
AN EMPIRICAL APPROACH TO SOLVING THEGENERAL UTILITY PROBLEM IN SPEEDUPLEARNINGAnurag Chaudhry and Lawrence B. HolderLearning and Planning Laboratory, Department of Computer Science EngineeringUniversity of Texas at Arlington, Box 19015, Arlington, TX 76019-0015Email: chaudhry@cse.uta.edu, holder@cse.uta.eduAbstractThe utility problem in speedup learning describes a common behavior of machine learn-ing methods: the eventual degradation of performance due to increasing amounts of learnedknowledge. The shape of the learning curve (cost of using a learning method vs. number oftraining examples) over several domains suggests a parameterized model relating performanceto the amount of learned knowledge and a mechanism to limit the amount of learned knowledgefor optimal performance. Many recent approaches to avoiding the utility problem in speeduplearning rely on sophisticated utility measures and signi�cant numbers of training data to accu-rately estimate the utility of control knowledge. Empirical results presented here and elsewhereindicate that a simple selection strategy of retaining all control rules derived from a train-ing problem explanation quickly de�nes an e�cient set of control knowledge from few trainingproblems. This simple selection strategy provides a low-cost alternative to example-intensiveapproaches for improving the speed of a problem solver. Experimentation illustrates the exis-tence of a minimum (representing least cost) in the learning curve which is reached after a fewtraining examples. Stress is placed on controlling the amount of learned knowledge as opposedto which knowledge. An attempt is also made to relate domain characteristics to the shape ofthe learning curve.1 INTRODUCTIONControl knowledge is acquired and applied in machine learning systems with the goal of improvingthe performance of the system. However, not all of the acquired knowledge may be useful. Thesesystems eventually learn low utility knowledge whose retention cost outweighs the performancebene�ts. This work tries to lay down a set of rules to limit this knowledge in order to keep theknowledge utile.Problem solvers apply learning to improve their performance, especially to improve the speedwith which they can solve problems (speedup learning). Without learning, a problem solver willsolve the same problem in the same time and in the same way and will not learn from experience.Learning from experience (experiential bias) can reduce the problem solver's problem solving timeby reducing the search space of the problem. There is a cost associated with applying this experi-ence, and this experience is useful only if the bene�t (acquired by utilizing this experience) exceedsthe cost. As the amount of experience increases, the cost associated with applying that experiencealso increases which ultimately exceeds the bene�ts. This experience has low utility. The abovediscussion summarizes the utility problem [6, 12]: the eventual degradation of performance due toincreasing amounts of learned knowledge. 1



Our approach to solving the utility problem in speedup learning requires few training examples(low learning time) and does not use utility measures. This is in contrast to other approacheswhich apply empirical [2] and statistical [4, 5] measures to learn control rules for which there ishigh certainty of utility. However, these approaches require a large number of training examples toestimate the problem distribution (implying higher learning time) and ensure utile control rules.This work also tries to identify characteristics of domains which cause the use of a particulartype of control knowledge to be bene�cial. For example, control rules learned from a domain witha high percentage of rules alternatively applicable to a single goal may produce control rules whichhelp in the selection of a domain rule for the current goal. A more general problem would be to linkthe semantics of the domain to the type of control knowledge. We also try to motivate a generalmechanism which will limit the number of control rules by indicating when to stop learning.The rest of the text is organized as follows. The remainder of this section gives an introductionto the utility problem and an overview of our approach. Section 2 discusses explanation-basedlearning (EBL) and illustrates various types of control knowledge. Section 3 summarizes some ofthe learning systems and compares our approach to their methodology. Section 4 describes ourapproach and experimental setup. Section 5 illustrates our experiments and their results, andSection 6 concludes with a discussion of these results.1.1 Recognition of the utility problemBoth inductive and explanation-based (or speedup) learning methods su�er from the general utilityproblem: the eventual degradation of performance due to the increasing amount of low utilitylearned knowledge. For example, inductive learning methods typically use a set of training examplesto generate knowledge for improving classi�cation accuracy on unseen examples. Explanation-basedlearning methods use a single example to generate knowledge for improving the problem-solvingspeed on unseen examples.However, all of this garnered knowledge may not be useful. There is a cost associated withapplying the knowledge which may outweigh the bene�ts accrued via its use. For example, ina typical speedup learning system that learns macro-operators, performance improvement resultsfrom (based on a discussion in [11]):1. Experiential bias or re-ordering e�ect: The learned knowledge (macro-operators) can changethe path traversed to reach the goal.2. Decreased cost path: Cost of reaching a goal via a macro-operator may be less than thecorresponding cost of applying the sequence of primitive operators that make up the macro-operator.Performance degradation in such a system is due to (based on a discussion in [11]):1. Duplication of the search space: If macro-operators fail to achieve the goal, the system willresort to primitive operators to solve the problem thus repeating some of the work done whenmacro-operators were used.2. Redundancy by duplicate subsequences in macro-operators: If macro-operators have primitiveoperators in common, some of the work done will be repeated as each of the macro-operatorscontaining that operator is tested. So, for example, a macro-operator composed of primi-tive operators op1 and op2 will share many of the same preconditions as a macro operatorcomposed of primitive operators op1 and op3. Redundancy will be due to preconditions ofop1. 2
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Figure 1: The relationship between cost and knowledge exhibited by a learning method su�eringfrom the general utility problem.In inductive methods the reason for performance degradation is over�t. Inductive methodsconstruct a hypothesis to correctly classify not only examples from the training set but otherunseen examples as well. Over�t usually occurs when the hypothesis becomes complex, because acomplex hypothesis tends to be overly speci�c1 and hence explains the training set [18]. A complexhypothesis represents trends in the training data which may not occur in unseen examples. Thespeci�city of the hypothesis may increase due to noise in the training examples or inadequatestopping criteria of the method, the latter being more relevant to our discussion. Thus, a typicalcost (classi�cation error) curve as a function of the amount of learned knowledge will be similarto that in �gure 1. The general utility problem in inductive learning has been analyzed for anumber of inductive learning techniques [7]. An extensive empirical investigation has also shownthat the minimum of the learning curve is frequently better than popular, statistics-based methodsfor addressing over�t [8].The utility problem has been veri�ed in several speedup learning systems [13, 19, 17, 10];however, the underlying cause is less obvious than in inductive learning. If control knowledge is used,the expected cost to solve a representative sample (from which the control knowledge was learned)of the problems is less. This may not necessarily be true for unseen examples. In speedup learningsystems using control knowledge, the performance improvement is due to reduction of problemsearch space. However, control knowledge may have the opposite e�ect if it leads to searchingfutile paths in the search space. As more control knowledge is generated, the cost of applying theknowledge also increases. The overall trend thus also follows the behavior in �gure 1, where costis typically problem-solving time. This degradation in problem-solving speed can ultimately beattributed to the learning of low-utility knowledge whose retention cost outweighs its bene�t.A common denominator in the strategies discussed above is that performance eventually de-grades as knowledge increases. This implies that performance degradation can be avoided bycontrolling the amount of learned knowledge. This work aims at empirically analyzing the generalutility problem in speedup learning with the ultimate goal of developing a formal model of per-formance response which depends on the properties of the learning task. This work suggests theexistence of a relationship between domain characteristics and the shape of the learning curve andargues that fewer training examples are required, than predicted by other approaches, for avoidingthe utility problem.1The most complex and the most speci�c hypothesis would be the training set itself.3



1.2 Outline of our approachIn this work, control knowledge takes the form of preference control rules with associated weights(or counters) representing the total number of times the control rule has been successfully usedto solve a problem. These control rules help in preferring a database rule (representing domainknowledge) over others when many database rules are applicable to the current goal. Control rulesare generated by solutions to training problems. Our approach is a greedy approach that keeps allcontrol rules (generated by training problems). Duplicate control rules increment correspondingcounters.As indicated by results in [9] and this work, a global minimum exists in the learning curve. Fewtraining examples (< 5) are required to reach this minimum. Thus our greedy strategy seems to bee�ective for the domains studied, and if results are indicative of the general trend, there is no needfor a large number of training examples to estimate the problem distribution. The main advantageof our approach lies in the fact that the similarities of the response curves suggests a model whichcan be �tted with very few or no training examples.2 BACKGROUND2.1 Explanation-based learning (EBL)Problem solvers apply learning to improve their performance, especially to improve the speed withwhich they can solve problems (speedup learning). A problem solver without learning will alwayssolve the same problem in the same way and in about the same amount of time and will not adjustits behavior based on its experience.Learning can produce qualitative changes in the performance of a problem-solving system. Itmay be possible for a problem-solver to explore all possible states in its search space, but this canprove to be combinatorially explosive for large spaces. Learning can cut down the size of the searchtree by taking big steps in the search space (learning macro operators, or composing sequences oforiginal operators). For example, in rule-based systems, rules can be combined to form macro rulesby combining collections of rules. The rulesIf A and B Then CandIf C Then Dcan be combined to form a macro ruleIf A and B Then DThe goal D of the problem solver can be reached in one step if the macro rule is used, as opposedto two steps if the original rules are used.The other technique for speeding up problem solvers is to learn some form of control knowledge(e.g., knowledge that can be applied to determine which operator to try next). The control knowl-edge can take many forms including operator selection, rejection and preference rules, evaluationfunctions and operator strengths [12].� An evaluation function is a function that can be applied to a state to estimate how close thestate is to the goal. Best-�rst search uses an evaluation function to guide the search.� Weights can be associated with each operator. Weights quantify operator strength by indi-cating how successful that operator has been in the past. Weights can be used as a measurefor choosing a particular operator. 4



� Selection, rejection and preference rules are control rules that are evaluated to decide whethera domain rule is singly-applicable, not applicable, or preferred to another rule for solving thecurrent goal.EBL [16, 1] systems learn by analyzing explanations of problem-solving behavior. Search controlknowledge can be acquired by explaining why a particular operator, when applied to a state,leads to a successful solution (or alternatively, why it leads to an unsuccessful search path). Thegoals for which explanations are being constructed can be provided by the user or can be pre-programmed into the system. Explanations can be a trace of the problem solver's actions or ananalysis of a record of the problem solver's actions (to decide whether it satis�es the target conceptor the goal). Once produced, explanations can be generalized. Some approaches generalize theconstants in explanations into constrained variables, but the structure of the graph that representsthe explanation can also be generalized [3]. EBL systems save generalized versions of the solutionsto speci�c problems under the assumption that this will speed up future problem solving. However,saving generalized solutions may be detrimental due to the cost associated with their use. Thisslowdown has come to be called the utility problem [13].2.1.1 Macro rulesEBL begins with a high-level target concept and a training example for that concept. Using a setof axioms describing the domain, the system can explain why the training example is an instanceof the target concept. The explanation is essentially a proof that shows how the training examplesatis�es the target concept.Speci�cation of EBL [16]:Input:� Target Concept: A concept de�nition describing the concept to be learned.� Training Example: An example of the target concept.� Domain Theory: A set of rules and facts to be used in explaining how the training exampleis an instance of the target concept.� Operationality Criterion: A predicate over concept de�nitions, specifying the form in whichthe learned concept de�nition must be expressed.Output:� A generalization of the training example that is a su�cient concept de�nition for the targetconcept and that satis�es the operationality criterion.ExampleInput:Target Concept: cup(X)Training Example: light(obj1), color(obj1, red), part of(handle1, obj1), handle(handle1),bottom(b1), part of(b1, obj1), at(b1), concavity(c1),5



part of(c1, obj1), upward pointing(c1)Domain Theory: cup(X) <{stable(X), liftable(X), open vessel(X).stable(X) <{bottom(Y), part of(Y, X), at(Y).liftable(X) <{graspable(X), light(X).graspable(X) <{handle(Y), part of(Y, X).open vessel(X) <{concavity(Y), part of(Y, X), upward pointing(Y).Operationality Criterion:The concept de�nition must be expressed in terms of the predicatesused to describe examples (e.g., light, upward pointing, etc.).Output: cup(X) <{bottom(Y), part of(Y, X), at(Y), light(X),handle(Z), part of(Z, X), concavity(W),part of(W, X), upward pointing(W).In the example shown above, cup(X) is to be expressed in terms of operational predicates: predicatesused to describe examples (e.g., light, upward pointing etc.). The training example consists of thefacts used to prove the goal cup(obj1). The domain theory states that an object is a cup, if itis stable, liftable and is an open vessel. An object is stable if it has a at bottom. An object isliftable if it is light and is graspable. An object is graspable if it has a handle, and an object isan open vessel if it has an upward pointing concavity. The proof tree generated while proving thegoal cup(obj1) is shown in �gure 2. The leaves of the tree represent the operational predicates,which are ultimately used to prove the goal. This tree can be used to generate a rule, in terms ofoperational predicates, which states that an object is a cup if it is light and has a at bottom, anupward pointing concavity and a handle.The format of a rule isconsequent <{ antecedent1 antecedent2 ... .The rule should be interpreted asif antecedent1 AND antecedent2 ... then consequent.where W, X, Y and Z represent variables (Prolog notation).Re-expressing the target concept in terms of the predicates used to describe examples makes theconcept operational with respect to the task of e�ciently recognizing examples of the concept. Theoperationality criteria imposes a requirement that the learned concept de�nition must be not onlycorrect, but also in a usable form before the learning is complete. The actual purpose of EBL is not6



to learn more about the target concept but to re-express the target concept in a more operationalmanner [13].2.1.2 Control rulesControl rules extend traditional problem solving by separating search control knowledge and domainknowledge. Control rules modify the default behavior by specifying that a particular candidate (e.g.,goal, operator) should be either selected, rejected or preferred over another candidate.Examples include (based on Prodigy/EBL [13, 15]):� Preference Rules: For the blocks-world domain, if on(X, Y) (to be read as block X on blockY) and on(Y, Z) are both goals at the current node in the search tree, then the latter goalshould be achieved �rst, because achieving on(X, Y) �rst will be undone by on(Y, Z). Apreference rule of the following form could be used.if (CANDIDATE-GOAL on(X, Y)) AND(CANDIDATE-GOAL on(Y, Z) )then (PREFER GOAL on(Y, Z) TO on(X, Y) )� Failure Rules:if (MATCHES GOAL on(X, X) )then (FAIL GOAL)� Selection Rules:if (MATCHES GOAL on(X, Y))then (SELECT OPERATOR stack(X, Y))The control rules learned in our experiments are of the formif (antecedent) thenconsequentThe antecedent represents a rule of the domain theory, and the consequent represents a goal (sub-goal). For example, if the goal is cup(obj1) and the domain theory is the same as in the previousexample, a proof trace as shown in �gure 2 is produced.The following control rules are learned from the proof tree in �gure 2.1. The consequent is:cup(obj1)The antecedent is:cup(X0) <{stable(X0), liftable(X0), open vessel(X0).2. The consequent is:stable(X0)The antecedent is:stable(X2) <{bottom(Y3), part of(Y3, X2), at(Y3).7
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Figure 2: Proof Tree for proving cup(obj1).3. The consequent is:liftable(X0)The antecedent is:liftable(X31) <{graspable(X31), light(X31).4. The consequent is:graspable(X31)The antecedent is:graspable(X36) <{handle(Y37), part of(Y37, X36).5. The consequent is:open vessel(X0)The antecedent is:open vessel(X70) <{concavity(Y71), part of(Y71, X70), upward pointing(Y71).If a goal (subgoal) uni�es (or matches) with the consequent of the control rule, then the rule inthe antecedent is preferred over other rules in the domain theory for that goal (subgoal). Thus therules used in our experiments are basically preference rules: control rules that prefer a rule of thedomain theory over other rules for proving a particular goal. If no control rules are present for aparticular goal, the �rst rule in the current domain theory whose consequent uni�es with the goal ispicked. Weights are associated with each control rule. If more than one control rule are applicable,the rule having the highest weight is chosen. 8



2.2 Utility problemThe utility problem refers to the eventual degradation in performance due to increasing amountsof learned knowledge. With reference to our approach, selecting the highest-weight control rulefrom a group of control rules, applicable to the current goal, can be expensive. As the number ofcontrol rules increase, this expense also increases and may ultimately exceed the bene�ts of usingthe control rules, resulting in the generation of low utility knowledge. A possible solution to limitingthis knowledge is to limit the number of control rules by stopping training when performance startsto degrade. Other solutions include using statistical and empirical evaluation of clusters of controlrules to determine their utility. These are subjects of the following section.3 RELATED WORKMost approaches to avoiding the utility problem in speedup learning rely on training examples toempirically evaluate the utility of learned knowledge. Minton's Prodigy system [12] utilizes a utilityfunction that evaluates control knowledge based on application cost, frequency of use and averagesavings. PALO [5] and Composer [4] use statistical measures to evaluate control knowledge. Severalexamples are needed to support an explanation with high con�dence and adopt the correspondingcontrol rules.3.1 ProdigyThe Prodigy system [12] evaluates the utility of problem-solving control knowledge by estimatingthe application cost, frequency and savings a�orded by the control knowledge based on the trainingproblems. Prodigy uses explanation-based specialization to learn from a variety of phenomenaincluding solutions, failures and goal interactions [15, 14, 13]. Explicit target concepts describethese phenomena, and each target concept is associated with a strategy for dynamically improvingthe performance of the problem solver. Explanations are formulated using a theory describingthe domain and the Prodigy problem solver. Unlike other EBL problem-solving systems, Prodigy'starget concepts are meta-level concepts, such as SUCCEEDS, FAILS and GOAL INTERFERENCEthat describe the problem-solving phenomena. A control choice (e.g., of a goal or operator) succeedsif it leads to a solution. A choice fails if there is no solution consistent with that choice. A choiceresults in goal interference if some condition that was previously true must be re-achieved.The Prodigy system uses a domain-independent problem-solver and an explanation-based learn-ing facility for acquiring search control rules from a problem-solving trace. Explanations are con-structed from an axiomatized theory describing both the domain and the relevant aspects of theproblem solver's architecture.Prodigy addresses the utility problem by searching for good explanations that result in e�ectivecontrol knowledge. First, after each problem-solving episode, the system considers what to explainin the problem-solving trace, and constructs an explanation. Second, the system considers howto represent the weakest preconditions of the explanation. The resulting description becomes theleft-hand side of a new control rule. Finally, the utility of the rule is measured during subsequentproblem-solving to ensure usefulness.The utility of a control rule learned by Prodigy's EBS (explanation-based specialization) processis measured in terms of speedup that results from the rule's use. Speci�cally, utility is given by thecost/bene�t formula:Utility = (AvrSavings * ApplicFreq) - AvrMatchCost9



where AvrSavings is the average time savings produced when the rule is applicable due to the factthat search is eliminated, ApplicFreq is the probability that the rule is applicable when it is tested,and AvrMatchCost is the average time cost of matching the rule.After learning the rule, Prodigy produces an initial estimate of the rule's utility based onthe training example that produced the rule. Speci�cally, the system compares the time cost ofmatching the rule against the time savings that the rule would have produced by eliminating search.Only if the savings outweigh the cost is the rule included in the active set of the control rules. Thisestimation phase eliminates rules that are poor. After a rule is added to the system, Prodigyattempts to empirically validate the utility estimate, in order to discard any remaining rules whichhave negative utility.3.2 ComposerThe Composer [4] system embodies a probabilistic solution to the utility problem. Composer usesthe generic utility function of a planner de�ned asUtility(planner) = - Pprob�Problems Cost(planner,prob) � Pr(prob),where Cost(planner,prob) is the cost of solving problem prob, and Pr(prob) is the probability ofoccurrence of prob. The utility of a planner is de�ned as the sum of the utility of each problem inthe distribution weighted by its probability of occurrence. A planner's control knowledge representsits current state. Addition of control knowledge changes the state of the planner. Utility can beassociated with each state of the planner. A utile candidate control rule will change the state of theplanner to one with higher utility. Thus a candidate control rule is added to the planner controlknowledge if there is a high con�dence that the rule will bene�t the planner.Composer is implemented within the Prodigy architecture and includes the Prodigy planner.Composer primarily utilizes selection and rejection rules. Solution traces are analyzed by thelearning component of Prodigy/EBL to construct control rules for improving problem-solving time.Composer di�ers from Prodigy/EBL in how statistics are gathered and how control rules are intro-duced into the Prodigy planner. Prodigy/EBL uses a single example to learn control knowledge.Composer introduces rule interaction in the learning module of Prodigy/EBL in order to learn autile set of control rules. Composer incrementally adds control rules to its control strategy. Theutility of the rule depends on the current control strategy. A rule is added only after demonstrat-ing bene�t to a pre-speci�ed con�dence level. Higher con�dence levels require larger numbers ofexamples.After a problem is solved, Composer analyzes the trace and identi�es search paths which wouldhave been avoided by each candidate control rule. The time spent exploring these avoidable pathsindicates the savings which would be provided by the rule. This savings is compared with therecorded precondition match cost, and the di�erence is reported as the incremental utility of therule for that problem.Composer's strategy of generating search control knowledge is more expensive than the heuris-tic approach adopted by Prodigy/EBL. This is because Composer pays the penalty of matchingpreconditions without acquiring any of the bene�ts of candidate control rules.
10



3.3 PALOThe PALO (Probably Approximately Locally Optimal) [5] approach adopts a hill-climbing tech-nique that evaluates transformations2 to the performance element (as e�ected by the control knowl-edge) using a statistical method. PALO incorporates a criterion for when to stop learning. PALOterminates learning when it has identi�ed (with high probability) a near-local maximum in thetransformation space (the learning operators collectively de�ne the transformation space). PALOuses a set of sample queries to estimate the problem distribution and hill-climbs from an initialperformance element to one that is, with high probability, close to a local optimum. PALO's resultsare guaranteed only if the samples are truly representative of the distribution, and the distributionis stationary. PALO provides stronger guarantees than Composer (and Prodigy/EBL) at the costof more examples. Harmful rules are not discarded in PALO as quickly as they are in Composer.This results in a larger candidate (control rule) set in PALO which increases the cost to solve eachtraining example. On the other hand, while Composer uses utility analysis to identify performanceelements with superior performance, the analysis does not guarantee optimal performance elements.3.4 ConclusionsAll the systems discussed above have in common a function which evaluates the utility of candidatecontrol rules. Some of these approaches have high learning times. A point to be noted is thathigher utility does not entail that the planning time of any particular problem is reduced. Rather,the expected cost to solve any representative sample of problems is less. Thus the learned controlstrategy may not be useful in a di�erent distribution (than from which it was learned). Thereforecontrol knowledge that improves performance on one set of problems can degrade performanceon other sets (this depends on the distribution of the problem). The actual distribution, whichis needed to determine which performance element is optimal, is usually not known. The abovesystems depend on the training examples for the distribution of problems in the domain. Typically,a large number of training examples are necessary to accurately estimate the problem distributionand the utility of control knowledge. Moreover, the task of �nding the optimal element, evenknowing the distribution is intractable most of the time [5].On the other end of the spectrum, simply limiting the amount of the learned knowledge (whileignoring utility) may be advantageous in terms of learning time saved. PALO tries to estimatethe unknown distribution, but the learning time is extremely high. Hence, concentrating on theamount of learned knowledge rather than the utility of the learned knowledge might be moree�cient. Excessive knowledge degrades performance. Limiting learned knowledge, without utilityevaluation, may save learning time and eliminate degradation.The following sections try to empirically validate this hypothesis. The next section discussesthe setup for these experiments.4 METHODOLOGY AND EXPECTATIONSThis section describes the setup used for our experiments. These experiments relate characteristicsof the domain to the shape of the learning curve and empirically validate that our approach requiresfew training examples to learn a utile set of control rules.2Learning can be viewed as a transformational process in which the learning system applies a series of transfor-mations to a performance element. 11



4.1 Experimental setupThe experimental setup uses a Prolog-like deductive retrieval system with proof tree and controlrule generation capabilities. The system currently supports only backward chaining.The Prolog-like deductive retrieval system used to solve problems generates proofs for the goals.This constitutes an explanation structure and can be easily used to generate a generalized proof.The proof is used to generate the search control knowledge (Control Rules) for guiding the retrievalprocess.The number of matches (uni�cations), i.e., bindings for variables, serves as a performancecriteria for monitoring performance changes with the increase in amount of learned knowledge, i.e.,control rules.The rules in the database (a database consists of facts and rules which represent the domaintheory) are of the form:if ( (antecedent1) AND (antecedent2) ... ) thenconsequentThe control rules are of the form:if database rule thengoalThe control rules are preference rules which choose a particular rule for solving the current goal.If the consequent of the control rule matches (uni�es with) the current goal then the antecedent ofthe control rule is preferred over other rules to solve the current goal. The antecedent of the controlrule points to a rule in the database. A weight is associated with each control rule. The weightrepresents the total number of times the control rule has been successfully used for solving problems(i.e., proving goals and subgoals). The weight is incremented by one, each time the control ruleis used. If more than one control rule can help in solving the current goal then the rule with themaximum weight is chosen.In the control rule store, control rules whose consequents have the same predicate are clusteredtogether. The predicate of the goal (subgoal) is used to hash into the control rule store, leading tothe control rule cluster having the same predicate as the goal (subgoal). Any of these rules (in thecluster) could (potentially) help in proving the goal. Hence the cost of using a control rule includesthe uni�cation cost of �nding the maximum weighted rule (in this cluster), whose consequent uni�eswith the goal.The average cost of using a control rule is the average number of uni�cations required to matcha goal with the consequent of the control rules having the same predicate. The cost also includesthe match cost of using wrong rules and facts from the database as a result of choosing a wrongcontrol rule. The savings in terms of number of matches from using the right control rule is thesavings resulting from not trying useless rules and facts from the database for proving the goal.Since the cost of uni�cation of facts (with goals) is usually less than that of rules (with thecascading e�ect of proving antecedents of the rule), facts are preferred over rules in our deductiveretriever.As an example of the costs associated with control-rule usage, consider the following control-rulestore.1. The consequent is:abcd(X, obj1)The weight is: 4The antecedent is:abcd(X0,Y0) <{ read(X0), my(X0, Y0), lips(Y0).12



2. The consequent is:abcd(obj2, Y)The weight is: 4The antecedent is:abcd(X0,Y0) <{ ur(X0), so(X0, Y0), kool(Y0).3. The consequent is:abcd(X, Y)The weight is: 5The antecedent is:abcd(X0,Y0) <{ make(X0), my(X0, Y0), day(Y0).4. The consequent is:abcd(obj1, Z)The weight is: 7The antecedent is:abcd(X0,Y0) <{ quid(X0), pro(X0, Y0), quo(Y0).The cost of using a control rule for proving a goal abcd(obj2, obj1) will include the cost ofuni�cation of the consequents of the rules enumerated above, with abcd(obj2, obj1). Note theconsequent of control rule 4 does not unify with the goal and hence the corresponding antecedent(a database rule) will not be used to prove the goal. However the cost of unifying abcd(obj1, Z) withabcd(obj2, obj1) contributes to the cost of using a control rule. The consequents of control rules 1,2 and 3 unify with the goal (the cost of using a control rule includes this uni�cation cost). However,the antecedent of rule 3 will be used to solve the goal because it has the highest weight. If this rulesuccessfully solves the goal, then the savings due to this control rule includes the savings resultingfrom not searching (potential) futile paths { futile paths resulting from the use of antecedents ofcontrol rules 1, 2 and/or 4 and any other rule in the database whose consequent uni�es with thegoal. If this control rule fails to solve the goal, then the other control rules are tried (using thesame procedure). The use of the control rule in this case leads to the exploration of futile pathswhich contributes to the cost. If all the control rules (namely 1, 2 and 3 for the example shownabove) fail, a rule from the database (di�erent from the antecedents of the control rules 1, 2 and 3and whose consequent uni�es with the goal) is chosen in the order given in the domain theory. Inthis situation, control rules have contributed only to the cost.The basic learning loop is as follows:� Control Rule Store = Nil;� Solve a list of testing problems and record performance;� While there are more training examples{ Pick a training example and solve it;{ Add new Control Rules to the Control Rule Store;{ Solve the list of testing problems and record performance;
13



4.2 ExpectationsThis section discusses the merits and demerits of di�erent approaches (described in this section)for our experiments and relates the shape of the learning curve to our experimental methodologyby identifying the reasons contributing to the cost of the method.Consider a domain in which rules have distinct predicate names. This implies (for our experi-mental setup) that for a goal to be proved, the rule choice will be the unique rule whose consequentuni�es with the goal. Since this choice is unique, learning preference control rules for such a do-main should be harmful since the cost associated with using the control rule outweighs the bene�ts(which in this case is zero, since we already know which rule to use). Hence the number of matches(our performance criteria) should increase with the increase in the number of control rules learned(i.e., it should increase with the increase in the number of training examples).If many rules with the same predicate are present in the rule base, then a control rule canprevent the deductive retriever from exploring futile paths in the search tree (which results insavings) and hence performance could improve. However, if control rules are learned incessantly, alarge number of the rules in the database may wind up in the control rule store.For example, consider the following database of rules.1. lmno(X,Y) <{ dont(X), follow(X,Y), me(X).2. lmno(X,Y) <{ iam(X), lost(X,Y).3. lmno(X,Y) <{ a b(X), confused d(X,Y).The following rules are possible speci�c control rules obtained using the above database.1. The consequent is:lmno(obj1, obj2)The antecedent is:lmno(X,Y) <{ dont(X), follow(X,Y), me(X).2. The consequent is:lmno(obj3, obj2)The antecedent is:lmno(X,Y) <{ dont(X), follow(X,Y), me(X).3. The consequent is:lmno(obj4, obj5)The antecedent is:lmno(X,Y) <{ dont(X), follow(X,Y), me(X).The following rules are possible general control rules obtained using the above database.1. The consequent is:lmno(X0,Y1)The antecedent is:lmno(X,Y) <{ dont(X), follow(X,Y), me(X).2. The consequent is:lmno(Z1,X2)The antecedent is:lmno(X,Y) <{ iam(X), lost(X,Y).14



The following rules are possible intermediate control rules obtained using the above database.1. The consequent is:lmno(X0,obj1)The antecedent is:lmno(X,Y) <{ dont(X), follow(X,Y), me(X).2. The consequent is:lmno(obj2,X2)The antecedent is:lmno(X,Y) <{ iam(X), lost(X,Y).Either type of the general, speci�c or intermediate rules (or a combination) can be learned dependingon the implementation.When general control rules are learned (in our implementation), the number of rules in thecontrol rule store cannot exceed the number of rules in the database. This is because the consequentof a database rule (or an expression which is formed by renaming the variables of the database rule)serves as the consequent of the control rule, and the antecedent of the control rule contains a pointerto the database rule. Speci�c control rules can exceed the number of rules in the database. Manydi�erent goals can match the consequent of the same database rule. Since the goal now representsthe consequent of a control rule, the same database rule can be present as an antecedent of di�erentcontrol rules.If general rules are learned, the control rule store may wind up having every rule in the databaseas an antecedent of a control rule after a few training examples. The control rule store may nowhave a large number of rule choices for the same goal template, which abets searching futile paths.In this case the retriever may e�ectively reduce to one without control rules, but with the costof processing control rules (because every rule in the database is present as an antecedent of acontrol rule in the control rule store). This is speci�cally true if the rules are used uniformly duringproblem solving.If a separate rule is learned for each goal (speci�c control rule), then the number of controlrules in the control rule store becomes large after a few training examples. For proving a goal, theset of applicable control rules (control rule cluster for that goal predicate, i.e., control rules whoseconsequent has the same predicate as the goal, with possibly di�erent arguments) is large. Thecost of searching the control rule whose consequent exactly matches the goal increases drastically.Speci�c control rules are useful if the goals to be solved are repeated exactly. If the arguments of agoal are di�erent from a previously solved goal with the same predicate then no control rule will beapplicable, and a rule will have to be picked randomly from the database, thus contributing onlyto the cost.If intermediate control rules are learned (some of the arguments of the consequent of the controlrules are variables and some are constants), then the disadvantages of both the general and speci�ccontrol rule cases may be circumvented. However, no deterministic way to learn these rules existssince a combinatorial number (with respect to number of arguments) of intermediate rules can begenerated for each database rule. However, the degradation in performance should still occur withthe increase in the number of control rules.Control rules are helpful if there are alternative rules applicable to certain goals. Controlrules have a weight associated with them. The highest-weighted rule is chosen from alternativelyapplicable rules since the rule seems the most conducive rule for solving the problem (the counterloosely estimates the problem distribution and helps in the reordering of rules within its cluster).With intermediate control rules the set of alternatively applicable rules is reduced for a certain15



goal (when compared to speci�c rules), because some of the arguments of the consequent of thecontrol rules are variables. They also seem to have an advantage over general control rules whichis illustrated by the following example.Assume that the goal abcd(obj1,X) is solved by rule1 and abcd(obj2,Y) is solved by rule2. Thecontrol rule store may have rules which make these choices explicit. However, this is not possiblefor general control rules, because the consequent of the highest-weighted control rule within itscluster will be represented by abcd(X,Y) and the antecedent by either rule1 or rule2.The cost of processing control rules increases the cost of solving the problem, which contributesto the degradation in performance. The cost of processing control rules is large if the control rulestore has large clusters3 of rules, and these clusters have either equally applicable control rules onone hand (possibly for the general control rules case) or non-applicable control rules on the other(possibly for the speci�c control rules case). Such large clusters represent low utility knowledge. Away to increase this utility is to reduce the cluster size (possibly to zero { which represents the nocontrol rule situation) which will reduce the processing cost. The no control knowledge case mayhave an exorbitant futile search path cost associated with it. The trick is to limit the number ofcontrol rules with the intent of reducing the cost of applying the control knowledge. Experimentsindicate that this can be done by limiting the number of training examples.5 EXPERIMENTSIn this section we describe the results of our experiments to relate domain characteristics to theshape of the learning curve. We empirically show that multiple rules applicable to a single goal arenecessary for control rules to be useful. We justify the use of general control rules as opposed to spe-ci�c rules and show that control knowledge is bene�cial to a certain point after which performancedegrades and that few training examples are required to reach this point. Refer to appendix A fordescriptions of the domains used in the following experiments.5.1 Experiment 1: Relating domain characteristics to the shape of the learningcurveThe aim of this experiment is to show that multiple rules applicable to a single goal are necessaryfor control rules to be useful. If the average number of rules alternatively applicable to certaingoals is high, then the learning curve's minimum will be below the zero control rule point (thusproving the utility of control rules). Many domains were used in this experiment. General controlrules were learned. Arti�cial domain 1 consists of 24 rules, all of which have consequents withdistinct predicate names. The performance curve is shown in �gure 3. Arti�cial domain 2 consistsof 24 rules, 18 of which have consequents with distinct predicate names. The learning curve for thisdomain is shown in �gure 4. Arti�cial domain 3 consists of 24 rules, 6 of which have consequentswith distinct predicate names. The learning curve for this domain is shown in �gure 5. Refer toappendix A for more details regarding these domains.The following observations can be made from the results.1. The minimum of the learning curve in �gure 5 (unlike �gure 4) is below the no trainingexample (i.e., zero control rule) point. This is because the domain for �gure 5 has, on average,more database rules alternately applicable to certain goals. Thus control rules learned aremore utile in the sense that they help in choosing a database rule from a larger cluster of rules3Clusters are implicitly de�ned as control rules whose consequent have the same predicate.16
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Figure 3: Arti�cial domain 1: Match values averaged over 10 trials consisting of 16 training and 8testing examples sampled from 24 queries.
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Figure 4: Arti�cial domain 2: Match values averaged over 10 trials consisting of 16 training and 8testing examples sampled from 24 queries.
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Figure 5: Arti�cial domain 3: Match values averaged over 10 trials consisting of 16 training and 8testing examples sampled from 24 queries.(when compared to the domain for �gure 4). Learning was detrimental for arti�cial domains1 and 2.2. There is a monotonic degradation in performance (i.e., increase in the match cost) as thenumber of training examples increase (i.e., as more control rules are learned) above a certainnumber.3. Figure 5 exhibits the general utility problem: the eventual degradation of performance dueto increasing amount of learned knowledge. The �gure shows that learning control knowledgeis bene�cial to a certain point after which the cost of using the control knowledge exceeds itsbene�ts.4. Figure 3 is a monotonically increasing curve. This is to be expected since the control ruleswill only add to the cost (because the database rule choice is unique).5. The cost at the minima of the learning curve in �gure 4 is more than the initial cost (withoutcontrol rules). This is because a majority of the rules (75%) have distinct predicate namesand hence do not actually require control rules for their selection.The results indicate that control rules are helpful if there are alternative rules applicable tocertain goals. If the percentage of rules alternately applicable to certain goals is high, then acontrol rule can reduce the cost by choosing the rule which shows the greatest potential for solvingthe problem. In such cases the savings due to control rules is better than with a lower percentageof alternately applicable rules.5.2 Experiment 2: General vs. speci�c control rulesThe purpose of this experiment is to justify the learning of general control rules as opposed tospeci�c and intermediate rules in our experimental setup. A secondary aim is to show that learningtoo many control rules (as in the case of speci�c rules) is harmful. Two domains were used in this18



experiment. Arti�cial domain 4 contains 24 rules for determining family relationships combinedwith 21 arti�cial rules increasing the number of alternative rules applicable to certain goals. Thesentence domain consists of 14 rules implementing a simple natural language parser. Refer toappendix A for more details regarding these domains.Figure 6 shows the cost (averaged over 10 trials) of solving 9 testing problems in the sentencedomain after learning control rules from each of 18 training problems sampled randomly from aset of 28 problems (queries). Figure 7 shows the cost (averaged over 10 trials) of solving 9 testingproblems in arti�cial domain 4 after learning control rules from each of the 18 training problemssampled randomly from a set of 27 problems. The three curves represent the cost when speci�c,general and intermediate control rules are learned. Intermediate control rules perform better thanthe general control rules. The reason is that some rule choices are not possible with general controlrules. These choices can be learned with intermediate control rules. An example illustrating thisis present in section 4.2. The cost of testing whether a control rule is applicable is high for thespeci�c control rule case, because a large number of control rules, whose consequents have the samepredicate as the goal (thus increasing the match cost of selecting a control rule in this cluster),are generated. All the curves exhibit the utility problem with the learning curve of intermediatecontrol rules having the best characteristics.In future experiments curves will be shown only for the general case since there is no simple wayof generating intermediate control rules. The number of intermediate control rules for a databaserule is exponential with the number of arguments of the consequent of the control rule. In theseexperiments, intermediate rules were learned by asking queries having variables as arguments. Thecorrect but expensive way to learn intermediate control rules would be to learn speci�c rules andcondense their consequents by some generalizing mechanism to reduce the cluster size. For example,if the following speci�c rules are learned:abcd(obj1, obj2) <- rule1abcd(obj3, obj2) <- rule1then these rules can be combined to form the intermediate ruleabcd(X, obj2) <- rule1.This assumes that the domain of the �rst argument of abcd has only obj1 and obj2 as members.Building this mechanism is tricky, because it requires complete knowledge about the domain ofeach predicate. There will also be a high cost associated with building these control rules for thesame reason.5.3 Experiment 3: Too much control knowledge can be harmfulThe goal of this experiment is to show that control rules are bene�cial to a certain point after whichthey cause degradation in performance. This experiment lays ground for implementing a generalmechanism which limits the number of control rules by indicating when to stop learning (at theminimum of the learning curve). The experiment also shows that a global minimum exists in thelearning curve.Many domains were used in this experiment. The sentence domain consists of 14 rules forparsing simple sentences. Arti�cial domain 4 contains 45 rules, 24 of which determine familyrelationships and the remaining increase the number of alternative rules applicable to certain goals.The blocks domain contains 8 rules for transferring blocks and building towers. Arti�cial domain 5contains 21 arti�cial rules having a high percentage of rules alternatively applicable to goals. Thesedomains are listed and described in appendix A.19
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Figure 6: Sentence domain: Match values averaged over 10 trials consisting of 18 training and 9testing examples sampled from 28 queries.
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Figure 7: Arti�cial domain 4: Match values averaged over 10 trials consisting of 18 training and 9testing examples sampled from 27 queries.
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Figure 8: Sentence domain with general control rules. Match values averaged over 90 trials con-sisting of 18 training and 9 testing examples sampled from 28 queries.Figure 8 shows the cost (averaged over 90 trials) of solving 9 testing problems in the sentencedomain. Control rules were learned from each of 18 training problems sampled randomly (withreplacement) from a set of 28 queries (problems). Control rules learned from the �rst trainingproblem increased the cost, but the cost gradually decreased till a minimum was reached belowthe cost of the initial rules. With more training examples, the cost increased steadily following thetrend of �gure 1. The minimum cost occurred after the fourth training example.Figure 9 shows the cost (averaged over 90 trials) of solving 9 testing problems in arti�cialdomain 4. Control rules were learned from each of 18 training problems sampled randomly (withreplacement) from a set of 28 queries (problems). The learning-cost curve follows the trend of�gure 1. The minimum cost occurred after the third training example.Figure 10 shows the cost (averaged over 30 trials) of solving 5 testing problems in the blocksdomain. Control rules were learned from each of 10 training problems sampled randomly (withreplacement) from a set of 15 queries (problems). The problems all involved building towers ofheight 2 from 6 blocks initially on the table. The minimum of the learning curve occurred aftersolving the �rst training problem and the cost remained �xed thereafter. This is because the querieswere essentially the same, each building towers of height 2, and hence the necessary control ruleswere learned after the �rst training example.Figure 11 shows the cost (averaged over 30 trials) of solving 10 testing problems in the blocksdomain. Control rules were learned from each of 20 training problems sampled randomly (withreplacement) from a set of 30 queries (problems). The 30 queries consisted of building 18 towers ofheight 2, 9 towers of height 3, and 3 towers of height 4. Once again, the learning-cost curve followsthe trend of �gure 1. The minimum cost occurred after the �rst training example.Figure 12 shows the cost (averaged over 70 trials) of solving 6 testing problems in arti�cialdomain 5 after learning control rules from each of 12 training problems sampled randomly froma set of 18 problems (queries). The familiar trend of the general utility problem is evident onceagain.There is a minimum in the learning curves as is evident from �gures 8, 9, 11 and 12. Initially21
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Figure 9: Arti�cial domain 4 with general control rules. Match values average over 90 trialsconsisting of 18 training and 9 testing sampled from 28 queries.
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Figure 10: Blocks domain with general control rules. Match values average over 30 trials consistingof 10 training and 5 testing examples sampled from 15 queries consisting of towers of height 2.
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Figure 11: Blocks domain with general control rules. Match values average over 30 trials consistingof 20 training and 10 testing examples sampled from 30 queries consisting of towers of height 2(18), height 3 (9) and height 4 (3).
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Figure 12: Arti�cial domain 5 with general control rules. Match values average over 70 trialsconsisting of 12 training and 6 testing examples sampled from 18 queries.
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as the system learns control rules generated from randomly-sampled training problems, cost mayincrease slightly. However, the cost quickly decreases but is eventually driven up. The initial risemay be due to inclusion of low-utility control knowledge. However, the learning curve quickly turnsdownward as control rules are learned from training problems containing goals that are prevalent inthe problem distribution. Eventually, after the utile rules have appeared, subsequent rule learningfollows statistically insigni�cant trends in the problem distribution that drive up the cost of solvingthe testing problems. These factors combine to form a minimum in the learning cost curve.We also observe that very few training examples are necessary to learn a utile set of controlrules, i.e., converge to the minimum of the learning-cost curve which is below the zero control rulepoint (no training example). This leads us to hypothesize that this approach has a lower learningtime than systems like COMPOSER and PALO which involve utility evaluation and which requirea large number of training examples to estimate the distribution.6 CONCLUSIONSCost associated with the use of control rules can be attributed to the time spent in testing theapplicability of the control rules and following futile paths in the search space not explored bythe original domain theory. Time savings associated with the use of control rules is due to theavoidance of futile paths explored by the original domain theory. These factors contribute to theexistence of a global minimum in the learning-cost curve.The di�culties in identifying the global minimum result from the presence of a local minimumas evident from �gure 9 and coarse control (several control rules are learned per training example).Finer control may be possible by limiting the number of control rules instead of training examples.This hampers the prediction of the number of training examples corresponding to the minimum ofthe learning-cost curve.Our empirical results indicate that few training examples are required to reach the minimumof the learning-cost curve. The testing set, representing the problem distribution, empirically de-termines this point. However, no theory is available to predict the number of training examplescorresponding to this minimum. An approach in this direction could be to relate domain char-acteristics (e.g., size and shape of the search space, size of the problem space, recursive versusnon-recursive domain theories) to the probability of seeing a majority of training problems thatfollow a certain, highly-e�cient path through the search space that is also followed by a largenumber of other problems prevalent in the problem distribution [9]. This approach as opposed tostatistical approaches could require a smaller number of training examples.In our experiments we have demonstrated the ubiquity of the general utility problem in speeduplearning. We have shown that a global minimum exists in the learning curve. With this in minda mechanism can be incorporated in the system to stop learning at the point represented by theminimum. A set of problems can be solved to obtain the cost of solving these problems as afunction of the number of training examples. From our experimental results (speci�cally those ofexperiment 3) we observe that the shape of the learning curve, for di�erent domains, emulates thetrend in �gure 1. A curve can be interpolated through these points (based on the general trend),and the number of training examples corresponding to the minimum can be approximated. Themain advantage of our approach lies in the fact that the similarities of the response curves suggesta model which can be �tted with very few or no training examples. This represents a simpleyet e�cient (or inexpensive) way to limit knowledge since the approach does not involve a utilityevaluation function.Thus our simple control-rule selection strategy lies at the opposite end of the spectrum from24



approaches to the utility problem dependent upon large numbers of training problems to estimatethe problem distribution. Therefore we can intuitively argue that this approach has a lower learningtime than systems like Composer and PALO which perform utility evaluation. Future work couldinvolve validating this intuition and comparing the performances of these systems under identicalconditions. Empirical results, for the domains listed in appendix A, indicate that few trainingproblems are needed to learn a utile set of control rules (corresponding to the minimum of thelearning-cost curve). If these results are indicative of the behavior in other domains, there shouldbe no need for large numbers of training problems, and a set of utile control rules can be learnedwith less cost [9].If the distribution of queries changes, the control strategy of the system needs to be re-evaluated.This re-evaluation will be cheaper for our approach, which requires fewer training examples to reachthe minimum of the learning curve.Our experiments (speci�cally experiment 1) indicate that control rules are useful only if theyhelp in favoring database rules which save time by not following futile paths in the search space.For this to be true there should be multiple rules alternatively applicable to single goals. As evidentfrom experiment 1, a greater percentage of alternatively applicable rules implies a lower minimumof the learning curve (implying lower cost at the minimum). Furthermore, this minimum moves tothe right as the percentage of alternatively applicable rules increase. This is because more controlrules are needed to prefer a larger percentage of alternatively applicable rules and hence moretraining examples are required. These observations throw light on the relationship between thepercentage of alternatively applicable control rules, number of training examples, and the shapeof the learning curve (speci�cally the depth of the concavity and the location of the minimum).For a higher percentage of alternatively applicable rules, the minimum represents a lower cost andoccurs at a higher number of training examples. This analysis gives a general relationship, butmore rigorous formal and empirical analysis is required to accurately predict the necessary numberof training problems based on domain characteristics.A DOMAINSThis appendix lists the various domains used in our experiments. The format should be interpretedas follows:1. Facts are represented as(predicate argument1 argument2 ...).2. Rules are represented as(<- consequent antecedent1 antecedent2 ...).3. consequents and antecedents have the same format as facts.4. A variable X is represented as ?X.Thus, a Prolog rule abcd(X, Y) :- iam(X), sokool(Y) would be represented as (<- (abcd ?X ?Y)(iam ?X) (sokool ?Y) ).A.1 Arti�cial domains 1, 2 & 3These domains are variations of arti�cial domain 4 with 0%, 25% and 75% rules alternativelyapplicable to goals. Arti�cial domain 1 consists of 24 rules, all of which have consequents with25



distinct predicate names. Arti�cial domain 2 consists of 24 rules, 18 of which have consequentswith distinct predicate names. Arti�cial domain 3 consists of 24 rules, 6 of which have consequentswith distinct predicate names. Refer to arti�cial domain 4 for more details.A.2 Arti�cial domain 4Arti�cial domain 4 contains 24 rules for determining family relationships combined with 21 arti�cialrules increasing the number of alternative rules applicable to certain goals.((male john) (male tom) (male fred) (male harry) (male jack)(bb cons2 cons3) (bc dons2 dons3) (bb fons2 fons3) (bc fons1 fons2)(male rich) (male mike) (male steve) (male scott) (female mary)(female alice) (female linda) (female jane) (ca cons1 cons2)(cb cons2) (female rachel) (female valerie) (female barbara)(female cindy) (female donna) (married john mary) (parent john tom)(ca fons2 fons1) (cb fons1) (cc dons2) (parent mary tom)(parent john linda) (parent mary linda) (married tom alice)(married linda steve) (parent alice valerie) (parent tom valerie)(cd dons1) (cc eons1) (cd eons2) (da cons1 cons11) (db cons11 cons12)(dc cons12 cons13) (dd cons13 cons2) (parent alice barbara)(parent tom barbara) (parent linda jack) (parent steve jack)(parent steve rich) (parent linda rich) (dd cons1 cons2)(db fons2 fons11) (dc fons11 fons12) (dd fons12 fons1)(dc fons2 fons11) (dd fons11 fons1) (ee cons2 cons21) (ef cons21)(ee fons1 fons11) (ef fons11) (married barbara scott)(parent scott cindy)(parent barbara cindy) (i eons1 eons3) (l eons21 eons1) (l eons21 eons3)(l eons2 eons21) (i dons1 dons3) (parent jack mike) (married jack donna)(parent donna mike) (l dons21 dons1) (l dons21 dons3) (l dons2 dons21)(bb ions2 ions3) (bc jons2 jons3) (married valerie fred)(parent fred jane) (parent valerie jane) (bb lons2 lons3) (bc lons1 lons2)(ca ions1 ions2) (cb ions2) (ca lons2 lons1) (married rich rachel)(parent rich harry) (parent rachel harry) (cb lons1) (cc jons2) (cd jons1)(cc kons1) (cd kons2) (da ions1 ions11) (db ions11 ions12)(dc ions12 ions13) (dd ions13 ions2) (dd ions1 ions2) (db lons2 lons11)(dc lons11 lons12) (dd lons12 lons1) (dc lons2 lons11) (dd lons11 lons1)(ee ions2 ions21) (ef ions21) (ee lons1 lons11) (ef lons11)(i kons1 kons3) (l kons21 kons1) (l kons21 kons3) (l kons2 kons21)(<- (father ?X ?Y) (parent ?X ?Y) (male ?X))(<- (mother ?X ?Y) (parent ?X ?Y) (female ?X))(<- (husband ?X ?Y) (married ?X ?Y) (male ?X))(<- (aa ?X ?Y ?Z) (ba ?X ?Y) (bb ?Y ?Z))(<- (aa ?X ?Y ?Z) (ba ?X ?Y) (bc ?Y ?Z))(<- (wife ?X ?Y) (married ?X ?Y) (female ?X))(<- (son ?X ?Y) (parent ?Y ?X) (male ?X))(<- (daughter ?X ?Y) (parent ?Y ?X) (female ?X))(<- (aa ?X ?Y ?Z) (bd ?X ?Y ?Z))(<- (aa ?X ?Y ?Z) (ba ?X ?Z) (bb ?Y ?Z) (bc ?X ?Y))(<- (ba ?X ?Y) (ca ?X ?Y) (cb ?Y))(<- (ba ?X ?Y) (ca ?Y ?X) (cb ?X))(<- (ba ?X ?Y) (cc ?X) (cd ?Y))(<- (ba ?X ?Y) (cc ?Y) (cd ?X))(<- (sibling ?X ?Y) (father ?F ?X) (father ?F ?Y) (mother ?M ?X) (mother ?M ?Y))26



(<- (brother ?X ?Y) (sibling ?X ?Y) (male ?X))(<- (sister ?X ?Y) (sibling ?X ?Y) (female ?X))(<- (ca ?X ?Y) (da ?X ?W) (db ?W ?U) (dc ?U ?V) (dd ?V ?Y))(<- (ca ?X ?Y) (db ?X ?U) (dc ?U ?V) (dd ?V ?Y))(<- (ca ?X ?Y) (dc ?X ?V) (dd ?V ?Y))(<- (sister_in_law ?X ?Y) (brother ?B ?Y) (married ?X ?B))(<- (brother_in_law ?X ?Y) (sister ?S ?Y) (married ?X ?S))(<- (mother_in_law ?X ?Y) (mother ?X ?S) (married ?S ?Y))(<- (father_in_law ?X ?Y) (father ?X ?S) (married ?S ?Y))(<- (ca ?X ?Y) (dd ?X ?Y))(<- (cb ?Y) (ee ?Y ?Z) (ef ?Z))(<- (uncle ?X ?Y) (parent ?P ?Y) (brother ?X ?P))(<- (uncle ?X ?Y) (parent ?P ?Y) (sister ?S ?P) (husband ?X ?S))(<- (aunt ?X ?Y) (parent ?P ?Y) (sister ?X ?P))(<- (cb ?Y) (ee ?Z ?Y) (ef ?Z))(<- (bd ?X ?Y ?Z) (fa ?X ?Y ?Z))(<- (aunt ?X ?Y) (parent ?P ?Y) (brother ?B ?P) (wife ?X ?B))(<- (cousin ?X ?Y) (parent ?P ?X) (parent ?O ?Y) (sibling ?P ?O))(<- (grandmother ?X ?Y) (parent ?P ?Y) (mother ?X ?P))(<- (fa ?X ?Y ?Z) (ga ?X ?Y ?Z))(<- (ga ?X ?Y ?Z) (h ?X ?Y) (i ?X ?Z) (j ?Y ?Z))(<- (h ?X ?Y) (k ?X ?Z) (l ?Z ?Y))(<- (h ?X ?Y) (k ?Y ?Z) (l ?Z ?X))(<- (k ?X ?Z) (l ?X ?Z))(<- (j ?Y ?Z) (h ?Y ?Z))(<- (grandfather ?X ?Y) (parent ?P ?Y) (father ?X ?P))(<- (ancestor ?X ?Y) (parent ?X ?Y))(<- (ancestor ?X ?Y) (parent ?P ?Y) (ancestor ?X ?P))(<- (descendant ?X ?Y) (ancestor ?Y ?X))(<- (married ?X ?Y) (married ?Y ?X)))A.3 Arti�cial domain 5Arti�cial domain 5 contains 21 arti�cial rules having a high percentage of rules alternatively appli-cable to goals.((bb cons2 cons3) (bc dons2 dons3) (bb fons2 fons3) (bc fons1 fons2)(ca cons1 cons2) (cb cons2) (ca fons2 fons1) (cb fons1) (cc dons2)(cd dons1) (cc eons1) (cd eons2) (da cons1 cons11) (db cons11 cons12)(dc cons12 cons13) (dd cons13 cons2) (dd cons1 cons2) (db fons2 fons11)(dc fons11 fons12) (dd fons12 fons1 ) (dc fons2 fons11) (dd fons11 fons1)(ee cons2 cons21) (ef cons21) (ee fons1 fons11) (ef fons11)(i eons1 eons3) (l eons21 eons1) (l eons21 eons3) (l eons2 eons21)(i dons1 dons3) (l dons21 dons1) (l dons21 dons3) (l dons2 dons21)(bb ions2 ions3) (bc jons2 jons3) (bb lons2 lons3) (bc lons1 lons2)(ca ions1 ions2) (cb ions2) (ca lons2 lons1) (cb lons1) (cc jons2)(cd jons1) (cc kons1) (cd kons2) (da ions1 ions11) (db ions11 ions12)(dc ions12 ions13) (dd ions13 ions2) (dd ions1 ions2) (db lons2 lons11)(dc lons11 lons12) (dd lons12 lons1 ) (dc lons2 lons11) (dd lons11 lons1)(ee ions2 ions21) (ef ions21) (ee lons1 lons11) (ef lons11) (i kons1 kons3)(l kons21 kons1) (l kons21 kons3) (l kons2 kons21)27



(<- (aa ?X ?Y ?Z) (ba ?X ?Y) (bb ?Y ?Z))(<- (aa ?X ?Y ?Z) (ba ?X ?Y) (bc ?Y ?Z))(<- (aa ?X ?Y ?Z) (bd ?X ?Y ?Z))(<- (aa ?X ?Y ?Z) (ba ?X ?Z) (bb ?Y ?Z) (bc ?X ?Y))(<- (ba ?X ?Y) (ca ?X ?Y) (cb ?Y))(<- (ba ?X ?Y) (ca ?Y ?X) (cb ?X))(<- (ba ?X ?Y) (cc ?X) (cd ?Y))(<- (ba ?X ?Y) (cc ?Y) (cd ?X))(<- (ca ?X ?Y) (da ?X ?W) (db ?W ?U) (dc ?U ?V) (dd ?V ?Y))(<- (ca ?X ?Y) (db ?X ?U) (dc ?U ?V) (dd ?V ?Y))(<- (ca ?X ?Y) (dc ?X ?V) (dd ?V ?Y))(<- (ca ?X ?Y) (dd ?X ?Y))(<- (cb ?Y) (ee ?Y ?Z) (ef ?Z))(<- (cb ?Y) (ee ?Z ?Y) (ef ?Z))(<- (bd ?X ?Y ?Z) (fa ?X ?Y ?Z))(<- (fa ?X ?Y ?Z) (ga ?X ?Y ?Z))(<- (ga ?X ?Y ?Z) (h ?X ?Y) (i ?X ?Z) (j ?Y ?Z))(<- (h ?X ?Y) (k ?X ?Z) (l ?Z ?Y))(<- (h ?X ?Y) (k ?Y ?Z) (l ?Z ?X))(<- (k ?X ?Z) (l ?X ?Z))(<- (j ?Y ?Z) (h ?Y ?Z)))A.4 Sentence domainThe sentence domain consists of 14 rules for parsing simple sentences.((verb ate) (verb sat) (verb crushed ) (verb killed) (verb cleaned) (verb read)(verb wrote) (noun book) (noun table) (noun apple) (noun orange) (noun sofa)(noun banana) (noun grapes) (noun man) (noun woman) (noun boy) (noun girl)(noun cat) (noun dog) (noun mat) (prep on) (prep below) (prep under)(prep above) (prep inside) (prep outside) (det a) (det the) (det an) (adj big)(adj tall) (adj small) (adj tiny) (adj huge) (adj large) (conj and) (conj or)(<- (sent ?A ?B ?C ?D ?E)(np ?A ?B) (vp ?C ?D ?E))(<- (sent ?A ?B ?C ?D ?E ?F)(np ?A ?B) (vp ?C ?D ?E ?F))(<- (sent ?A ?B ?C ?D ?E ?F ?G)(np ?A ?B ?C) (vp ?D ?E ?F ?G))(<- (sent ?A ?B ?C ?D ?E ?F)(np ?A ?B ?C) (vp ?D ?E ?F))(<- (sent ?A ?B ?C ?D ?E ?F)(np ?A ?B) (vp ?C ?D ?E ?F))(<- (sent ?A ?B ?C ?D ?E ?F ?G)(np ?A ?B) (vp ?C ?D ?E ?F ?G))(<- (sent ?A ?B ?C ?D ?E ?F ?G ?H)(np ?A ?B ?C) (vp ?D ?E ?F ?G ?H))(<- (sent ?A ?B ?C ?D ?E ?F ?G)(np ?A ?B ?C) (vp ?D ?E ?F ?G))(<- (np ?A ?B)(det ?A) (noun ?B))(<- (np ?A ?B ?C) 28



(det ?A) (adj ?B) (noun ?C))(<- (vp ?C ?D ?E)(verb ?C) (np ?D ?E))(<- (vp ?C ?D ?E ?F)(verb ?C) (np ?D ?E ?F))(<- (vp ?C ?D ?E ?F)(verb ?C) (prep ?D) (np ?E ?F))(<- (vp ?C ?D ?E ?F ?G)(verb ?C) (prep ?D) (np ?E ?F ?G)))A.5 Blocks domainThe blocks domain contains 8 rules for a situational calculus implementation consisting of oneoperator for transferring blocks and building towers.((noteq a b) (noteq b a) (noteq a c) (noteq c a) (noteq a d) (noteq d a)(noteq a e) (noteq e a) (noteq a f) (noteq f a) (noteq b c) (noteq c b)(noteq b d) (noteq d b) (noteq b e) (noteq e b) (noteq b f) (noteq f b)(noteq c d) (noteq d c) (noteq c e) (noteq e c) (noteq c f) (noteq f c)(noteq d e) (noteq e d) (noteq d f) (noteq f d) (noteq e f) (noteq f e)(block a) (block b) (block c) (block d) (block e) (block f)(clear a s0) (clear b s0) (clear c s0) (clear d s0) (clear e s0) (clear f s0)(on a table s0) (on b table s0) (on c table s0) (on d table s0)(on e table s0) (on f table s0) (achievable s0)(<- (achievable (do (transfer ?X ?Y) ?S))(clear ?X ?S) (block ?X) (clear ?Y ?S) (noteq ?X ?Y) (achievable ?S))(<- (clear ?Z (do (transfer ?X ?Y) ?S))(on ?X ?Z ?S) (block ?Z) (noteq ?Z ?Y))(<- (clear ?X (do (transfer ?X ?Y) ?S))(achievable (do (transfer ?X ?Y) ?S)))(<- (clear ?A (do (transfer ?X ?Y) ?S))(clear ?A ?S) (noteq ?A ?X) (noteq ?A ?Y))(<- (on ?X ?Y (do (transfer ?X ?Y) ?S))(achievable (do (transfer ?X ?Y) ?S)))(<- (on ?A ?B (do (transfer ?X ?Y) ?S))(on ?A ?B ?S) (noteq ?A ?X))(<- (tower (cons ?X (cons ?Y NUL)) (do (transfer ?X ?Y) ?S))(on ?Y table ?S) (block ?Y) (achievable (do (transfer ?X ?Y) ?S)))(<- (tower (cons ?X (cons ?Y ?Z)) (do (transfer ?X ?Y) ?S))(tower (cons ?Y ?Z) ?S) (achievable (do (transfer ?X ?Y) ?S))))
29
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