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Abstract

Experiments measuring knowledge utility
during the course of learning reveal a com-
mon behavior among several learning meth-
ods. As the amount of learned knowledge
increases, the utility (performance) of the
knowledge initially increases, but eventu-
ally degrades. A multistrategy learning sys-
tem based on a model of this common be-
havior selects a learning method according
to the model’s prediction of achievable per-
formance. The model-based adaptive con-
trol (MBAC) approach provides this capabil-
ity by maintaining models for each learning
method. MBAC also predicts the amount
of knowledge to be acquired by the method
in order to avoid the degradation of per-
formance. MBAC unifies multiple learning
strategies based on the common behavior
of the utility of their knowledge during the
course of learning.
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1. Introduction

Machine learning research has developed
several empirical and analytical learning
methods that demonstrate performance im-

provements due to learned knowledge. Un-
fortunately, more in-depth experimentation
with these methods reveals that the perfor-
mance improvement is only temporary. As
the methods generate more and more knowl-
edge, the performance for which they were
designed to improve, eventually degrades.
This phenomenon relates to the overfit prob-
lem in empirical learning and the utililty
problem in analytical learning.

In order to avoid the overfit /utility prob-
lem, the learning method must determine
the correct subset of the learnable knowl-
edge that maximizes performance. Trying
all possible subsets is computationally infea-
sible; therefore, most learning methods gen-
erate knowledge from specific to general or
general to specific. Given that the learn-
ing method acquires knowledge in order of
generality (specificity), avoiding the over-
fit /utility problem reduces to generating the
correct amount of learned knowledge.

In view of the large number of alternative
methods available for improving a given per-
formance dimension (e.g., classification ac-
curacy or problem-solving speed), a more
general utility problem exists in determin-
ing not only the correct amount of learned
knowledge, but also the correct method for
learning this knowledge. Overcoming this
general utility problem requires a new con-



trol mechanism for determining the cor-
rect learning method and amount of learned
knowledge.

As Section 2 will demonstrate, a common
behavior exists among several learning meth-
ods due to the general utility problem. As
depicted in Figure 1, performance initially
increases, but eventually degrades. Section 3
describes he model-based adaptive control
(MBAC) approach, which maintains a model
of this common behavior for each learning
method. The control mechanism uses the
model to determine the amount of learned
knowledge necessary to achieve a desired
level of performance, and selects appropri-
ate learning methods according to the shape
and certainty of their associated models.

Using one model to describe the behav-
ior of multiple learning methods simplifies
the integration of these methods. Instead
of integrating on the basis of a common
knowledge representation, a multistrategy
learning system can integrate on the basis
of the performance/knowledge relationship
while maintaining individual knowledge rep-
resentations for each method.

2. General Utility Problem

The general utility problem in machine learn-
ing is the degradation of performance due
to increasing amounts of learned knowledge
(Holder, 1990). The term derives from the
utility problem used by Minton (1988) to de-
scribe this phenomenon in analytical learn-
ing, but generalizes to other machine learn-
ing strategies.

Other researchers have observed the ubiq-
uity of the utility problem in machine learn-
ing paradigms. Carlson et al. (1990) com-
pare the utility problem in deductive learn-
ing to the problems of noise and overfit in
inductive learning. Etzioni (1988) alludes to
the general utility problem as he proposes a
hypothesis filter for all learning methods.
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Figure 1: Performance response of a learning
method that suffers from the general utility
problem.

2.1 Performance response

A useful tool for analyzing the general utility
problem in machine learning is the perfor-
mance response, which measures the perfor-
mance of the learned knowledge during the
course of learning. Figure 1 shows the per-
formance response of a learning method that
suffers from the general utility problem.

The horizontal axis measures the amount
of learned knowledge. The units along this
axis represent the change in learned knowl-
edge made by a knowledge transformation.
A knowledge transformation is a decomposi-
tion of the learning program into less com-
plex operations affecting the learned knowl-
edge. For example, one decomposition of a
splitting algorithm is a single split, and one
decomposition of a neural network learning
algorithm is a single cycle.

The vertical axis measures the perfor-
mance of the learned knowledge after each
transformation. The method for measuring
performance depends on the learning algo-
rithm. For empirical learning the perfor-
mance response curve plots the classification
accuracy of the knowledge after each trans-
formation. For analytical learning the per-
formance response curve plots the inverse of
the CPU time needed by the knowledge to



Accuracy
o
N
o))
|

o

q

o
|

0.72

0.69

0.66 |~

0.63 |-

0.60 | | | | | | | | | |
0 9 18 27 36 45 54 63 72 81 90

Splits

ID3 Response on Flag

Accuracy
o
[o0]
[o0]
|

0.82

0.79

0.76

0.738 |-

0.70 | | | | | | | | | |
o 14 28 42 56 70 84 98 112 126 140

Splits

ID3 Response on DNF2

Figure 2: Performance response of ID3.

solve a set of test problems.
2.2 Empirical learning

The ID3 program (Quinlan, 1986) induces
decision trees by recursively splitting the
given set of training instances. The perfor-
mance response for ID3 plots the accuracy
of the decision tree on a separate set of test-
ing instances after each split. Splits are per-
formed in a breadth-first order so that overfit
is deferred to the later splits. Figure 2 shows
the performance response of ID3 on the Flag
and DNF2 domains (see Section 2.4) when
splitting to pure nodes (contain instances of
only one class). As the figure illustrates,
the performance responses follow the trend
of Figure 1. In order to combat overfit
in ID3, Quinlan developed chi-square pre-
pruning (Quinlan, 1986) and reduced-error
post-pruning (Quinlan, 1987). Experimen-
tation by Holder (1991) shows that these
techniques alleviate some overfitting, but the
general utility problem trend remains. Per-
formance response curves for other splitting
methods, PLS1 (Rendell, 1983) and CART
(Breiman et al., 1984), follow a similar pat-
tern (Holder, 1991).

Experimentation by Michalski (1989) on

AQ15 and Holte et al. (1989) on CN2 reveal
the general utility problem in set-covering
methods as the method learns an increas-
ing number of disjuncts. Plots of the perfor-
mance response for AQ15 on several medical

domains reveal the general utility problem
trend of Figure 1 (Holder, 1991).

Error back-propagation (Rumelhart et al.,
1986) is a connectionist learning method
that also suffers from the general utility
problem. As the number of cycles increases,
the network overfits the training instances.
Holder (1991) plots the performance of a
network after each cycle, revealing the same
general utility problem trend.

2.3 Analytical learning

As an analytical learning system acquires in-
creasing amounts of macro-rules, the cost of
retaining the rules eventually exceeds their
benefit. Minton called this phenomenon the
utility problem and offered the Prodigy sys-
tem as a solution (Minton, 1988). The sys-
tem empirically estimates the utility of each
rule and discards a rule when the utility
becomes negative. Experimentation on the
Soar system has uncovered similar results
(Tambe and Newell, 1988).
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Although experimentation with Prodigy
and Soar confirms the existence of the util-
ity problem, the experiments typically do
not show the performance response of the
system. Figure 3 plots the performance
response of a simple analytical learning
method. The method consists of a forward-
chaining planner and a Strips plan gener-
alizer (Fikes et al., 1972). Two domains
are used in the experimentation: blocks and
robot (see Section 2.4).

The experiments proceed by solving a
training problem in the domain, generaliz-
ing the resulting plan, adding the generalized
plan (macrop) to the set of available opera-
tors, and then measuring the amount of CPU
time needed to solve a separate set of test
problems. The x-axis of the performance
response is the number of learned macrops.
The y-axis measures the inverse of the CPU
time needed to solve the set of test problems.
Although erratic in the blocks domain, the
response curves in Figure 3 follow the gen-
eral utility problem trend.

2.4 Trends

The previous sections verify the existence of
the general utility problem in several ma-
chine learning methods. The performance
responses of these methods follow the gen-
eral trend illustrated in Figure 1. Adopt-
ing this trend as a model of the performance
response permits the control of the general
utility problem by constraining the amount
of learned knowledge to reside at the point
corresponding to the peak performance.
Tables 1 and 2 quantify the possible per-
formance gains by using this model-based
control of the amount of learned knowledge.
Each entry in the tables is the final perfor-
mance as a percentage of peak performance
averaged over ten performance response
curves. Table 1 lists entries for several of
the previously described empirical learning

Table 1: Final performance as a percentage
of peak performance for empirical learners.

Domain
Method | BC | Flag | Flare | Vote | dnf2
D3 91.2 | 88.2 | 95.0 | 97.6 | 93.6
ID3 Chi | 90.8 | 89.9 | 96.1 | 97.0 | 97.2
ID3RE | 98.6 | 95.4 | 98.7 | 99.7 | 100.3
PLS1 87.9 1 96.3 | 97.7 | 98.1 | 92.8
BP4 82.8 | 89.8 | 88.2 | 92.6 | 91.1

Table 2: Final performance as a percentage
of peak performance for analytical learner.

Domain
Method | Blocks | Robot
Planner 67.4 76.1

methods on five different domains. 1D3 Chi
stands for ID3 with chi-squared pre-pruning
with confidence of 99.9%. ID3 RE stands for
ID3 with reduced-error post-pruning. BP4
stands for error back-propagation with four
hidden units. Table 2 lists entries for the
Planner analytical learner on two domains.
Note that the entries in Table 2 can be ar-
bitrarily deflated by allowing the analytical
learner to acquire more macrops.

For the empirical learners, the Breast Can-
cer (BC), Flag, Flare and Voting (Vote) do-
mains come from the UC Irvine machine
learning databases. The DNF2 domain is
defined by a DNF concept over forty binary-
valued features that appears in (Pagallo and
Haussler, 1990). The Planner analytical
learning method uses two domains: blocks
and robot. The blocks domain consists
of four operators for moving blocks in the
blocks-world. The robot domain consists of
eight operators using a robot to move boxes
within a layout of connected rooms. See
(Holder, 1991) for a complete description of



these domains.

As shown in Tables 1 and 2, the final per-
formance is less than the peak performance
for all but one case. Thus, the ability to con-
strain the amount of learned knowledge to
the point corresponding to peak performance
will improve the performance of the learner.
Although individual methods exist for alle-
viating the general utility problem in each
particular learning method, the performance
response model offers a general method for
avoiding the general utility problem in many
machine learning methods.

3. MBAC Approach

The model-based adaptive control (MBAC)
approach uses the trend identified in Sec-
tion 2 as a model to control the amount of
learned knowledge in order to maintain util-
ity. The model describes the performance
response for a particular task domain, per-
formance dimension and knowledge transfor-
mation (learning method). MBAC instan-
tiates the model as a parameterized curve
and fits the curve according to previously
observed samples from actual performance
responses. Using this model of the perfor-
mance response curve, MBAC determines
the point on the curve having the desired
level of performance and recommends learn-
ing the amount of knowledge corresponding
to this point.

The proposed MBAC approach resembles
an adaptive control loop. First, the perfor-
mance element uses the knowledge to per-
form some task. MBAC compares the per-
formance on the task to the user-defined per-
formance objectives. This performance com-
parison serves as feedback to improve the
model’s estimate of the true performance re-
sponse. Using the updated model, MBAC
decides how to transform the knowledge in
order to achieve and maintain the desired
performance objectives.

proc Select-Transformation (models, thr)
begin
foreach m in models do
decision = Parabolic-Decision(m, thr)
model-move(m) = move(decision)
model-error(m) = [thr — perf(decision)|
models = sort(models, error, <, certainty, >)
return(first(models))
end

Figure 4: Transformation selection.

3.1 Transformation selection

The MBAC approach uses a parabolic model
of the performance response. This model
assumes that most performance objectives
have thresholds near the peak of the perfor-
mance response. In this case, a model of the
peak is sufficient for controlling the amount
of learned knowledge near the peak. Figure 4
describes the Select-Transformation proce-
dure, which takes a performance thresh-
old thr and a set of models pertaining to
the performance dimension of the threshold.
The procedure returns the best model cor-
responding to the best transformation for
achieving the threshold. The move field of
the model contains the recommended move
according to the parabolic model.

Select-Transformation computes the de-
cision based on the parabolic estimate of
the data for each model (the Parabolic-
Decision procedure). A decision consists of a
move (number of transformations) along the
amount, of learned knowledge axis and the
predicted performance after performing the
move. The model error is the absolute value
of the difference between the threshold and
the predicted performance. Next, Select-
Transformation sorts the selected models in
ascending order of model error. Models with
the same error are further sorted in descend-
ing order of model certainty (standard devi-



ation). The best model is the first model in
the set of sorted models.

3.2 Experimentation

MBAC selects transformations according to
the corresponding model’s ability to achieve
the performance threshold. This experi-
ment compares the parabolic model’s pre-
dicted performance to the actual perfor-
mance obtained by performing the recom-
mended number of transformations. The re-
sults indicate that the selected transforma-
tion achieves predicted performance and out-
performs the unselected transformations.

First, the experiment uses randomly-
selected training and testing sets to pro-
duce ten response curves for each combi-
nation of task domain and transformation.
These curves provide the data points for fit-
ting the parabolic models. Next, the same
process generates ten more response curves
to be used for testing the recommendations
of the models. The performance threshold
is set at a point higher than that achiev-
able by any learning method; therefore, the
models predict their achievable peak per-
formance. Table 3 shows the model’s pre-
dicted performance, standard deviation, and
the actual performance achieved by perform-
ing the recommended number of transforma-
tions on the average of the ten testing re-
sponse curves.

The results indicate that the model pre-
dictions are accurate. Since the transfor-
mation selection procedure in Figure 4 sorts
the models based on their predictions, the
procedure will perform well at choosing the
best transformation. The results also show
that the actual performance achieved by the
transformations is within one standard de-
viation of the predicted performance for all
but BP2 and BP4 on the Flag task do-
main.  The results show that the high-
est predicted performance correlates with

the highest actual performance in all but
the Flare domain (where the difference be-
tween the first and second best actual per-
formance is small). Therefore, the transfor-
mation selection procedure, which picks the
highest predicted performance, consistently
chooses the best (or near best) transforma-
tion. Further experimentation in (Holder,
1991) demonstrates MBAC’s ability to ac-
curately model the performance response,
build models starting with no samples from
the performance response curve, and trans-
fer knowledge about one domain to another
new domain.

4. Conclusions

Successful application of learning meth-
ods requires the selection of the appropri-
ate learning method and the acquisition of
the appropriate amount of knowledge by
the method. Model-based adaptive control
(MBAC) addresses these two control dimen-
sions of the general utility problem by using
a model of the performance response trend
common among several learning methods.

Several systems relate to the adaptive
approach in MBAC. The MetalLEX sys-
tem (Keller, 1987) transforms search control
knowledge according to two performance ob-
jectives. MetaLEX uses a qualitative model
of the relationship between knowledge and
performance that is restricted to the two per-
formance objectives. MBAC’s model applies
to multiple learning strategies and multiple
performance objectives. The VBMS system
(Rendell et al., 1987) and the AIMS sys-
tem (Tcheng et al., 1991) learn models for
selecting an appropriate empirical learning
method. Both systems use a general method
for learning the relationship between per-
formance objectives and learning method.
MBAC advocates a more constrained model
describing less-complex learning transforma-
tions. The MBAC system will benefit most



Table 3: Parabolic model’s predicted and actual performance on empirical learning methods.
The standard deviation of the model is shown in parentheses.

Breast Cancer Flag Flare Voting

Predicted Act. Predicted Act. Predicted Act. Predicted Act.
ID3 0.705(0.042)  0.697 | 0.762(0.063) 0.771 | 0.814(0.017) 0.815 | 0.959(0.076) 0.947
PLS1 | 0.712(0.037) 0.706 | 0.776(0.041) 0.795 | 0.825(0.017) 0.813 | 1.003(0.058) 0.960
BP2 | 0.353(0.117) 0.262 | 0.590(0.107) 0.472 | 0.393(0.257) 0.441 | 0.912(0.032) 0.903
BP4 | 0.403(0.138) 0.466 | 0.593(0.085) 0.477 | 0.407(0.189) 0.415 | 0.917(0.028) 0.911
BP8 | 0.501(0.077) 0.503 | 0.612(0.096) 0.526 | 0.404(0.163) 0.379 | 0.928(0.035) 0.927
BP16 | 0.450(0.112) 0.447 | 0.549(0.093) 0.591 | 0.412(0.148) 0.447 | 0.927(0.020) 0.908

from the development of formal models to re-
place the current empirical models. Holder
(1991) describes some possible formal mod-
els for several learning methods.

Refinement of the model-based adaptive
control approach through further experimen-
tation and incorporation of formal mod-
els will evolve the approach into a general
methodology for maintaining the utility of
learned knowledge. At the heart of the
methodology will be the model of the perfor-
mance response whose common shape serves
to integrate multiple learning strategies un-
der one framework.
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