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Abstract

The utility problem in speedup learning describes a common behavior of machine learn-
ing methods: the eventual degradation of performance due to increasing amounts of learned
knowledge. The shape of the learning curve (cost of using a learning method vs. number of
training examples) over several domains suggests a parameterized model relating performance
to the amount of learned knowledge and a mechanism to limit the amount of learned knowledge
for optimal performance. Many recent approaches to avoiding the utility problem in speedup
learning rely on sophisticated utility measures and significant numbers of training data to accu-
rately estimate the utility of control knowledge. Empirical results presented here and elsewhere
indicate that a simple selection strategy of retaining all control rules derived from a train-
ing problem explanation quickly defines an efficient set of control knowledge from few training
problems. This simple selection strategy provides a low-cost alternative to example-intensive
approaches for improving the speed of a problem solver. Experimentation illustrates the exis-
tence of a minimum (representing least cost) in the learning curve which is reached after a few
training examples. Stress is placed on controlling the amount of learned knowledge as opposed
to which knowledge. An attempt is also made to relate domain characteristics to the shape of
the learning curve.

1 INTRODUCTION

Control knowledge is acquired and applied in machine learning systems with the goal of improving
the performance of the system. However, not all of the acquired knowledge may be useful. These
systems eventually learn low utility knowledge whose retention cost outweighs the performance
benefits. This work tries to lay down a set of rules to limit this knowledge in order to keep the
knowledge utile.

Problem solvers apply learning to improve their performance, especially to improve the speed
with which they can solve problems (speedup learning). Without learning, a problem solver will
solve the same problem in the same time and in the same way and will not learn from experience.
Learning from experience (experiential bias) can reduce the problem solver’s problem solving time
by reducing the search space of the problem. There is a cost associated with applying this experi-
ence, and this experience is useful only if the benefit (acquired by utilizing this experience) exceeds
the cost. As the amount of experience increases, the cost associated with applying that experience
also increases which ultimately exceeds the benefits. This experience has low utility. The above
discussion summarizes the utility problem [6, 12]: the eventual degradation of performance due to
increasing amounts of learned knowledge.



Our approach to solving the utility problem in speedup learning requires few training examples
(low learning time) and does not use utility measures. This is in contrast to other approaches
which apply empirical [2] and statistical [4, 5] measures to learn control rules for which there is
high certainty of utility. However, these approaches require a large number of training examples to
estimate the problem distribution (implying higher learning time) and ensure utile control rules.

This work also tries to identify characteristics of domains which cause the use of a particular
type of control knowledge to be beneficial. For example, control rules learned from a domain with
a high percentage of rules alternatively applicable to a single goal may produce control rules which
help in the selection of a domain rule for the current goal. A more general problem would be to link
the semantics of the domain to the type of control knowledge. We also try to motivate a general
mechanism which will limit the number of control rules by indicating when to stop learning.

The rest of the text is organized as follows. The remainder of this section gives an introduction
to the utility problem and an overview of our approach. Section 2 discusses explanation-based
learning (EBL) and illustrates various types of control knowledge. Section 3 summarizes some of
the learning systems and compares our approach to their methodology. Section 4 describes our
approach and experimental setup. Section 5 illustrates our experiments and their results, and
Section 6 concludes with a discussion of these results.

1.1 Recognition of the utility problem

Both inductive and explanation-based (or speedup) learning methods suffer from the general utility
problem: the eventual degradation of performance due to the increasing amount of low utility
learned knowledge. For example, inductive learning methods typically use a set of training examples
to generate knowledge for improving classification accuracy on unseen examples. Explanation-based
learning methods use a single example to generate knowledge for improving the problem-solving
speed on unseen examples.

However, all of this garnered knowledge may not be useful. There is a cost associated with
applying the knowledge which may outweigh the benefits accrued via its use. For example, in
a typical speedup learning system that learns macro-operators, performance improvement results
from (based on a discussion in [11]):

1. Experiential bias or re-ordering effect: The learned knowledge (macro-operators) can change
the path traversed to reach the goal.

2. Decreased cost path: Cost of reaching a goal via a macro-operator may be less than the
corresponding cost of applying the sequence of primitive operators that make up the macro-
operator.

Performance degradation in such a system is due to (based on a discussion in [11]):

1. Duplication of the search space: If macro-operators fail to achieve the goal, the system will
resort to primitive operators to solve the problem thus repeating some of the work done when
macro-operators were used.

2. Redundancy by duplicate subsequences in macro-operators: 1f macro-operators have primitive
operators in common, some of the work done will be repeated as each of the macro-operators
containing that operator is tested. So, for example, a macro-operator composed of primi-
tive operators opl and op2 will share many of the same preconditions as a macro operator
composed of primitive operators op! and op3. Redundancy will be due to preconditions of
opl.
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Figure 1: The relationship between cost and knowledge exhibited by a learning method suffering
from the general utility problem.

In inductive methods the reason for performance degradation is overfit. Inductive methods
construct a hypothesis to correctly classify not only examples from the training set but other
unseen examples as well. Overfit usually occurs when the hypothesis becomes complex, because a
complex hypothesis tends to be overly specific! and hence ezplains the training set [18]. A complex
hypothesis represents trends in the training data which may not occur in unseen examples. The
specificity of the hypothesis may increase due to noise in the training examples or inadequate
stopping criteria of the method, the latter being more relevant to our discussion. Thus, a typical
cost (classification error) curve as a function of the amount of learned knowledge will be similar
to that in figure 1. The general utility problem in inductive learning has been analyzed for a
number of inductive learning techniques [7]. An extensive empirical investigation has also shown
that the minimum of the learning curve is frequently better than popular, statistics-based methods
for addressing overfit [8].

The utility problem has been verified in several speedup learning systems [13, 19, 17, 10];
however, the underlying cause is less obvious than in inductive learning. If control knowledge is used,
the expected cost to solve a representative sample (from which the control knowledge was learned)
of the problems is less. This may not necessarily be true for unseen examples. In speedup learning
systems using control knowledge, the performance improvement is due to reduction of problem
search space. However, control knowledge may have the opposite effect if it leads to searching
futile paths in the search space. As more control knowledge is generated, the cost of applying the
knowledge also increases. The overall trend thus also follows the behavior in figure 1, where cost
is typically problem-solving time. This degradation in problem-solving speed can ultimately be
attributed to the learning of low-utility knowledge whose retention cost outweighs its benefit.

A common denominator in the strategies discussed above is that performance eventually de-
grades as knowledge increases. This implies that performance degradation can be avoided by
controlling the amount of learned knowledge. This work aims at empirically analyzing the general
utility problem in speedup learning with the ultimate goal of developing a formal model of per-
formance response which depends on the properties of the learning task. This work suggests the
existence of a relationship between domain characteristics and the shape of the learning curve and
argues that fewer training examples are required, than predicted by other approaches, for avoiding
the utility problem.

!The most complex and the most specific hypothesis would be the training set itself.



1.2 Outline of our approach

In this work, control knowledge takes the form of preference control rules with associated weights
(or counters) representing the total number of times the control rule has been successfully used
to solve a problem. These control rules help in preferring a database rule (representing domain
knowledge) over others when many database rules are applicable to the current goal. Control rules
are generated by solutions to training problems. Our approach is a greedy approach that keeps all
control rules (generated by training problems). Duplicate control rules increment corresponding
counters.

As indicated by results in [9] and this work, a global minimum exists in the learning curve. Few
training examples (< 5) are required to reach this minimum. Thus our greedy strategy seems to be
effective for the domains studied, and if results are indicative of the general trend, there is no need
for a large number of training examples to estimate the problem distribution. The main advantage
of our approach lies in the fact that the similarities of the response curves suggests a model which
can be fitted with very few or no training examples.

2 BACKGROUND

2.1 Explanation-based learning (EBL)

Problem solvers apply learning to improve their performance, especially to improve the speed with
which they can solve problems (speedup learning). A problem solver without learning will always
solve the same problem in the same way and in about the same amount of time and will not adjust
its behavior based on its experience.

Learning can produce qualitative changes in the performance of a problem-solving system. It
may be possible for a problem-solver to explore all possible states in its search space, but this can
prove to be combinatorially explosive for large spaces. Learning can cut down the size of the search
tree by taking big steps in the search space (learning macro operators, or composing sequences of
original operators). For example, in rule-based systems, rules can be combined to form macro rules
by combining collections of rules. The rules

If A and B Then C
and

If C Then D
can be combined to form a macro rule

If A and B Then D
The goal D of the problem solver can be reached in one step if the macro rule is used, as opposed
to two steps if the original rules are used.

The other technique for speeding up problem solvers is to learn some form of control knowledge
(e.g., knowledge that can be applied to determine which operator to try next). The control knowl-
edge can take many forms including operator selection, rejection and preference rules, evaluation
functions and operator strengths [12].

e An evaluation function is a function that can be applied to a state to estimate how close the
state is to the goal. Best-first search uses an evaluation function to guide the search.

e Weights can be associated with each operator. Weights quantify operator strength by indi-
cating how successful that operator has been in the past. Weights can be used as a measure
for choosing a particular operator.



e Selection, rejection and preference rules are control rules that are evaluated to decide whether
a domain rule is singly-applicable, not applicable, or preferred to another rule for solving the
current goal.

EBL [16, 1] systems learn by analyzing explanations of problem-solving behavior. Search control
knowledge can be acquired by explaining why a particular operator, when applied to a state,
leads to a successful solution (or alternatively, why it leads to an unsuccessful search path). The
goals for which explanations are being constructed can be provided by the user or can be pre-
programmed into the system. Explanations can be a trace of the problem solver’s actions or an
analysis of a record of the problem solver’s actions (to decide whether it satisfies the target concept
or the goal). Once produced, explanations can be generalized. Some approaches generalize the
constants in explanations into constrained variables, but the structure of the graph that represents
the explanation can also be generalized [3]. EBL systems save generalized versions of the solutions
to specific problems under the assumption that this will speed up future problem solving. However,
saving generalized solutions may be detrimental due to the cost associated with their use. This
slowdown has come to be called the wutility problem [13].

2.1.1 Macro rules

EBL begins with a high-level target concept and a training example for that concept. Using a set
of axioms describing the domain, the system can explain why the training example is an instance
of the target concept. The explanation is essentially a proof that shows how the training example
satisfies the target concept.

Specification of EBL [16]:
Input:

e Target Concept: A concept definition describing the concept to be learned.
e Training Example: An example of the target concept.

e Domain Theory: A set of rules and facts to be used in explaining how the training example
is an instance of the target concept.

e Operationality Criterion: A predicate over concept definitions, specifying the form in which
the learned concept definition must be expressed.

Output:

e A generalization of the training example that is a sufficient concept definition for the target
concept and that satisfies the operationality criterion.

Example

Input:

Target Concept:
cup(X)

Training Example:
light(obj1), color(objl, red), part_of(handlel, obj1), handle(handlel),
bottom(b1), part_of(bl, obj1), flat(b1), concavity(cl),



part_of(cl, obj1), upward_pointing(cl)

Domain Theory:
cup(X) <—
stable(X), liftable(X), open_vessel(X).

stable(X) <
bottom(Y), part_of(Y, X), flat(Y).

liftable(X) <—
graspable(X), light(X).

graspable(X) <-
handle(Y), part_of(Y, X).

open_vessel (X) <
concavity(Y), part_of(Y, X), upward_pointing(Y).

Operationality Criterion:
The concept definition must be expressed in terms of the predicates
used to describe examples (e.g., light, upward_pointing, etc.).

Output:
cup(X) <—
bottom(Y), part_of(Y, X), flat(Y), light(X),
handle(Z), part_of(Z, X), concavity (W),
part_of(W, X), upward_pointing(W).

In the example shown above, cup(X) is to be expressed in terms of operational predicates: predicates
used to describe examples (e.g., light, upward_pointing etc.). The training example consists of the
facts used to prove the goal cup(objl). The domain theory states that an object is a cup, if it
is stable, liftable and is an open vessel. An object is stable if it has a flat bottom. An object is
liftable if it is light and is graspable. An object is graspable if it has a handle, and an object is
an open vessel if it has an upward_pointing concavity. The proof tree generated while proving the
goal cup(objl) is shown in figure 2. The leaves of the tree represent the operational predicates,
which are ultimately used to prove the goal. This tree can be used to generate a rule, in terms of
operational predicates, which states that an object is a cup if it is light and has a flat bottom, an
upward pointing concavity and a handle.

The format of a rule is
consequent <— antecedentl antecedent? ... .
The rule should be interpreted as
if antecedentl AND antecedent? ... then consequent.

where W, X, Y and Z represent variables (Prolog notation).

Re-expressing the target concept in terms of the predicates used to describe examples makes the
concept operational with respect to the task of efficiently recognizing examples of the concept. The
operationality criteria imposes a requirement that the learned concept definition must be not only
correct, but also in a usable form before the learning is complete. The actual purpose of EBL is not



to learn more about the target concept but to re-express the target concept in a more operational
manner [13].

2.1.2 Control rules

Control rules extend traditional problem solving by separating search control knowledge and domain
knowledge. Control rules modify the default behavior by specifying that a particular candidate (e.g.,
goal, operator) should be either selected, rejected or preferred over another candidate.

Examples include (based on Prodigy/EBL [13, 15]):

e Preference Rules: For the blocks-world domain, if on(X, Y) (to be read as block X on block
Y) and on(Y, Z) are both goals at the current node in the search tree, then the latter goal
should be achieved first, because achieving on(X, Y) first will be undone by on(Y, Z). A
preference rule of the following form could be used.

if (CANDIDATE-GOAL on(X, Y)) AND
(CANDIDATE-GOAL on(Y, Z) )
then (PREFER GOAL on(Y, Z) TO on(X, Y) )

e Failure Rules:
if (MATCHES GOAL on(X, X) )
then (FAIL GOAL)

e Selection Rules:
if (MATCHES GOAL on(X, Y))
then (SELECT OPERATOR stack(X, Y))

The control rules learned in our experiments are of the form
if (antecedent) then
consequent
The antecedent represents a rule of the domain theory, and the consequent represents a goal (sub-
goal). For example, if the goal is cup(objl) and the domain theory is the same as in the previous
example, a proof trace as shown in figure 2 is produced.
The following control rules are learned from the proof tree in figure 2.

1. The consequent is:
cup(objl)
The antecedent is:
cup(X0) <
stable(X0), liftable(X0), open_vessel(X0).

2. The consequent is:
stable(X0)
The antecedent is:
stable(X2) <—
bottom(Y3), part_of(Y3, X2), flat(Y3).
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Figure 2: Proof Tree for proving cup(objl).

3. The consequent is:
liftable(X0)
The antecedent is:
liftable(X31) <
graspable(X31), light(X31).

4. The consequent is:
graspable(X31)
The antecedent is:
graspable(X36) <
handle(Y37), part_of(Y37, X36).

5. The consequent is:
open_vessel(X0)
The antecedent is:
open_vessel (X70) <—
concavity(Y71), part_of(Y71, X70), upward_pointing(Y71).

If a goal (subgoal) unifies (or matches) with the consequent of the control rule, then the rule in
the antecedent is preferred over other rules in the domain theory for that goal (subgoal). Thus the
rules used in our experiments are basically preference rules: control rules that prefer a rule of the
domain theory over other rules for proving a particular goal. If no control rules are present for a
particular goal, the first rule in the current domain theory whose consequent unifies with the goal is
picked. Weights are associated with each control rule. If more than one control rule are applicable,
the rule having the highest weight is chosen.



2.2 Utility problem

The utility problem refers to the eventual degradation in performance due to increasing amounts
of learned knowledge. With reference to our approach, selecting the highest-weight control rule
from a group of control rules, applicable to the current goal, can be expensive. As the number of
control rules increase, this expense also increases and may ultimately exceed the benefits of using
the control rules, resulting in the generation of low utility knowledge. A possible solution to limiting
this knowledge is to limit the number of control rules by stopping training when performance starts
to degrade. Other solutions include using statistical and empirical evaluation of clusters of control
rules to determine their utility. These are subjects of the following section.

3 RELATED WORK

Most approaches to avoiding the utility problem in speedup learning rely on training examples to
empirically evaluate the utility of learned knowledge. Minton’s Prodigy system [12] utilizes a utility
function that evaluates control knowledge based on application cost, frequency of use and average
savings. PALO [5] and Composer [4] use statistical measures to evaluate control knowledge. Several
examples are needed to support an explanation with high confidence and adopt the corresponding
control rules.

3.1 Prodigy

The Prodigy system [12] evaluates the utility of problem-solving control knowledge by estimating
the application cost, frequency and savings afforded by the control knowledge based on the training
problems. Prodigy uses explanation-based specialization to learn from a variety of phenomena
including solutions, failures and goal interactions [15, 14, 13]. Explicit target concepts describe
these phenomena, and each target concept is associated with a strategy for dynamically improving
the performance of the problem solver. Explanations are formulated using a theory describing
the domain and the Prodigy problem solver. Unlike other EBL problem-solving systems, Prodigy’s
target concepts are meta-level concepts, such as SUCCEEDS, FAILS and GOAL_INTERFERENCE
that describe the problem-solving phenomena. A control choice (e.g., of a goal or operator) succeeds
if it leads to a solution. A choice fails if there is no solution consistent with that choice. A choice
results in goal interference if some condition that was previously true must be re-achieved.

The Prodigy system uses a domain-independent problem-solver and an explanation-based learn-
ing facility for acquiring search control rules from a problem-solving trace. Explanations are con-
structed from an axiomatized theory describing both the domain and the relevant aspects of the
problem solver’s architecture.

Prodigy addresses the utility problem by searching for good explanations that result in effective
control knowledge. First, after each problem-solving episode, the system considers what to explain
in the problem-solving trace, and constructs an explanation. Second, the system considers how
to represent the weakest preconditions of the explanation. The resulting description becomes the
left-hand side of a new control rule. Finally, the utility of the rule is measured during subsequent
problem-solving to ensure usefulness.

The utility of a control rule learned by Prodigy’s EBS (explanation-based specialization) process
is measured in terms of speedup that results from the rule’s use. Specifically, utility is given by the
cost/benefit formula:

Utility = (AvrSavings * ApplicFreq) - AvrMatchCost



where AvrSavings is the average time savings produced when the rule is applicable due to the fact
that search is eliminated, ApplicFreq is the probability that the rule is applicable when it is tested,
and AvrMatchCost is the average time cost of matching the rule.

After learning the rule, Prodigy produces an initial estimate of the rule’s utility based on
the training example that produced the rule. Specifically, the system compares the time cost of
matching the rule against the time savings that the rule would have produced by eliminating search.
Only if the savings outweigh the cost is the rule included in the active set of the control rules. This
estimation phase eliminates rules that are poor. After a rule is added to the system, Prodigy
attempts to empirically validate the utility estimate, in order to discard any remaining rules which
have negative utility.

3.2 Composer

The Composer [4] system embodies a probabilistic solution to the utility problem. Composer uses
the generic utility function of a planner defined as

Utility(planner) = - 3, obeproblems Cost(planner,prob) x Pr(prob),

where Cost(planner,prob) is the cost of solving problem prob, and Pr(prob) is the probability of
occurrence of prob. The utility of a planner is defined as the sum of the utility of each problem in
the distribution weighted by its probability of occurrence. A planner’s control knowledge represents
its current state. Addition of control knowledge changes the state of the planner. Utility can be
associated with each state of the planner. A utile candidate control rule will change the state of the
planner to one with higher utility. Thus a candidate control rule is added to the planner control
knowledge if there is a high confidence that the rule will benefit the planner.

Composer is implemented within the Prodigy architecture and includes the Prodigy planner.
Composer primarily utilizes selection and rejection rules. Solution traces are analyzed by the
learning component of Prodigy /EBL to construct control rules for improving problem-solving time.
Composer differs from Prodigy /EBL in how statistics are gathered and how control rules are intro-
duced into the Prodigy planner. Prodigy/EBL uses a single example to learn control knowledge.
Composer introduces rule interaction in the learning module of Prodigy/EBL in order to learn a
utile set of control rules. Composer incrementally adds control rules to its control strategy. The
utility of the rule depends on the current control strategy. A rule is added only after demonstrat-
ing benefit to a pre-specified confidence level. Higher confidence levels require larger numbers of
examples.

After a problem is solved, Composer analyzes the trace and identifies search paths which would
have been avoided by each candidate control rule. The time spent exploring these avoidable paths
indicates the savings which would be provided by the rule. This savings is compared with the
recorded precondition match cost, and the difference is reported as the incremental utility of the
rule for that problem.

Composer’s strategy of generating search control knowledge is more expensive than the heuris-
tic approach adopted by Prodigy/EBL. This is because Composer pays the penalty of matching
preconditions without acquiring any of the benefits of candidate control rules.
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3.3 PALO

The PALO (Probably Approximately Locally Optimal) [5] approach adopts a hill-climbing tech-
nique that evaluates transformations? to the performance element (as effected by the control knowl-
edge) using a statistical method. PALO incorporates a criterion for when to stop learning. PALO
terminates learning when it has identified (with high probability) a near-local maximum in the
transformation space (the learning operators collectively define the transformation space). PALO
uses a set of sample queries to estimate the problem distribution and hill-climbs from an initial
performance element to one that is, with high probability, close to a local optimum. PALO’s results
are guaranteed only if the samples are truly representative of the distribution, and the distribution
is stationary. PALO provides stronger guarantees than Composer (and Prodigy/EBL) at the cost
of more examples. Harmful rules are not discarded in PALO as quickly as they are in Composer.
This results in a larger candidate (control rule) set in PALO which increases the cost to solve each
training example. On the other hand, while Composer uses utility analysis to identify performance
elements with superior performance, the analysis does not guarantee optimal performance elements.

3.4 Conclusions

All the systems discussed above have in common a function which evaluates the utility of candidate
control rules. Some of these approaches have high learning times. A point to be noted is that
higher utility does not entail that the planning time of any particular problem is reduced. Rather,
the expected cost to solve any representative sample of problems is less. Thus the learned control
strategy may not be useful in a different distribution (than from which it was learned). Therefore
control knowledge that improves performance on one set of problems can degrade performance
on other sets (this depends on the distribution of the problem). The actual distribution, which
is needed to determine which performance element is optimal, is usually not known. The above
systems depend on the training examples for the distribution of problems in the domain. Typically,
a large number of training examples are necessary to accurately estimate the problem distribution
and the utility of control knowledge. Moreover, the task of finding the optimal element, even
knowing the distribution is intractable most of the time [5].

On the other end of the spectrum, simply limiting the amount of the learned knowledge (while
ignoring utility) may be advantageous in terms of learning time saved. PALO tries to estimate
the unknown distribution, but the learning time is extremely high. Hence, concentrating on the
amount of learned knowledge rather than the utility of the learned knowledge might be more
efficient. Excessive knowledge degrades performance. Limiting learned knowledge, without utility
evaluation, may save learning time and eliminate degradation.

The following sections try to empirically validate this hypothesis. The next section discusses
the setup for these experiments.

4 METHODOLOGY AND EXPECTATIONS

This section describes the setup used for our experiments. These experiments relate characteristics
of the domain to the shape of the learning curve and empirically validate that our approach requires
few training examples to learn a utile set of control rules.

Learning can be viewed as a transformational process in which the learning system applies a series of transfor-
mations to a performance element.
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4.1 Experimental setup

The experimental setup uses a Prolog-like deductive retrieval system with proof tree and control
rule generation capabilities. The system currently supports only backward chaining.

The Prolog-like deductive retrieval system used to solve problems generates proofs for the goals.
This constitutes an explanation structure and can be easily used to generate a generalized proof.
The proof is used to generate the search control knowledge (Control Rules) for guiding the retrieval
process.

The number of matches (unifications), i.e., bindings for variables, serves as a performance
criteria for monitoring performance changes with the increase in amount of learned knowledge, i.e.,
control rules.

The rules in the database (a database consists of facts and rules which represent the domain
theory) are of the form:

if ( (antecedentl) AND (antecedent2) ... ) then
consequent

The control rules are of the form:

if database_rule then
goal

The control rules are preference rules which choose a particular rule for solving the current goal.
If the consequent of the control rule matches (unifies with) the current goal then the antecedent of
the control rule is preferred over other rules to solve the current goal. The antecedent of the control
rule points to a rule in the database. A weight is associated with each control rule. The weight
represents the total number of times the control rule has been successfully used for solving problems
(i.e., proving goals and subgoals). The weight is incremented by one, each time the control rule
is used. If more than one control rule can help in solving the current goal then the rule with the
maximum weight is chosen.

In the control rule store, control rules whose consequents have the same predicate are clustered
together. The predicate of the goal (subgoal) is used to hash into the control rule store, leading to
the control rule cluster having the same predicate as the goal (subgoal). Any of these rules (in the
cluster) could (potentially) help in proving the goal. Hence the cost of using a control rule includes
the unification cost of finding the maximum weighted rule (in this cluster), whose consequent unifies
with the goal.

The average cost of using a control rule is the average number of unifications required to match
a goal with the consequent of the control rules having the same predicate. The cost also includes
the match cost of using wrong rules and facts from the database as a result of choosing a wrong
control rule. The savings in terms of number of matches from using the right control rule is the
savings resulting from not trying useless rules and facts from the database for proving the goal.

Since the cost of unification of facts (with goals) is usually less than that of rules (with the
cascading effect of proving antecedents of the rule), facts are preferred over rules in our deductive
retriever.

As an example of the costs associated with control-rule usage, consider the following control-rule
store.

1. The consequent is:
abed(X, objl)
The weight is: 4
The antecedent is:
abcd(X0,Y0) <— read(X0), my(X0, Y0), lips(Y0).
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2. The consequent is:
abcd(obj2, Y)
The weight is: 4
The antecedent is:
abced(X0,Y0) <— ur(X0), so(X0, Y0), kool(YO0).

3. The consequent is:
abed(X, Y)
The weight is: 5
The antecedent is:
abcd(X0,Y0) <— make(X0), my(X0, Y0), day(Y0).

4. The consequent is:
abced(objl, Z)
The weight is: 7
The antecedent is:
abed(X0,Y0) < quid(X0), pro(X0, Y0), quo(Y0).

The cost of using a control rule for proving a goal abcd(obj2, obj1) will include the cost of
unification of the consequents of the rules enumerated above, with abecd(0bj2, objl). Note the
consequent of control rule 4 does not unify with the goal and hence the corresponding antecedent
(a database rule) will not be used to prove the goal. However the cost of unifying abed(0bj1, 7Z) with
abed(0bj2, objl) contributes to the cost of using a control rule. The consequents of control rules 1,
2 and 3 unify with the goal (the cost of using a control rule includes this unification cost). However,
the antecedent of rule 3 will be used to solve the goal because it has the highest weight. If this rule
successfully solves the goal, then the savings due to this control rule includes the savings resulting
from not searching (potential) futile paths futile paths resulting from the use of antecedents of
control rules 1, 2 and/or 4 and any other rule in the database whose consequent unifies with the
goal. If this control rule fails to solve the goal, then the other control rules are tried (using the
same procedure). The use of the control rule in this case leads to the exploration of futile paths
which contributes to the cost. If all the control rules (namely 1, 2 and 3 for the example shown
above) fail, a rule from the database (different from the antecedents of the control rules 1, 2 and 3
and whose consequent unifies with the goal) is chosen in the order given in the domain theory. In
this situation, control rules have contributed only to the cost.

The basic learning loop is as follows:

e Control_Rule_Store = Nil;
e Solve a list of testing problems and record performance;
e While there are more training examples

— Pick a training example and solve it;
— Add new Control Rules to the Control_Rule_Store;

— Solve the list of testing problems and record performance;
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4.2 Expectations

This section discusses the merits and demerits of different approaches (described in this section)
for our experiments and relates the shape of the learning curve to our experimental methodology
by identifying the reasons contributing to the cost of the method.

Consider a domain in which rules have distinct predicate names. This implies (for our experi-
mental setup) that for a goal to be proved, the rule choice will be the unique rule whose consequent
unifies with the goal. Since this choice is unique, learning preference control rules for such a do-
main should be harmful since the cost associated with using the control rule outweighs the benefits
(which in this case is zero, since we already know which rule to use). Hence the number of matches
(our performance criteria) should increase with the increase in the number of control rules learned
(i.e., it should increase with the increase in the number of training examples).

If many rules with the same predicate are present in the rule base, then a control rule can
prevent the deductive retriever from exploring futile paths in the search tree (which results in
savings) and hence performance could improve. However, if control rules are learned incessantly, a
large number of the rules in the database may wind up in the control rule store.

For example, consider the following database of rules.

1. Imno(X,Y) <— dont(X), follow(X,Y), me(X).
2. Imno(X,Y) <— iam(X), lost(X,Y).
3. Imno(X,Y) <— a_b(X), confused_d(X,Y).
The following rules are possible specific control rules obtained using the above database.

1. The consequent is:
Imno(objl, obj2)
The antecedent is:
Imno(X,Y) <— dont(X), follow(X,Y), me(X).
2. The consequent is:
lmno(obj3, obj2)
The antecedent is:
Imno(X,Y) < dont(X), follow(X,Y), me(X).
3. The consequent is:
lmno(obj4, obj5)
The antecedent is:
Imno(X,Y) < dont(X), follow(X,Y), me(X).

The following rules are possible general control rules obtained using the above database.

1. The consequent is:
Imno(X0,Y1)
The antecedent is:
Imno(X,Y) < dont(X), follow(X,Y), me(X).
2. The consequent is:
lmno(Z1,X2)
The antecedent is:
Imno(X,Y) < iam(X), lost(X,Y).
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The following rules are possible intermediate control rules obtained using the above database.

1. The consequent is:
lmno(X0,0bj1)
The antecedent is:
Imno(X,Y) < dont(X), follow(X,Y), me(X).
2. The consequent is:
Imno(obj2,X2)
The antecedent is:
Imno(X,Y) <— iam(X), lost(X,Y).

Either type of the general, specific or intermediate rules (or a combination) can be learned depending
on the implementation.

When general control rules are learned (in our implementation), the number of rules in the
control rule store cannot exceed the number of rules in the database. This is because the consequent
of a database rule (or an expression which is formed by renaming the variables of the database rule)
serves as the consequent of the control rule, and the antecedent of the control rule contains a pointer
to the database rule. Specific control rules can exceed the number of rules in the database. Many
different goals can match the consequent of the same database rule. Since the goal now represents
the consequent of a control rule, the same database rule can be present as an antecedent of different
control rules.

If general rules are learned, the control rule store may wind up having every rule in the database
as an antecedent of a control rule after a few training examples. The control rule store may now
have a large number of rule choices for the same goal template, which abets searching futile paths.
In this case the retriever may effectively reduce to one without control rules, but with the cost
of processing control rules (because every rule in the database is present as an antecedent of a
control rule in the control rule store). This is specifically true if the rules are used uniformly during
problem solving.

If a separate rule is learned for each goal (specific control rule), then the number of control
rules in the control rule store becomes large after a few training examples. For proving a goal, the
set of applicable control rules (control rule cluster for that goal predicate, i.e., control rules whose
consequent has the same predicate as the goal, with possibly different arguments) is large. The
cost of searching the control rule whose consequent exactly matches the goal increases drastically.
Specific control rules are useful if the goals to be solved are repeated exactly. If the arguments of a
goal are different from a previously solved goal with the same predicate then no control rule will be
applicable, and a rule will have to be picked randomly from the database, thus contributing only
to the cost.

If intermediate control rules are learned (some of the arguments of the consequent of the control
rules are variables and some are constants), then the disadvantages of both the general and specific
control rule cases may be circumvented. However, no deterministic way to learn these rules exists
since a combinatorial number (with respect to number of arguments) of intermediate rules can be
generated for each database rule. However, the degradation in performance should still occur with
the increase in the number of control rules.

Control rules are helpful if there are alternative rules applicable to certain goals. Control
rules have a weight associated with them. The highest-weighted rule is chosen from alternatively
applicable rules since the rule seems the most conducive rule for solving the problem (the counter
loosely estimates the problem distribution and helps in the reordering of rules within its cluster).
With intermediate control rules the set of alternatively applicable rules is reduced for a certain
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goal (when compared to specific rules), because some of the arguments of the consequent of the
control rules are variables. They also seem to have an advantage over general control rules which
is illustrated by the following example.

Assume that the goal abcd(obj1,X) is solved by rulel and abced(obj2,Y) is solved by rule2. The
control rule store may have rules which make these choices explicit. However, this is not possible
for general control rules, because the consequent of the highest-weighted control rule within its
cluster will be represented by abed(X,Y) and the antecedent by either rulel or rule2.

The cost of processing control rules increases the cost of solving the problem, which contributes
to the degradation in performance. The cost of processing control rules is large if the control rule
store has large clusters® of rules, and these clusters have either equally applicable control rules on
one hand (possibly for the general control rules case) or non-applicable control rules on the other
(possibly for the specific control rules case). Such large clusters represent low utility knowledge. A
way to increase this utility is to reduce the cluster size (possibly to zero — which represents the no
control rule situation) which will reduce the processing cost. The no control knowledge case may
have an exorbitant futile search path cost associated with it. The trick is to limit the number of
control rules with the intent of reducing the cost of applying the control knowledge. Experiments
indicate that this can be done by limiting the number of training examples.

5 EXPERIMENTS

In this section we describe the results of our experiments to relate domain characteristics to the
shape of the learning curve. We empirically show that multiple rules applicable to a single goal are
necessary for control rules to be useful. We justify the use of general control rules as opposed to spe-
cific rules and show that control knowledge is beneficial to a certain point after which performance
degrades and that few training examples are required to reach this point. Refer to appendix A for
descriptions of the domains used in the following experiments.

5.1 Experiment 1: Relating domain characteristics to the shape of the learning
curve

The aim of this experiment is to show that multiple rules applicable to a single goal are necessary
for control rules to be useful. If the average number of rules alternatively applicable to certain
goals is high, then the learning curve’s minimum will be below the zero control rule point (thus
proving the utility of control rules). Many domains were used in this experiment. General control
rules were learned. Artificial domain 1 consists of 24 rules, all of which have consequents with
distinct predicate names. The performance curve is shown in figure 3. Artificial domain 2 consists
of 24 rules, 18 of which have consequents with distinct predicate names. The learning curve for this
domain is shown in figure 4. Artificial domain 3 consists of 24 rules, 6 of which have consequents
with distinct predicate names. The learning curve for this domain is shown in figure 5. Refer to
appendix A for more details regarding these domains.
The following observations can be made from the results.

1. The minimum of the learning curve in figure 5 (unlike figure 4) is below the no training
example (i.e., zero control rule) point. This is because the domain for figure 5 has, on average,
more database rules alternately applicable to certain goals. Thus control rules learned are
more utile in the sense that they help in choosing a database rule from a larger cluster of rules

3Clusters are implicitly defined as control rules whose consequent have the same predicate.
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Figure 3: Artificial domain 1: Match values averaged over 10 trials consisting of 16 training and 8
testing examples sampled from 24 queries.
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Figure 4: Artificial domain 2: Match values averaged over 10 trials consisting of 16 training and 8
testing examples sampled from 24 queries.
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Figure 5: Artificial domain 3: Match values averaged over 10 trials consisting of 16 training and 8
testing examples sampled from 24 queries.

(when compared to the domain for figure 4). Learning was detrimental for artificial domains
1 and 2.

2. There is a monotonic degradation in performance (i.e., increase in the match cost) as the
number of training examples increase (i.e., as more control rules are learned) above a certain
number.

3. Figure 5 exhibits the general utility problem: the eventual degradation of performance due
to increasing amount of learned knowledge. The figure shows that learning control knowledge
is beneficial to a certain point after which the cost of using the control knowledge exceeds its
benefits.

4. Figure 3 is a monotonically increasing curve. This is to be expected since the control rules
will only add to the cost (because the database rule choice is unique).

5. The cost at the minima of the learning curve in figure 4 is more than the initial cost (without
control rules). This is because a majority of the rules (75%) have distinct predicate names
and hence do not actually require control rules for their selection.

The results indicate that control rules are helpful if there are alternative rules applicable to
certain goals. If the percentage of rules alternately applicable to certain goals is high, then a
control rule can reduce the cost by choosing the rule which shows the greatest potential for solving
the problem. In such cases the savings due to control rules is better than with a lower percentage
of alternately applicable rules.

5.2 Experiment 2: General vs. specific control rules

The purpose of this experiment is to justify the learning of general control rules as opposed to
specific and intermediate rules in our experimental setup. A secondary aim is to show that learning
too many control rules (as in the case of specific rules) is harmful. Two domains were used in this
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experiment. Artificial domain 4 contains 24 rules for determining family relationships combined
with 21 artificial rules increasing the number of alternative rules applicable to certain goals. The
sentence domain consists of 14 rules implementing a simple natural language parser. Refer to
appendix A for more details regarding these domains.

Figure 6 shows the cost (averaged over 10 trials) of solving 9 testing problems in the sentence
domain after learning control rules from each of 18 training problems sampled randomly from a
set of 28 problems (queries). Figure 7 shows the cost (averaged over 10 trials) of solving 9 testing
problems in artificial domain 4 after learning control rules from each of the 18 training problems
sampled randomly from a set of 27 problems. The three curves represent the cost when specific,
general and intermediate control rules are learned. Intermediate control rules perform better than
the general control rules. The reason is that some rule choices are not possible with general control
rules. These choices can be learned with intermediate control rules. An example illustrating this
is present in section 4.2. The cost of testing whether a control rule is applicable is high for the
specific control rule case, because a large number of control rules, whose consequents have the same
predicate as the goal (thus increasing the match cost of selecting a control rule in this cluster),
are generated. All the curves exhibit the utility problem with the learning curve of intermediate
control rules having the best characteristics.

In future experiments curves will be shown only for the general case since there is no simple way
of generating intermediate control rules. The number of intermediate control rules for a database
rule is exponential with the number of arguments of the consequent of the control rule. In these
experiments, intermediate rules were learned by asking queries having variables as arguments. The
correct but ezpensive way to learn intermediate control rules would be to learn specific rules and
condense their consequents by some generalizing mechanism to reduce the cluster size. For example,
if the following specific rules are learned:

abcd(objl, obj2) <- rulel

abced(obj3, obj2) <- rulel
then these rules can be combined to form the intermediate rule

abed(X, obj2) <- rulel.

This assumes that the domain of the first argument of abcd has only 0bj1 and 0bj2 as members.
Building this mechanism is tricky, because it requires complete knowledge about the domain of
each predicate. There will also be a high cost associated with building these control rules for the
same reason.

5.3 Experiment 3: Too much control knowledge can be harmful

The goal of this experiment is to show that control rules are beneficial to a certain point after which
they cause degradation in performance. This experiment lays ground for implementing a general
mechanism which limits the number of control rules by indicating when to stop learning (at the
minimum of the learning curve). The experiment also shows that a global minimum exists in the
learning curve.

Many domains were used in this experiment. The sentence domain consists of 14 rules for
parsing simple sentences. Artificial domain 4 contains 45 rules, 24 of which determine family
relationships and the remaining increase the number of alternative rules applicable to certain goals.
The blocks domain contains 8 rules for transferring blocks and building towers. Artificial domain 5
contains 21 artificial rules having a high percentage of rules alternatively applicable to goals. These
domains are listed and described in appendix A.

19



2000 —

Matches

specific ®

general ¢ 1500 —
intermediate X

1000 —

[ D R
6 8 10 12 14 16 18

Training Examples

Figure 6: Sentence domain: Match values averaged over 10 trials consisting of 18 training and 9
testing examples sampled from 28 queries.
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Figure 7: Artificial domain 4: Match values averaged over 10 trials consisting of 18 training and 9
testing examples sampled from 27 queries.
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Figure 8: Sentence domain with general control rules. Match values averaged over 90 trials con-
sisting of 18 training and 9 testing examples sampled from 28 queries.

Figure 8 shows the cost (averaged over 90 trials) of solving 9 testing problems in the sentence
domain. Control rules were learned from each of 18 training problems sampled randomly (with
replacement) from a set of 28 queries (problems). Control rules learned from the first training
problem increased the cost, but the cost gradually decreased till a minimum was reached below
the cost of the initial rules. With more training examples, the cost increased steadily following the
trend of figure 1. The minimum cost occurred after the fourth training example.

Figure 9 shows the cost (averaged over 90 trials) of solving 9 testing problems in artificial
domain 4. Control rules were learned from each of 18 training problems sampled randomly (with
replacement) from a set of 28 queries (problems). The learning-cost curve follows the trend of
figure 1. The minimum cost occurred after the third training example.

Figure 10 shows the cost (averaged over 30 trials) of solving 5 testing problems in the blocks
domain. Control rules were learned from each of 10 training problems sampled randomly (with
replacement) from a set of 15 queries (problems). The problems all involved building towers of
height 2 from 6 blocks initially on the table. The minimum of the learning curve occurred after
solving the first training problem and the cost remained fixed thereafter. This is because the queries
were essentially the same, each building towers of height 2, and hence the necessary control rules
were learned after the first training example.

Figure 11 shows the cost (averaged over 30 trials) of solving 10 testing problems in the blocks
domain. Control rules were learned from each of 20 training problems sampled randomly (with
replacement) from a set of 30 queries (problems). The 30 queries consisted of building 18 towers of
height 2, 9 towers of height 3, and 3 towers of height 4. Once again, the learning-cost curve follows
the trend of figure 1. The minimum cost occurred after the first training example.

Figure 12 shows the cost (averaged over 70 trials) of solving 6 testing problems in artificial
domain 5 after learning control rules from each of 12 training problems sampled randomly from
a set of 18 problems (queries). The familiar trend of the general utility problem is evident once
again.

There is a minimum in the learning curves as is evident from figures 8, 9, 11 and 12. Initially
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Figure 9: Artificial domain 4 with general control rules. Match values average over 90 trials
consisting of 18 training and 9 testing sampled from 28 queries.
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Figure 10: Blocks domain with general control rules. Match values average over 30 trials consisting
of 10 training and 5 testing examples sampled from 15 queries consisting of towers of height 2.
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Figure 11: Blocks domain with general control rules. Match values average over 30 trials consisting

of 20 training and 10 testing examples sampled from 30 queries consisting of towers of height 2
(18), height 3 (9) and height 4 (3).
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Figure 12: Artificial domain 5 with general control rules. Match values average over 70 trials
consisting of 12 training and 6 testing examples sampled from 18 queries.
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as the system learns control rules generated from randomly-sampled training problems, cost may
increase slightly. However, the cost quickly decreases but is eventually driven up. The initial rise
may be due to inclusion of low-utility control knowledge. However, the learning curve quickly turns
downward as control rules are learned from training problems containing goals that are prevalent in
the problem distribution. Eventually, after the utile rules have appeared, subsequent rule learning
follows statistically insignificant trends in the problem distribution that drive up the cost of solving
the testing problems. These factors combine to form a minimum in the learning cost curve.

We also observe that very few training examples are necessary to learn a utile set of control
rules, i.e., converge to the minimum of the learning-cost curve which is below the zero control rule
point (no training example). This leads us to hypothesize that this approach has a lower learning
time than systems like COMPOSER and PALO which involve utility evaluation and which require
a large number of training examples to estimate the distribution.

6 CONCLUSIONS

Cost associated with the use of control rules can be attributed to the time spent in testing the
applicability of the control rules and following futile paths in the search space not explored by
the original domain theory. Time savings associated with the use of control rules is due to the
avoidance of futile paths explored by the original domain theory. These factors contribute to the
existence of a global minimum in the learning-cost curve.

The difficulties in identifying the global minimum result from the presence of a local minimum
as evident from figure 9 and coarse control (several control rules are learned per training example).
Finer control may be possible by limiting the number of control rules instead of training examples.
This hampers the prediction of the number of training examples corresponding to the minimum of
the learning-cost curve.

Our empirical results indicate that few training examples are required to reach the minimum
of the learning-cost curve. The testing set, representing the problem distribution, empirically de-
termines this point. However, no theory is available to predict the number of training examples
corresponding to this minimum. An approach in this direction could be to relate domain char-
acteristics (e.g., size and shape of the search space, size of the problem space, recursive versus
non-recursive domain theories) to the probability of seeing a majority of training problems that
follow a certain, highly-efficient path through the search space that is also followed by a large
number of other problems prevalent in the problem distribution [9]. This approach as opposed to
statistical approaches could require a smaller number of training examples.

In our experiments we have demonstrated the ubiquity of the general utility problem in speedup
learning. We have shown that a global minimum exists in the learning curve. With this in mind
a mechanism can be incorporated in the system to stop learning at the point represented by the
minimum. A set of problems can be solved to obtain the cost of solving these problems as a
function of the number of training examples. From our experimental results (specifically those of
experiment 3) we observe that the shape of the learning curve, for different domains, emulates the
trend in figure 1. A curve can be interpolated through these points (based on the general trend),
and the number of training examples corresponding to the minimum can be approximated. The
main advantage of our approach lies in the fact that the similarities of the response curves suggest
a model which can be fitted with very few or no training examples. This represents a simple
yet efficient (or inexpensive) way to limit knowledge since the approach does not involve a utility
evaluation function.

Thus our simple control-rule selection strategy lies at the opposite end of the spectrum from
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approaches to the utility problem dependent upon large numbers of training problems to estimate
the problem distribution. Therefore we can intuitively argue that this approach has a lower learning
time than systems like Composer and PALO which perform utility evaluation. Future work could
involve validating this intuition and comparing the performances of these systems under identical
conditions. Empirical results, for the domains listed in appendix A, indicate that few training
problems are needed to learn a utile set of control rules (corresponding to the minimum of the
learning-cost curve). If these results are indicative of the behavior in other domains, there should
be no need for large numbers of training problems, and a set of utile control rules can be learned
with less cost [9].

If the distribution of queries changes, the control strategy of the system needs to be re-evaluated.
This re-evaluation will be cheaper for our approach, which requires fewer training examples to reach
the minimum of the learning curve.

Our experiments (specifically experiment 1) indicate that control rules are useful only if they
help in favoring database rules which save time by not following futile paths in the search space.
For this to be true there should be multiple rules alternatively applicable to single goals. As evident
from experiment 1, a greater percentage of alternatively applicable rules implies a lower minimum
of the learning curve (implying lower cost at the minimum). Furthermore, this minimum moves to
the right as the percentage of alternatively applicable rules increase. This is because more control
rules are needed to prefer a larger percentage of alternatively applicable rules and hence more
training examples are required. These observations throw light on the relationship between the
percentage of alternatively applicable control rules, number of training examples, and the shape
of the learning curve (specifically the depth of the concavity and the location of the minimum).
For a higher percentage of alternatively applicable rules, the minimum represents a lower cost and
occurs at a higher number of training examples. This analysis gives a general relationship, but
more rigorous formal and empirical analysis is required to accurately predict the necessary number
of training problems based on domain characteristics.

A DOMAINS

This appendix lists the various domains used in our experiments. The format should be interpreted
as follows:

1. Facts are represented as
(predicate argumentl argument?2 ...).

2. Rules are represented as
(<- consequent antecedentl antecedent? ...).

3. consequents and antecedents have the same format as facts.

4. A variable X is represented as 7X.

Thus, a Prolog rule abcd(X, Y) :- iam(X), sokool(Y) would be represented as (<- (abcd ?X ?Y)
(iam ¢X) (sokool ?Y) ).

A.1 Artificial domains 1, 2 & 3

These domains are variations of artificial domain 4 with 0%, 25% and 75% rules alternatively
applicable to goals. Artificial domain 1 consists of 24 rules, all of which have consequents with
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distinct predicate names. Artificial domain 2 consists of 24 rules, 18 of which have consequents
with distinct predicate names. Artificial domain 3 consists of 24 rules, 6 of which have consequents
with distinct predicate names. Refer to artificial domain 4 for more details.

A.2 Artificial domain 4

Artificial domain 4 contains 24 rules for determining family relationships combined with 21 artificial
rules increasing the number of alternative rules applicable to certain goals.

(

(male john) (male tom) (male fred) (male harry) (male jack)

(bb cons2 cons3) (bc dons2 dons3) (bb fons2 fons3) (bc fonsl fons2)

(male rich) (male mike) (male steve) (male scott) (female mary)

(female alice) (female linda) (female jane) (ca consl cons2)

(cb cons2) (female rachel) (female valerie) (female barbara)

(female cindy) (female donna) (married john mary) (parent john tom)

(ca fons2 fonsl) (cb fonsl) (cc dons2) (parent mary tom)

(parent john linda) (parent mary linda) (married tom alice)

(married linda steve) (parent alice valerie) (parent tom valerie)

(cd dons1) (cc eonsl) (cd eons2) (da consl consll) (db consll consi12)

(dc cons12 cons13) (dd consl3 cons2) (parent alice barbara)

(parent tom barbara) (parent linda jack) (parent steve jack)

(parent steve rich) (parent linda rich) (dd comnsl cons2)

(db fons2 fons11l) (dc fons11l fons12) (dd fons12 fonsl)

(dc fons2 fons11l) (dd fons11l fonsl) (ee cons2 cons21) (ef cons21)

(ee fonsl fons1l) (ef fonsll) (married barbara scott) (parent scott cindy)
(parent barbara cindy) (i eonsl eons3) (1 eons21 eonsl) (1 eons2l1 eons3)
(1 eons2 eons21) (i donsl dons3) (parent jack mike) (married jack donna)
(parent donna mike) (1 dons21 donsl) (1 dons21 dons3) (1 dons2 dons21)
(bb ions2 ions3) (bc jons2 jons3) (married valerie fred)

(parent fred jane) (parent valerie jane) (bb lons2 lons3) (bc lonsl lons2)
(ca ionsl1 ions2) (cb ions2) (ca lons?2 lonsl) (married rich rachel)
(parent rich harry) (parent rachel harry) (cb lonsl) (cc jons2) (cd jonsl)
(cc konsl) (cd kons2) (da ionsl ions11l) (db ionsl1l ionsl12)

(dc ions12 ions13) (dd ions13 ions2) (dd ionsl ions2) (db lons2 lonsil)
(dc lonsi1 lons12) (dd lons12 lonsl) (dc lons2 lonsil) (dd lonsll lonsi)
(ee ions2 ions21) (ef ions21) (ee lonsl lons1l) (ef lonsil)

(i konsl kons3) (1 kons21 konsl) (1 kons21 kons3) (1 kons2 kons21)

(<~ (father 7X ?7Y) (parent 7X 7Y) (male 7X))

(<~ (mother ?X ?Y) (parent 7X 7Y) (female 7X))

(<~ (husband 7X ?7Y) (married 7X 7Y) (male 7X))

(<- (aa 7X 7Y 7Z) (ba 7X ?7Y) (bb ?Y ?Z))

(<- (aa 7X 7Y 7Z) (ba 7X ?7Y) (bc 7Y ?7Z))

(<- (wife ?X ?Y) (married ?X ?Y) (female 7X))

(<- (son 7X ?7Y) (parent 7Y 7X) (male 7X))

(<- (daughter 7X ?7Y) (parent 7Y 7X) (female ?7X))
(<- (aa 7X 7Y ?7Z) (bd 7X 7Y 7Z))

(<~ (aa 7X 7Y 7Z) (ba 7X 7Z) (bb ?Y ?7Z) (bc 7X 7Y))
(<= (ba 7X 7Y) (ca 7X 7Y) (cb ?7Y))

(<= (ba 7X ?7Y) (ca 7Y 7X) (cb 7X))

(<= (ba 7X ?7Y) (cc 7X) (cd 7Y))

(<= (ba 7X ?7Y) (cc ?7Y) (cd 7X))

(<~ (sibling ?X ?Y) (father ?F ?X) (father ?F 7Y) (mother 7?M 7X) (mother 7M 7Y))
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(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=

A.3

(brother ?X ?Y) (sibling ?X ?7Y) (male 7X))

(sister 7X 7Y) (sibling 7X ?7Y) (female 7X))

(ca ?X ?Y) (da ?X ?W) (db ?W 7U) (dc ?U ?V) (dd 7V ?7Y))
(ca ?X ?Y) (db ?X ?U) (dc ?U ?V) (dd ?V ?Y))

(ca ?X ?Y) (dc 7X ?V) (dd ?V 7Y))

(sister_in_law ?X ?Y) (brother 7B ?Y) (married ?X ?B))
(brother_in_law ?X ?7Y) (sister 7S ?7Y) (married 7X 7S))
(mother_in_law 7X ?7Y) (mother 7X 7S) (married 7S 7Y))
(father_in_law 7X ?7Y) (father 7X 7S) (married 7S 7Y))

(ca ?X ?Y) (dd 7X ?7Y))

(cb ?Y) (ee ?Y ?7Z) (ef 7Z))

(uncle 7X ?7Y) (parent 7P ?7Y) (brother 7X ?7P))

(uncle 7X ?7Y) (parent 7P ?7Y) (sister 7S 7P) (husband 7X 7S))
(aunt ?X ?7Y) (parent 7P 7Y) (sister 7X 7P))

(cb ?Y) (ee ?Z 7Y) (ef 7Z))

(bd ?X ?Y 7Z) (fa ?X ?Y ?7Z))

(aunt 7X 7Y) (parent 7P 7Y) (brother 7B 7P) (wife 7X 7B))
(cousin 7X 7Y) (parent 7P 7X) (parent 70 ?7Y) (sibling 7P 70))
(grandmother 7X ?7Y) (parent 7P ?Y) (mother 7X 7P))

(fa 7X 7Y 7Z) (ga 7X 7Y 7Z))

(ga 7X 7Y 7Z2) (h 7X ?7Y) (1 7X 7Z) (j 7Y 7Z))

(h ?X ?Y) (k ?X ?Z) (1 ?Z ?Y))

(h ?X ?7Y) (k ?Y 7Z) (1 7Z 7X))

(k ?X 7Z) (1 ?X 7Z))

(j 7Y ?2) (h ?Y ?72))

(grandfather ?X ?7Y) (parent 7P ?7Y) (father 7X 7P))
(ancestor 7X ?7Y) (parent 7X 7Y))

(ancestor 7X ?7Y) (parent 7P ?7Y) (ancestor 7X 7P))
(descendant 7X 7Y) (ancestor 7Y 7X))

(married 7X 7Y) (married 7Y 7X))

Artificial domain 5

Artificial domain 5 contains 21 artificial rules having a high percentage of rules alternatively appli-
cable to goals.

(
(bb
(ca
(cd
(dc
(dc
(ee

cons?2 cons3) (bc dons2 dons3) (bb fons2 fons3) (bc fonsl fons?2)

consl cons2) (cb cons2) (ca fons2 fonsl) (cb fonsl) (cc dons2)

dons1) (cc eonsl) (cd eons2) (da consl consl1l) (db consll consi2)
consl12 cons13) (dd cons13 cons2) (dd consl cons2) (db fons2 fonsil)
fons11l fons12) (dd fons12 fonsl ) (dc fons2 fonsl1l) (dd fonsi1l fons1)
cons? cons?21) (ef cons21) (ee fonsl fonsl1l) (ef fonsi11l)

(i eonsl eons3) (1 eons21 eonsl) (1 eons21 eons3) (1 eons2 eons21)
(i donsl dons3) (1 dons21 donsl) (1 dons21 dons3) (1 dons2 dons21)

(bb
(ca
(cd
(dc
(dc
(ee

ions2 ions3) (bc jons2 jons3) (bb lons2 lons3) (bc lonsl lons2)

ionsl ions2) (cb ions2) (ca lons2 lonsl) (cb lonsl) (cc jons2)

jonsl) (cc konsl) (cd kons2) (da ionsl ions11l) (db ionsll ions12)
ions12 ions13) (dd ions13 ions2) (dd ionsl ions2) (db lons2 lonsil)
lons11l lons12) (dd lons12 lonsl ) (dc lons2 lons11l) (dd lonslil lons1i)
ions2 ions21) (ef ions21) (ee lonsl lons11l) (ef lonsl11l) (i konsl kons3)

(1 kons21 konsl) (1 kons21 kons3) (1 kons2 kons21)
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A.4 Sentence domain

(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=
(<=

(aa ?X ?Y ?Z) (ba 7
(aa 7X 7Y 7Z) (ba 7
(aa 7X ?Y 7Z) (bd 7
(aa ?X ?Y ?Z) (ba 7

(ba ?X ?Y) (ca 7X
(ba ?X ?Y) (ca 7Y

?Y) (bb ?Y ?7Z))

?Y) (bc 7Y ?Z))

?Y 7Z))

?Z) (bb ?Y ?Z) (bc 7X 7Y))

?Y) (cb ?Y))

?X) (cb ?7X))

(ba ?X ?7Y) (cc 7X) (cd 7Y))

(ba ?X ?7Y) (cc ?7Y) (cd 7X))

(ca ?X ?Y) (da ?X ?W) (db ?W 7U) (dc ?U ?V) (dd 7V ?7Y))
(ca ?X ?Y) (db ?X ?U) (dc ?U ?V) (dd 7?7V ?Y))

(ca ?X ?Y) (dc 7X ?V) (dd ?V 7?Y))

(ca 7X ?7Y) (dd 7X 7Y))

(cb ?Y) (ee 7Y 7Z) (ef 7Z))

(cb ?Y) (ee 7Z 7Y) (ef 7Z))

(bd ?X ?Y 7Z) (fa 77X ?Y 7?7Z))

(fa 7X 7Y 7Z) (ga 7X 7Y 7Z))

(ga 7X 7Y 7Z2) (h 7X ?Y) (1 7X 7Z) (j 7Y 7Z))

(h ?X ?7Y) (k ?X 7Z) (1 7?Z 7Y))

(h ?X ?7Y) (k ?Y 7Z) (1 7Z 7X))

(k ?X 7Z) (1 ?X ?Z))
(j 7Y 72) (h 7Y 7Z))

The sentence domain consists of 14 rules for parsing simple sentences.

(

(verb
(verdb
(noun
(noun

(prep

ate) (verb sat) (verb crushed ) (verb killed) (verb cleaned) (verb read)
wrote) (noun book) (noun table) (noun apple) (noun orange) (noun sofa)
banana) (noun grapes) (noun man) (noun woman) (noun boy) (noun girl)
cat) (noun dog) (noun mat) (prep on) (prep below) (prep under)

above) (prep inside) (prep outside) (det a) (det the) (det an) (adj big)

(adj tall) (adj small) (adj tiny) (adj huge) (adj large) (conj and) (conj or)

(<-

(<-

(<-

(<-

(<-

(<-

(<-

(<-

(<-

(<-

(sent 7?A 7B 7C 7D
(np 7A 7B) (vp 7C
(sent 7A 7B 7C 7D
(np 7A 7B) (vp 7C
(sent 7A 7B 7C 7D
(np 7A 7B 7C) (vp
(sent 7A 7B 7C 7D
(np ?A 7B 7C) (vp
(sent 7A 7B 7C 7D
(np 7A 7B) (vp 7C
(sent 7A 7B 7C 7D
(np 7A 7B) (vp 7C
(sent 7A 7B 7C 7D
(np ?A 7B 7C) (vp
(sent 7A 7B 7C 7D
(np 7A 7B 7C) (vp
(np 7A 7B)

7E)

7D
7E
7D
7E
7D
7E
7D
7E
7D
7E
7D
7E
7D
7E
7D

(det 7A) (noun 7B))

(np 7A 7B 7C)

7E))

?F)

?E 7F))

?F 7G)

?E 7F 7G))
?F)

?E 7F))
?F)

?E 7F))

?F 7G)

?E 7F 7G))
?F 7G 7H)
?E ?F ?7G 7H))
?F 7G)

?E 7F 7G))
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(det 7A) (adj 7B) (moun 7C))
(<- (vp 7C 7D 7E)
(verb ?C) (np 7D 7E))
(<= (vp ?C 7D 7E 7F)
(verb 7C) (np 7D 7E 7F))
(<~ (vp ?C 7D 7E 7F)
(verb ?C) (prep ?D) (up 7E 7F))
(<= (vp 7C 7D 7E 7F 7G)
(verb ?C) (prep ?D) (np 7E 7F 7G))

A.5 Blocks domain

The blocks domain contains 8 rules for a situational calculus implementation consisting of one
operator for transferring blocks and building towers.

(

(noteq a b) (noteq b a) (noteq a c) (noteq c a) (noteq a d) (noteq d a)
(noteq a e) (noteq e a) (noteq a f) (noteq f a) (noteq b c) (noteq c b)
(noteq b d) (noteq d b) (noteq b e) (noteq e b) (noteq b f) (noteq f b)
(noteq c d) (noteq d c) (noteq c e) (noteq e c) (noteq c f) (noteq f c)
(noteq d e) (noteq e d) (noteq d f) (noteq f d) (noteq e f) (noteq f e)
(block a) (block b) (block c) (block d) (block e) (block f)

(clear a s0) (clear b s0) (clear c s0) (clear d s0) (clear e s0) (clear f s0)
(on a table s0) (on b table s0) (on c table s0) (on d table s0)

(on e table s0) (on f table s0) (achievable s0)

(<- (achievable (do (transfer 7X 7Y) 7S))
(clear 7X 7S) (block 7X) (clear 7Y 7S) (moteq 7X 7Y) (achievable 7S))

(<- (clear ?Z (do (transfer 7?X ?Y) ?9))
(on 7X ?Z 7S) (block 7Z) (noteq 7Z 7Y))

(<- (clear ?X (do (transfer 7X 7Y) 7S))
(achievable (do (transfer 7X 7Y) 7S)))

(<- (clear ?A (do (transfer 7X ?Y) ?9))
(clear 7A 7S) (noteq 7A 7X) (noteq 7A 7Y))

(<- (on ?X ?Y (do (transfer 7X 7Y) 7S))
(achievable (do (transfer ?X ?Y) 7S)))

(<- (on ?A ?B (do (transfer ?X ?Y) ?9))
(on 7A 7B 7S) (noteq 7A 7X))

(<- (tower (cons 7X (cons 7Y NUL)) (do (transfer 7X 7Y) 7S))
(on ?Y table ?S) (block ?Y) (achievable (do (transfer ?X ?Y) ?S)))

(<- (tower (comns 7X (comns ?Y 7Z)) (do (transfer 7X 7Y) 7S))
(tower (cons ?Y ?7Z) 7S) (achievable (do (transfer 7X 7Y) 7S)))
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