
Unifying Empirical and Explanation-Based Learning by Modelingthe Utility of Learned Knowledge
Lawrence B. HolderDepartment of Computer Science EngineeringUniversity of Texas at ArlingtonBox 19015, Arlington, TX 76019AbstractThe over�t problem in empirical learningand the utility problem in explanation-basedlearning describe a similar phenomenon: thedegradation of performance due to an in-crease in the amount of learned knowledge.Plotting the performance of learned knowl-edge during the course of learning (the per-formance response) reveals a common trendfor several learning methods. Modeling thistrend allows a control system to constrainthe amount of learned knowledge to achievepeak performance and avoid the general util-ity problem. Experiments evaluate a partic-ular empirical model of the trend, and analy-sis of the learners derive several formal mod-els. If, as evidence suggests, the general util-ity problem can be modeled using the samemechanisms for di�erent learning paradigms,then the model serves to unify the paradigmsinto one framework capable of comparing andselecting di�erent learning methods based onpredicted achievable performance.1 INTRODUCTIONAs machine learning methods acquire increasingamounts of knowledge based on imperfect instances,the proliferation of low-utility knowledge increases,and performance degrades. The general utility problemin machine learning refers to the degradation of per-formance due to increasing amounts of learned knowl-edge [Holder, 1990]. This term derives from the util-ity problem used by Minton [1988] to describe thisphenomenon in analytical learning, but generalizes toother machine learning paradigms.Other researchers have observed the ubiquity of the

utility problem in machine learning paradigms. Yooand Fisher [1991] compare the utility problem in ana-lytical learning to the problems of noise and over�t inempirical learning. This paper investigates the mech-anisms underlying the general utility problem and at-tempts to unify empirical and explanation-based learn-ing within the context of this problem. The next sec-tion introduces a tool for analyzing the general utilityproblem called the performance response. Section 3uses the performance response in experimentation withseveral empirical learning methods, and Section 7.2provides similar experimental results with analyticallearning. Results indicate a global trend in the perfor-mance response of several di�erent learners su�eringfrom the general utility problem.The ability to model this trend would allow a con-trol system to constrain the learning method to learnjust enough knowledge to achieve peak performanceand avoid the general utility problem. Section 6 intro-duces and evaluates the Model-Based Adaptive Con-trol (MBAC) system that �ts a parabolic model tothe performance response trend. In order to obtainincreased model accuracy and avoid the need for per-formance response sampling, formal models of the per-formance response trend are necessary. Section 7 de-scribes several such formal models. Section 8 con-cludes by considering the commonality of the perfor-mance response model in several learning paradigmsand the possibility of unifying di�erent paradigmsbased on this model.2 PERFORMANCE RESPONSEA useful tool for analyzing the general utility problemin machine learning is the performance response. Theperformance response is the performance of the learnedknowledge measured during the course of learning.Figure 1 illustrates the typical performance response ofa learning method that su�ers from the general utility
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Amount of Learned KnowledgeFigure 1: Performance response indicative of the gen-eral utility problem.problem.The horizontal axis of the performance response mea-sures the amount of learned knowledge. The unitsalong this axis represent the change in learned knowl-edge made by a knowledge transformation. A knowl-edge transformation is a decomposition of the learn-ing method into less complex operations a�ecting thelearned knowledge. For example, one decompositionof a splitting algorithm is a single split, and one de-composition of a neural network learning algorithm isa cycle. Since a knowledge transformation may notalways increase the amount of learned knowledge interms of the size of the set of knowledge, an increasealong this axis more generally represents a re�nementof existing knowledge.The vertical axis of the performance response mea-sures the performance of the learned knowledge af-ter each transformation. The measure of performancedepends upon the learning method. Di�erent meth-ods attempt to improve di�erent dimensions of per-formance. For example, a neural network primarilyattempts to improve classi�cation accuracy, while anexplanation-based learning method attempts to im-prove problem-solving speed. Other performance mea-sures on the learned knowledge include the complexityand storage cost of the knowledge. The classi�cationaccuracy of empirical learners and the problem-solvingspeed of analytical learners are the focus of this work.As an example, Figure 2 illustrates three performanceresponses obtained from the ID3 empirical learner[Quinlan, 1986] on the DNF2 domain [Pagallo andHaussler, 1990]. ID3 constructs a decision tree fromthe training data by splitting the data at a node. Split-ting continues until satisfaction of a stopping criterion.Each performance response in Figure 2 represents adi�erent traversal (node split order) of the decisiontree. Performance is classi�cation accuracy, and theamount of learned knowledge increases with the num-ber of splits. Each performance response is an average
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Figure 2: Performance responses for three traversalsof a decision tree induced from the DNF2 domain.over ten trials. Each trial consists of selecting randomtraining and testing sets, generating the decision treeusing the training set, and measuring accuracy aftereach split using the testing set.As Figure 2 reveals, the order of the knowledge trans-formations is important for perceiving the desired per-formance response trend in Figure 1. The followingsections discuss this issue in more depth. When learn-ing proceeds from general to speci�c, the performanceresponse follows the trend in Figure 1. Holder [1991a]plots the performance responses for several learningmethods and shows that the trend is common to themethods. The next two sections provide a more for-mal understanding of the mechanisms that cause thistrend in the performance response. Section 7.1 ana-lyzes empirical learning methods, and Section 7.2 an-alyzes analytical methods. In both cases, the per-formance response trend results from two contribut-ing forces and depends on a precise de�nition of theamount of learned knowledge in terms of the generalityof this knowledge.3 EMPIRICAL LEARNINGRESPONSESThe general utility problem in empirical learning re-lates to the over�t problem. Over�t occurs when thelearning method identi�es errant patterns in the train-ing data. Errant patterns may arise due to noise inthe training data or inadequate stopping criteria ofthe method. As demonstrated below, splitting, set-covering and neural network learning methods su�erfrom over�t.
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Figure 3: Performance response of ID3.3.1 SPLITTING METHODSSplitting methods recursively split the set of trainingdata by choosing an appropriate feature or feature-value pair. The knowledge produced by a splittingmethod can be represented as a decision tree. Thelearned knowledge changes every time the methodmakes a split; therefore, one choice for the x-axis ofthe performance response is the number of splits. They-axis (performance) measures the classi�cation accu-racy of the knowledge after each split, as measuredusing a separate set of test data.ID3 [Quinlan, 1986] induces decision trees by recur-sively splitting the given set of training instances. TheID3 performance response in Figure 3 plots the accu-racy of the decision tree on a separate set of testinginstances after each split. Splits are performed in abreadth-�rst order, deferring over�t to the later splits.Figure 3 shows the performance response of ID3 on the

Flag1 and DNF2 domains using the node-purity stop-ping criterion. As the �gure illustrates, this stoppingcriterion causes over�t, and the performance responsesfollow the trend of Figure 1.Two tree-pruning techniques have been developed tocombat over�t: pre-pruning and post-pruning. Pre-pruning constrains the stopping criterion to preventsplitting of impure nodes when no feature providesa signi�cant increase in information resulting from asplit. Post-pruning uses the pure-nodes stopping cri-terion to generate the decision tree, but then removessubtrees of the resulting tree to improve performance.Quinlan [1986] developed a pre-pruning techniquefor ID3 based on the chi-square statistic (�2). Al-though chi-square pre-pruning reduces the number ofsplits, over�t behavior is still evident. Increasingthe con�dence value may further reduce the numberof splits, but does not eliminate over�t. Quinlan's[1987] reduced-error post-pruning technique removessubtrees from the original decision tree until accuracydecreases on a separate set of pruning instances. Thereduced-error pruning alleviates most of the over�t,but on average the accuracy of the resulting tree isless than the peak accuracy of the performance re-sponse (see Table 1 in Section 5). Actual plots of theseversions of ID3 can be found in [Holder, 1991a].The PLS1 program [Rendell, 1983] is similar to ID3,but performs binary splits on feature-value pairs. Ateach iteration, PLS1 chooses the split that maximizesa probabilistic dissimilarity measure until the measureis no longer positive. The measure includes a factort� that reduces the dissimilarity according to error inthe data. Typical values for t� are between 1 and 2.Since PLS1 chooses to split only if the maximum dis-similarity is positive, the t� constant can be used to re-strict the amount of splitting. Thus, t� in PLS1 plays arole analogous to the con�dence level in the chi-squarepre-pruning technique for ID3. Figure 4 shows the per-formance responses of PLS1 on the same domains usedfor ID3 with t� = 1:5. Plots for other values of t� arein [Holder, 1991a]. As with the chi-square pruning ofID3, increasing t� reduces the number of splits madeby PLS1, but the tendency to over�t is still evident(see Table 1 in Section 5).3.2 SET-COVERING METHODSSet-covering methods construct a hypothesis which de-scribes a subset of the training instances, and thenapplies the same method on the remaining training1The Flag domain is available from the UC Irvine ma-chine learning databases.
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 PLS1 on Flag with tα = 1.5
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 PLS1 Response on DNF2 with tα = 1.5Figure 4: PLS1 performance response.instances. Since set-covering methods typically learndisjunctive normal form (DNF) expressions for the hy-potheses, the dimension used to measure the amountof learned knowledge is the number of disjuncts in theinduced hypothesis.During experimentation with the AQ system (specif-ically, AQ15), Michalski [1989] found that repetitiveapplication of AQ can yield less accurate hypothesesthan a more conservative application strategy com-bined with a more 
exible inference mechanism thanexact matching. Michalski compared the accuracy ofthe complete DNF hypothesis produced by AQ to trun-cated versions of the same hypothesis. The �rst trun-cated version of the hypothesis consists of the singledisjunct covering the most examples (best disjunct).The second truncated version of the hypothesis con-sists of only those disjuncts covering more than oneunique example (unique > 1). The truncated hypothe-ses use a simple matching procedure for classifying un-covered and multiply-covered examples (see [Michal-
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Figure 5: Performance response of AQ in three medicaldomains.ski, 1989] for details).Although based on only four points, Figure 5 ap-proximates the performance response of AQ in threemedical domains (Lymphography, Breast Cancer andPrimary Tumor) averaged over four trials. Figure 5demonstrates that AQ also su�ers from the generalutility problem with increasing numbers of disjuncts,and the response curves indicate the same trend as inFigure 1.The CN2 program [Clark and Niblett, 1989] is anotherset-covering empirical learning method. CN2 producesan ordered DNF hypothesis in the form of a deci-sion list. Analyzing the hypotheses produced by CN2,Holte et al. [1989] reveal that the accuracy of the hy-pothesis degrades with the addition of small disjuncts.Because they are motivated from a small number of ex-amples, small disjuncts are typically more error pronethan large disjuncts. Therefore, CN2 su�ers from thegeneral utility problem due to the increasing amountsof low utility (small disjunct) knowledge.3.3 NEURAL NETWORK METHODSNeural networks learn from training data by present-ing the feature values of an instance to the inputlayer, comparing the output layer's prediction to theinstance's class, and updating the connection weightsaccording to the di�erence. One method for updatingthe weights in such a network is error back-propagation[Rumelhart et al., 1986]. Each error back-propagationpass through the training instances is called a cycle.As the number of cycles increases, the network moreaccurately classi�es the training instances. However,over�t eventually occurs as the network learns the
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Figure 6: BackProp performance response.training instances too precisely, degrading accuracyon the test data. To analyze the over�t of the back-propagation neural network, the performance responsemeasures accuracy of the network after every �ve cy-cles.Figure 6 shows the performance response of the errorback-propagation neural network (BackProp) on theFlag and DNF2 domains. For these experiments, thelearning rate � was set at 0.5, and the network con-tained one hidden layer with four units. The choiceof learning rate was arbitrary, because with a highenough learning rate, the number of hidden units de-termines the complexity of the function learnable bythe network and, therefore, the extent of possible over-�t [Karnin, 1990]. The output layer has two units, onefor each of the two classes. The input layer has oneunit for each feature-value pair in the domain. Thenetwork correctly classi�es an instance if the outputsignals are within 0.1 of their desired values.

The BackProp response on the Flag and DNF2 do-mains follows the general utility problem trend as inFigure 1. Table 1 in Section 5 reveals that on averagethe network at the initial peak performs better thanthe �nal network.4 ANALYTICAL LEARNINGRESPONSESIn experimentation with the Morris analytical learn-ing system, Minton found that performance eventuallydegrades with increasing numbers of learned macro-operators [Minton, 1985]. Minton called this phe-nomenon the utility problem and o�ered the Prodigysystem as a solution [Minton, 1988]. Prodigy main-tains empirical estimates of rule utility and discardsrules whose utility value becomes negative.Experimentation with the Soar [Tambe and Rosen-bloom, 1989] and Eggs [Mooney, 1989] analyticallearning systems indicates similar results. Tambe andRosenbloom suggest restricting the expressiveness ofthe learned rules so that the complexity of the matchis kept linear in the number of matching conditions.Mooney recommends limited use of the learned rules.Although experimentation with the above analyticallearning systems con�rms the existence of the util-ity problem, the experiments typically do not showthe performance response of the system. This sectionplots the performance response of a simple analyticallearner in Figure 7. The analytical learner consistsof a forward-chaining planner and a STRIPS-like plangeneralizer [Fikes et al., 1972]. Two domains are usedin the experimentation: blocks and robot. The blocksdomain consists of four operators for stacking and un-stacking blocks. The robot domain consists of eightoperators allowing the robot to move boxes within alayout of connected rooms.The experiments proceed by solving a training prob-lem in the domain, generalizing the resulting plan,adding the generalized plan to the set of available op-erators, and then measuring the amount of CPU timeneeded to solve a separate set of test problems usingthe augmented set of operators. The x-axis of the per-formance response is the number of learned macrops.The y-axis measures the inverse CPU time needed tosolve the set of test problems. Inverse CPU time al-lows an increase along the y-axis to re
ect an increasein planner performance.Figure 7 plots the performance response of the plan-ner while learning macrops in the blocks and robotdomains. Although erratic in the blocks domain, both
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Figure 7: Planner performance response.responses follow the trend of the general utility prob-lem.5 TRENDSThe previous sections verify the existence of the gen-eral utility problem in several machine learning meth-ods. Furthermore, the performance responses of thesemethods follow the general trend illustrated in Fig-ure 1. Adopting this trend as a model of the per-formance response permits the control of the generalutility problem by constraining the amount of learnedknowledge to reside at the point corresponding to thepeak performance.Tables 1 and 2 quantify the possible performancegains by using this model-based control of the amountof learned knowledge. Each entry in the tables isthe percentage �nal performance of peak performance( �nalpeak � 100) averaged over ten performance response

Table 1: Percentage �nal performance of peak for in-ductive learners. DomainMethod BC Flag Flare Vote DNF2ID3 91.2 88.2 95.0 97.6 93.6ID3 Chi 99.0 89.0 88.5 94.4 98.1 94.4ID3 Chi 99.9 90.8 89.9 96.1 97.0 97.2ID3 Red-Err 98.6 95.4 98.7 99.7 100.3PLS1 t� = 1.0 87.9 96.3 97.7 98.1 92.8PLS1 t� = 1.5 92.4 97.6 98.5 98.9 92.8PLS1 t� = 2.0 94.6 98.4 98.5 99.3 95.6BP4 82.8 89.8 88.2 92.6 91.1Table 2: Percentage �nal performance of peak forPlanner. DomainMethod Blocks RobotPlanner 67.4 76.1curves.Table 1 lists entries for several of the previously de-scribed empirical learning methods on �ve di�erentdomains2. Table 2 lists entries for the Planner ana-lytical learner on two domains. Note that the entriesin Table 2 can be arbitrarily de
ated by allowing theanalytical learner to acquire more macrops.As shown in Tables 1 and 2, the �nal performance isless than the peak performance for all but one case. Amajority of the values are statistically signi�cant, andin the cases where the signi�cance is low, the peakof the performance response is no worse than the �-nal performance. Thus, the ability to constrain theamount of learned knowledge to the point correspond-ing to peak performance will improve the performanceof the learner. Although individual methods exist foralleviating the general utility problem in each particu-lar learning method, the performance response modelo�ers a general method for avoiding the general utilityproblem in many machine learning methods.6 EMPIRICAL MODELSThe performance response plots of previous sectionsshow that several learning methods follow the behaviorof the general utility problem in Figure 1. The resultsin the previous section show that learning methodswill bene�t from controlling the amount of knowledgelearned. Maintaining a model of the trend would allowa control system to determine the necessary amount of2The Breast Cancer (BC), Flare and Voting (Vote) do-mains are from the UC Irvine machine learning databases.



Table 3: Actual peak performance minus MBAC peakperformance for empirical learners using the parabolicmodel. The standard deviation of the parabolic modelappears in parentheses.BC FlagID3 0.000(0.042) 0.003(0.063)PLS1 0.012(0.037) 0.002(0.041)BP4 0.020(0.138) 0.031(0.085)BP8 0.003(0.077) 0.043(0.096)BP16 0.018(0.112) 0.006(0.093)Flare VoteID3 0.004(0.017) 0.019(0.076)PLS1 0.003(0.017) 0.003(0.058)BP4 0.028(0.189) 0.004(0.028)BP8 0.027(0.163) 0.001(0.035)BP16 0.028(0.148) 0.004(0.020)learned knowledge and prevent over�t. Furthermore,the model can also predict the achievable performanceof the learning method at the peak of the performanceresponse. This value can be used to compare alter-native learning methods for a learning task [Holder,1991b]. The MBAC (Model-Based Adaptive Control)system uses a parabola to model the performance re-sponse trend. Using this model, MBAC is able tocontrol the learner and achieve increased performance[Holder, 1991a].Avoidance of the general utility problem requires thatthe amount of learned knowledge correspond to thepeak of the performance response. The results in Ta-ble 3 evaluate MBAC's ability to converge to this peak.The experimental method �rst generates ten perfor-mance response curves. Each response curve is theresult of learning on a randomly-selected set of train-ing examples and testing on a randomly-selected setof test examples. Given the data points from theten curves, MBAC computes the parabolic and de-termines the number of transformations (amount oflearned knowledge) needed to reach the peak of theinstantiated models.Next, the experimental method generates ten testingresponse curves using the same technique describedabove on another ten randomly-selected training andtesting sets. The method �nds the actual peak PA ofthe average of the ten response curves. The methodmeasures the performance PM along the testing re-sponse curve corresponding to the number of transfor-mations suggested by the model. PM is the perfor-mance along the testing response corresponding to thepeak of the instantiated parabola.

Table 3 lists the average di�erence PA � PM for theempirical learners and indicates the standard devia-tion of the model in parentheses.3. Comparison of thisdi�erence with the standard deviation of the parabolicmodel indicates whether the error in PA�PM is withinthe error (one standard deviation) of the model. Thestandard deviation of the parabolic model is the av-erage absolute di�erence between each point used to�t the model and the estimated parabola. Table 3indicates that the di�erence between actual peak per-formance and MBAC peak performance is within onestandard deviation of the model. Thus, the parabolicmodel's predicted peak in the performance response iscorrect within the error of the model.Although the parabolic model improves performance,it does not always accurately predict the peak of theperformance response. A more formal model is nec-essary that includes parameters based on the currentlearning task, such as number of instances or size ofthe instance space. The commonality of the generalutility problem trend suggests that a general formalmodel may encompass several learning methods.7 FORMAL MODELSAlthough most of the formal analysis has occurred onempirical learning, analysis shows that if the amountof learned knowledge corresponds to the complexity(speci�city) of the induced hypothesis, then the per-formance response trend results from two componentsa�ecting accuracy: accuracy on the training data andaccuracy on the testing data.7.1 EMPIRICAL LEARNINGThe CART program (Classi�cation and RegressionTrees) developed by Breiman et al. [1984] is anothersplitting method for inducing decision trees similar toID3 [Quinlan, 1986] and PLS1 [Rendell, 1983]. Theemphasis of this treatment of CART is not the de-tails of the method, but a statistical analysis of theperformance response (see appendix to Chapter 3 in[Breiman et al., 1984]). Breiman et al. show that theshape of the performance (accuracy) response is theresult of a tradeo� between bias and variance. Biasexpresses the degree of �t of the decision tree to theclassi�cation surface (training instances). A low bias(many small hyper-rectangles) is preferred to a highbias (few large hyper-rectangles), because low bias al-lows a more precise �t to the data. However, a low biasincreases the likelihood that hyper-rectangles produceclassi�cation errors due to a majority of the wrong3BPn stands for BackProp with n hidden units
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Figure 8: Performance response curve derived byBreiman et al. [1984] for decision tree induction.class. Breiman et al. refer to this source of classi�-cation error as variance. This is not variance in thestatistical sense of the expected value of the squarederror, but an estimate of the discrepancy of the classi-�cation error from the Bayes error.The analysis expresses the bias and variance in termsof the number of leaves L in the decision tree. Assum-ing binary splits at each node of the tree, the numberof splits is L � 1. Therefore, the behavior of the biasand variance as the number of splits increase will besimilar to the behavior as L increases. The expressionfor the classi�cation error R(L) in terms of the biasB(L) and the variance V (L) isR(L) = B(L) + V (L) +R� (1)where R� is the Bayes optimal classi�cation error.Breiman et al. derive the following constraints on thebias B(L) and the variance V (L):

B(L) � CL2=M ; V (L) �r LN ; V (L ' N) � R�where C is a constant, M is the dimension of the in-stance space (i.e., number of features used to describethe training instances), and N is the number of train-ing instances. These expressions are for the classi�ca-tion error. As predicted, the bias decreases rapidly forsmall L and more slowly as L increases. The varianceincreases slowly as L increases. When L ' N andeach hyper-rectangle contains one training instance,the variance is bounded by the Bayes error R�.Equation 1 is an expression of the classi�cation er-ror response curve. Figure 8a plots the bias B(L),variance V (L), Bayes error R�, and estimated classi-�cation error R(L) from Equation 1, where C = 0:35,M = 20, N = 1000 and R� = 0:15.4 The plot extendsfrom L = 0 to L = N = 1000; however, the stop-ping criteria of actual decision tree induction programswould discontinue splitting at a point much less thanN . For comparison to previous response curves, the er-ror response curve is subtracted from one to yield theaccuracy response curve in Figure 8b. The similarityof this performance response to that of Figure 1 sup-ports the existence of a single peak and the inevitabil-ity of over�t in splitting algorithms without appropri-ate stopping criteria or post-pruning techniques. Max-imizing performance while avoiding over�t requires thedetermination of the number of splits L correspondingto the peak of the performance response.A similar analysis applies to agglomerative methods.Each time a splitting method makes a split in the deci-sion tree, the resulting DNF expression of the hypoth-esis replaces a single disjunct with two, more speci�cdisjuncts (assuming binary splits). Therefore, addinga disjunct to the DNF hypothesis in an agglomerativemethod is analogous to making a split in a splittingmethod. The above de�nitions of bias and varianceapply directly to the agglomerative case. Decreasingthe bias increases the number of disjuncts until eachdisjunct describes a single training instance. Variance,the error due to incorrect classi�cations made by thedisjuncts on unseen testing instances, increases withdecreasing bias. The corresponding expressions forbias and variance as a function of the number of dis-juncts have a similar behavior as those depending onthe number of splits, and the agglomerative perfor-mance response follows the behavior in Figure 8.The performance response trend in neural networksis also the sum of the performance on training data4For binary decision trees, L � 2M .
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Figure 9: Performance response curve derived by Bar-ron [1984] for a network as a function of the numberof coe�cients k in the network model.and the performance on testing data. Before relat-ing performance to the number of cycles, this analysis�rst considers the number of coe�cients in the modelrepresented by the network. Network models withincreasing complexity (e.g., number of hidden units)have higher numbers of coe�cients. If the complexityof the network is higher than the complexity of theproblem, the complex network will use the overabun-dance of coe�cients to over�t the training data.Barron [1984] derives an expression for the predictedsquared error (PSE) of the network that depends onthe number of coe�cients. The expression for PSE isPSE = TSE + 2�2 knTSE stands for the squared error of the network onthe training examples, �2 is a prior estimate of the

true error variance, k is the number of coe�cients inthe network model, and n is the number of trainingexamples. One estimate of the true error variance �2is the actual variance in the training data. The secondterm of PSE serves as an over�t penalty for exces-sively complex models. Assuming TSE has a similarbehavior as the bias in Figure 8, Figure 9a plots thetwo components of PSE and their sum as a functionof k for n = 100. Figure 9b plots the same functionsubtracted from one to show the same orientation ofprevious performance responses. The resulting curvecon�rms the general utility problem trend in networks.The above analysis uses the number of coe�cients k asa measure of the amount of learned knowledge; how-ever, the performance responses for neural networksuse the number of cycles as a measure of the amountof learned knowledge. One possibility for relating thenumber of cycles to the number of coe�cients k is toshow that the higher numbers of coe�cients in the net-work model are not used (negligibly small) until latercycles. In other words, earlier cycles use fewer coef-�cients to learn global patterns in the training data.As the cycles continue, the network attempts to reducethe error on noisy (or anomalous) training data by uti-lizing more coe�cients to �t a higher-degree functionto the training data.The following argument derives from our observa-tions of the error back-propagation method during thecourse of learning. The observations reveal that thenetwork quickly learns to correctly classify a major-ity of the training data and uses the remaining cyclesto learn a smaller subset of the training data. Onecycle involves a single pass through the entire set oftraining data, where each incorrect classi�cation initi-ates the error back-propagation procedure to updatethe weights toward correcting the error. Initially, amajority of the weight updates are due to errors onthe training data representing the global patterns (themore prevalent data). After the network learns theseglobal patterns, the majority of weight updates aredue to errors on less prevalent patterns in the train-ing data. One possible interpretation of this behavioris that later cycles attempt to �t higher degrees ofthe function represented by the training data. If thisinterpretation holds5, then as the number of cycles in-creases, so does the degree (complexity) of the hypoth-esis learned by the network. Therefore, roughly similarbehavior to that of Figure 9 will exist if the number ofcycles replaces k along the amount of learned knowl-edge axis.5Observations by Mozer and Smolensky [1989] supporta similar interpretation, but more experimentation is nec-essary to con�rm the reason for this behavior.



7.2 ANALYTICAL LEARNINGAn analytical learner is similar to an empirical learnerin that both seek a concept that maximizes perfor-mance. The concept sought by an analytical learneris a set of macro-operators or control rules minimizingthe time taken by the problem solver to solve prob-lems from some domain. If the set of problems usedto train the learner is not representative of the dis-tribution of problems in the domain, then the perfor-mance obtained for the training examples may degradeperformance on the testing examples for reasons sim-ilar to over�t in empirical learners. However, the fac-tors underlying the performance degradation are dif-ferent from those a�ecting empirical learners. Minton[1990] identi�es three ways in which macro-learning af-fects the problem-solving performance of an analyticallearner. A simple quanti�cation of these three compo-nents in terms of branching factors behaves similarlyto the general utility problem trend [Holder, 1991a],but the exact relationship between macro-operator (orcontrol rule) learning and performance is not fully un-derstood.8 CONCLUSIONSBoth experimental and formal analysis verify the com-monality of the performance response trend in Fig-ure 1 for many learning paradigms. The analysis indi-cates that the trends result from two factors: one in-creasing performance and one decreasing performance.Furthermore, both analyses constrain the order of in-creasing the amount of learned knowledge to be fromgeneral to speci�c. The overall behavior of the per-formance response is a curve increasing rapidly to asingle peak and then decreasing slowly after the peak.Modeling the performance response trend allows thecontrol of the general utility problem by using themodel to predict the amount of learned knowledge cor-responding to the peak of the performance response.Holder [1991a] describes the MBAC (Model-BasedAdaptive Control) system that relies on one empiricalmodel (parabola) for every learning method. AlthoughMBAC improves performance by adaptively converg-ing to the performance response peak, a formal wouldbe more accurate due to its more direct dependence onproperties of the learning task. As more formal modelsappear, they can replace the empirical model in MBACto improve performance. Further analysis of the gen-eral utility problem will derive more general modelsencompassing multiple learning methods. These mod-els will form the basis of a powerful control system forselecting from alternative learning methods and con-
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