 0.003(0.017) | 0.003(0.058)
BP4 | 0.028(0.189) | 0.004(0.028)
BP8 0.027(0.163) | 0.001(0.035)
BP16 | 0.028(0.148) | 0.004(0.020)

learned knowledge and prevent overfit. Furthermore,
the model can also predict the achievable performance
of the learning method at the peak of the performance
response. This value can be used to compare alter-
native learning methods for a learning task [Holder,
1991b]. The MBAC (Model-Based Adaptive Control)
system uses a parabola to model the performance re-
sponse trend. Using this model, MBAC is able to
control the learner and achieve increased performance
[Holder, 1991al.

Avoidance of the general utility problem requires that
the amount of learned knowledge correspond to the
peak of the performance response. The results in Ta-
ble 3 evaluate MBAC’s ability to converge to this peak.
The experimental method first generates ten perfor-
mance response curves. Each response curve is the
result of learning on a randomly-selected set of train-
ing examples and testing on a randomly-selected set
of test examples. Given the data points from the
ten curves, MBAC computes the parabolic and de-
termines the number of transformations (amount of
learned knowledge) needed to reach the peak of the
instantiated models.

Next, the experimental method generates ten testing
response curves using the same technique described
above on another ten randomly-selected training and
testing sets. The method finds the actual peak P4 of
the average of the ten response curves. The method
measures the performance Pp; along the testing re-
sponse curve corresponding to the number of transfor-
mations suggested by the model. Py, is the perfor-
mance along the testing response corresponding to the
peak of the instantiated parabola.

Table 3 lists the average difference P4 — Py for the
empirical learners and indicates the standard devia-
tion of the model in parentheses.?. Comparison of this
difference with the standard deviation of the parabolic
model indicates whether the error in P4 — Py is within
the error (one standard deviation) of the model. The
standard deviation of the parabolic model is the av-
erage absolute difference between each point used to
fit the model and the estimated parabola. Table 3
indicates that the difference between actual peak per-
formance and MBAC peak performance is within one
standard deviation of the model. Thus, the parabolic
model’s predicted peak in the performance response is
correct within the error of the model.

Although the parabolic model improves performance,
it does not always accurately predict the peak of the
performance response. A more formal model is nec-
essary that includes parameters based on the current
learning task, such as number of instances or size of
the instance space. The commonality of the general
utility problem trend suggests that a general formal
model may encompass several learning methods.

7 FORMAL MODELS

Although most of the formal analysis has occurred on
empirical learning, analysis shows that if the amount
of learned knowledge corresponds to the complexity
(specificity) of the induced hypothesis, then the per-
formance response trend results from two components
affecting accuracy: accuracy on the training data and
accuracy on the testing data.

7.1 EMPIRICAL LEARNING

The CART program (Classification and Regression
Trees) developed by Breiman et al. [1984] is another
splitting method for inducing decision trees similar to
ID3 [Quinlan, 1986] and PLS1 [Rendell, 1983]. The
emphasis of this treatment of CART is not the de-
tails of the method, but a statistical analysis of the
performance response (see appendix to Chapter 3 in
[Breiman et al., 1984]). Breiman et al. show that the
shape of the performance (accuracy) response is the
result of a tradeoff between bias and variance. Bias
expresses the degree of fit of the decision tree to the
classification surface (training instances). A low bias
(many small hyper-rectangles) is preferred to a high
bias (few large hyper-rectangles), because low bias al-
lows a more precise fit to the data. However, a low bias
increases the likelihood that hyper-rectangles produce
classification errors due to a majority of the wrong

3BPn stands for BackProp with n hidden units
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class. Breiman et al. refer to this source of classifi-
cation error as wariance. This is not variance in the
statistical sense of the expected value of the squared
error, but an estimate of the discrepancy of the classi-
fication error from the Bayes error.

The analysis expresses the bias and variance in terms
of the number of leaves L in the decision tree. Assum-
ing binary splits at each node of the tree, the number
of splits is L — 1. Therefore, the behavior of the bias
and variance as the number of splits increase will be
similar to the behavior as L increases. The expression
for the classification error R(L) in terms of the bias
B(L) and the variance V(L) is

R(L)=B(L)+V(L)+ R" (1)
where R* is the Bayes optimal classification error.

Breiman et al. derive the following constraints on the
bias B(L) and the variance V(L):

c [ L *
B(L)Sma V(L) < N V(IL=N)<R

where C is a constant, M is the dimension of the in-
stance space (i.e., number of features used to describe
the training instances), and N is the number of train-
ing instances. These expressions are for the classifica-
tion error. As predicted, the bias decreases rapidly for
small L and more slowly as L increases. The variance
increases slowly as L increases. When L ~ N and
each hyper-rectangle contains one training instance,
the variance is bounded by the Bayes error R*.

Equation 1 is an expression of the classification er-
ror response curve. Figure 8a plots the bias B(L),
variance V (L), Bayes error R*, and estimated classi-
fication error R(L) from Equation 1, where C = 0.35,
M =20, N = 1000 and R* = 0.15.* The plot extends
from L = 0 to L = N = 1000; however, the stop-
ping criteria of actual decision tree induction programs
would discontinue splitting at a point much less than
N. For comparison to previous response curves, the er-
ror response curve is subtracted from one to yield the
accuracy response curve in Figure 8b. The similarity
of this performance response to that of Figure 1 sup-
ports the existence of a single peak and the inevitabil-
ity of overfit in splitting algorithms without appropri-
ate stopping criteria or post-pruning techniques. Max-
imizing performance while avoiding overfit requires the
determination of the number of splits L corresponding
to the peak of the performance response.

A similar analysis applies to agglomerative methods.
Each time a splitting method makes a split in the deci-
sion tree, the resulting DNF expression of the hypoth-
esis replaces a single disjunct with two, more specific
disjuncts (assuming binary splits). Therefore, adding
a disjunct to the DNF hypothesis in an agglomerative
method is analogous to making a split in a splitting
method. The above definitions of bias and variance
apply directly to the agglomerative case. Decreasing
the bias increases the number of disjuncts until each
disjunct describes a single training instance. Variance,
the error due to incorrect classifications made by the
disjuncts on unseen testing instances, increases with
decreasing bias. The corresponding expressions for
bias and variance as a function of the number of dis-
juncts have a similar behavior as those depending on
the number of splits, and the agglomerative perfor-
mance response follows the behavior in Figure 8.

The performance response trend in neural networks
is also the sum of the performance on training data

*For binary decision trees, L < 2.
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ron [1984] for a network as a function of the number
of coefficients k in the network model.

and the performance on testing data. Before relat-
ing performance to the number of cycles, this analysis
first considers the number of coefficients in the model
represented by the network. Network models with
increasing complexity (e.g., number of hidden units)
have higher numbers of coefficients. If the complexity
of the network is higher than the complexity of the
problem, the complex network will use the overabun-
dance of coefficients to overfit the training data.

Barron [1984] derives an expression for the predicted
squared error (PSE) of the network that depends on
the number of coefficients. The expression for PSE is

PSE = TSE + 2025
n

TSE stands for the squared error of the network on
the training examples, o2 is a prior estimate of the

true error variance, k is the number of coefficients in
the network model, and n is the number of training
examples. One estimate of the true error variance o
is the actual variance in the training data. The second
term of PSE serves as an overfit penalty for exces-
sively complex models. Assuming TSE has a similar
behavior as the bias in Figure 8, Figure 9a plots the
two components of PSE and their sum as a function
of k for n = 100. Figure 9b plots the same function
subtracted from one to show the same orientation of
previous performance responses. The resulting curve
confirms the general utility problem trend in networks.

The above analysis uses the number of coefficients k as
a measure of the amount of learned knowledge; how-
ever, the performance responses for neural networks
use the number of cycles as a measure of the amount
of learned knowledge. One possibility for relating the
number of cycles to the number of coefficients & is to
show that the higher numbers of coefficients in the net-
work model are not used (negligibly small) until later
cycles. In other words, earlier cycles use fewer coef-
ficients to learn global patterns in the training data.
As the cycles continue, the network attempts to reduce
the error on noisy (or anomalous) training data by uti-
lizing more coefficients to fit a higher-degree function
to the training data.

The following argument derives from our observa-
tions of the error back-propagation method during the
course of learning. The observations reveal that the
network quickly learns to correctly classify a major-
ity of the training data and uses the remaining cycles
to learn a smaller subset of the training data. One
cycle involves a single pass through the entire set of
training data, where each incorrect classification initi-
ates the error back-propagation procedure to update
the weights toward correcting the error. Initially, a
majority of the weight updates are due to errors on
the training data representing the global patterns (the
more prevalent data). After the network learns these
global patterns, the majority of weight updates are
due to errors on less prevalent patterns in the train-
ing data. One possible interpretation of this behavior
is that later cycles attempt to fit higher degrees of
the function represented by the training data. If this
interpretation holds®, then as the number of cycles in-
creases, so does the degree (complexity) of the hypoth-
esis learned by the network. Therefore, roughly similar
behavior to that of Figure 9 will exist if the number of
cycles replaces k along the amount of learned knowl-
edge axis.

5Observations by Mozer and Smolensky [1989] support
a similar interpretation, but more experimentation is nec-
essary to confirm the reason for this behavior.



7.2 ANALYTICAL LEARNING

An analytical learner is similar to an empirical learner
in that both seek a concept that maximizes perfor-
mance. The concept sought by an analytical learner
is a set of macro-operators or control rules minimizing
the time taken by the problem solver to solve prob-
lems from some domain. If the set of problems used
to train the learner is not representative of the dis-
tribution of problems in the domain, then the perfor-
mance obtained for the training examples may degrade
performance on the testing examples for reasons sim-
ilar to overfit in empirical learners. However, the fac-
tors underlying the performance degradation are dif-
ferent from those affecting empirical learners. Minton
[1990] identifies three ways in which macro-learning af-
fects the problem-solving performance of an analytical
learner. A simple quantification of these three compo-
nents in terms of branching factors behaves similarly
to the general utility problem trend [Holder, 1991a],
but the exact relationship between macro-operator (or
control rule) learning and performance is not fully un-
derstood.

8 CONCLUSIONS

Both experimental and formal analysis verify the com-
monality of the performance response trend in Fig-
ure 1 for many learning paradigms. The analysis indi-
cates that the trends result from two factors: one in-
creasing performance and one decreasing performance.
Furthermore, both analyses constrain the order of in-
creasing the amount of learned knowledge to be from
general to specific. The overall behavior of the per-
formance response is a curve increasing rapidly to a
single peak and then decreasing slowly after the peak.

Modeling the performance response trend allows the
control of the general utility problem by using the
model to predict the amount of learned knowledge cor-
responding to the peak of the performance response.
Holder [1991a] describes the MBAC (Model-Based
Adaptive Control) system that relies on one empirical
model (parabola) for every learning method. Although
MBAC improves performance by adaptively converg-
ing to the performance response peak, a formal would
be more accurate due to its more direct dependence on
properties of the learning task. As more formal models
appear, they can replace the empirical model in MBAC
to improve performance. Further analysis of the gen-
eral utility problem will derive more general models
encompassing multiple learning methods. These mod-
els will form the basis of a powerful control system for
selecting from alternative learning methods and con-

trolling the selected method to avoid the performance
degradation underlying the general utility problem.

A utility-based model of learning based on the
performance response curve is useful for predicting
achievable performance and constraining the learning
method to converge to the corresponding amount of
knowledge. The existing models for empirical learning
and the evolving relationship between empirical and
explanation-based learning suggest the possibility of
deriving general models of the performance response
that unify the two learning paradigms. Furthermore,
these models can be used to combine different learning
methods into a single framework that selects the best
learning method according to achievable performance
on the learning task [Holder, 1991b].
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