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ABSTRACT

A massive amount of data generated today on platforms such as
social networks, telecommunication networks, and the internet in
general can be represented as graph streams. Activity in a network’s
underlying graph generates a sequence of edges in the form of a
stream; for example, a social network may generate a graph stream
based on the interactions (edges) between di�erent users (nodes)
over time. While many graph mining algorithms have already been
developed for analyzing relatively small graphs, graphs that begin
to approach the size of real-world networks stress the limitations
of such methods due to their dynamic nature and the substantial
number of nodes and connections involved.

In this paper we present GraphZip, a scalable method for mining
interesting pa�erns in graph streams. GraphZip is inspired by
the Lempel-Ziv (LZ) class of compression algorithms, and uses a
novel dictionary-based compression approach in conjunction with
the minimum description length principle to discover maximally-
compressing pa�erns in a graph stream. We experimentally show
that GraphZip is able to retrieve complex and insightful pa�erns
from large real-world graphs and arti�cially-generated graphs with
ground truth pa�erns. Additionally, our results demonstrate that
GraphZip is both highly e�cient and highly e�ective compared to
existing state-of-the-art methods for mining graph streams.
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1 INTRODUCTION

Graphs are used to represent data across a wide spectrum of areas,
from computational chemistry to social network analysis. Graph
mining is an active area of research, and there are numerous meth-
ods for mining smaller graphs (several thousand edges), but many
of these systems are unable to scale to real-world graphs (e.g., social
networks) with millions or even billions of edges. Conventional
graph mining algorithms assume a complete static graph as input,
however many real-world graphs are o�en too large to hold in main
memory. Additionally, many real-world graphs of interest are dy-
namic and actively growing - Facebook, for example, records over
300 new users per minute and has a social graph with more than 400
billion edges [10]. While it is possible to utilize conventional graph
mining systems on dynamic graphs by processing static ‘snapshots’
of the graph at various points in time, in many cases the underlying
data the graph represents changes at a rate so fast that a�empting
to analyze the data using such methods is futile.

In cases where the graph in question is inherently dynamic, we
can instead treat the graph as a sequential stream of edges repre-
senting continuous updates to the graph’s overall structure. For
example, given a graph modeling friendships (edges) between users
(nodes) in a social network, we can consider all new or updated
relationships during a set time interval (e.g., 1 hour) a set of edges
from time ti to ti+1. �e graph mining system then processes the
sequential edge sets at every interval, as opposed to a�empting to
read the entire graph at once. Processing large graphs in a stream-
ing fashion drastically reduces the system’s memory requirements
(since only small portions of the graph are seen at a time) and en-
ables processing of large, dynamic real-world datasets. However,
deploying a streaming model for real-time data analysis also im-
poses strict constraints: the system has a limited time window to
process each set of edges, and edges can only be viewed once before
they are replaced in memory by those in the next set.

Many graph mining algorithms aim to identify interesting pat-
terns within an input graph. Various algorithms use di�erent met-
rics to quantify how ‘interesting’ a pa�ern is: frequent subgraph
mining (FSM) focuses on �nding all subgraphs that appear in the
graph over a certain frequency threshold, whereas problems such as
counting motifs or �nding maximal cliques in a graph (formalized
in [26] and [8], respectively) focus on discovering subgraphs with
a speci�c structure.

�is paper relies on a novel approach to identify interesting
pa�erns in a graph - namely, �nding a set of substructures that
best compress the graph. More precisely, we compress a graph
using a pa�ern (subgraph) G by replacing all instances of G in the
graph with a new node p representing G (see �gure 1). �e reduc-
tion in size of the overall graph is a measure of the compression
a�orded by pa�ernG , and we search for pa�erns that compress the
graph to the maximal extent. �e same concept is found in certain
types of data compression (e.g., LZ78 [43], ZIP) where the compres-
sion method looks for recurring pa�erns or sequences in the data
stream, builds a dictionary representing the recurring pa�erns with
shorter binary codes, and then stores the compressed data using
only the binary codes and the dictionary. In the context of graphs,
a byproduct of this process is that the pa�ern dictionary contains a
set of subgraphs that compress well, and therefore represents an
alternative approach for �nding interesting (highly-compressing)
pa�erns in a graph stream.

We propose a dictionary-based compression method for graph-
based knowledge discovery: GraphZip. Our approach is designed
to e�ciently mine graph streams and uncover interesting pa�erns
by �nding maximally-compressing substructures. Speci�cally, our
main contributions are as follows:
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Figure 1: Compression via substitution. Vertices A, B, and C
form a recurring pattern (subgraph)G. Substituting the pat-

tern for a single node P representing G reduces the graph’s

overall size. �e reduction in size is a measure of the com-

pression a�orded by pattern P .

(1) We propose a new graph mining paradigm based on the
LZ class of compression algorithms.

(2) Based on this paradigm, we introduce a new graph mining
algorithm, GraphZip, for e�ciently processing massive
amounts of data from graph streams.

(3) We demonstrate the e�ectiveness and scalability of our
method using a variety of openly available synthetic and
real-world datasets.

In our experiments, we demonstrate that our approach is able
to retrieve both complex and insightful pa�erns from large real-
world graphs by utilizing graph streams. In addition, we show that
our approach is able to successfully mine a large class of varied
substructures from arti�cially-generated graphs with ground truth
pa�erns. When we compare GraphZip’s performance with that of
several other state-of-the-art graph mining methods, we �nd that
GraphZip consistently outperforms state-of-the-art methods on a
variety of real-world datasets.

�e GraphZip system, including all related code and data used
for this paper, are available for download online1. GraphZip is not
to be confused with the method described in [27] for hierarchical
clustering on spatial data, which goes by the same name.

2 RELATEDWORK

For the purposes of this paper, we classify previous work into two
general categories: streaming and non-streaming.

2.1 Non-streaming

Non-streaming graph mining algorithms take as input either a
single graph (single graph mining), or multiple smaller graphs
(transactional mining).

Transactionalmining. FSG [21] is an early approach to �nding
frequent subgraphs across a set of graphs, and adopts the Apriori
algorithm for frequent itemset mining [4]. FSG works by joining
two frequent subgraphs to construct candidate subgraphs, then
checking the frequency of the new candidates in the graph. gSpan
[38] uses a ‘grow-and-store’ approach that extends saved subgraphs
to form new ones, an improvement over FSG’s prohibitively expen-
sive join operation. Margin [34] prunes the search space to �nd
1h�ps://github.com/cpacker/graphzip

maximal subgraphs only, a narrower and thus easier problem than
FSM. CloseGraph [39] is another method that reduces the prob-
lem space by mining only closed frequent subgraphs - subgraphs
that have strictly smaller support than any existing supergraphs.
Leap [37] and GraphSig [28] are two recent approaches for min-
ing ‘signi�cant subgraphs’ as measured by a probabilistic objective
function. By mining a small set of statistically signi�cant sub-
graphs as opposed to a complete set of frequent subgraphs, Leap
and GraphSig are able to avoid the problem of exponential search
spaces generated by FSM miners with low frequency thresholds.

Single graph mining. SUBDUE [20] is an approximate algo-
rithm based on the branch-and-bound search technique. SUBDUE,
like GraphZip, uses the Minimum Description Length (MDL) prin-
ciple [30] to mine maximally-compressing pa�erns in the graph.
However, unlike GraphZip, SUBDUE returns a restrictively small
number of pa�erns regardless of the size of the input graph [22].
SUBDUE has been improved in recent years [11–13], yet the funda-
mental limitations of the algorithm (in particular the branch-and-
bound technique) remain the same. SEuS [18] is an approximate
method that creates a compressed representation of the graph by
collapsing vertices that share labels. SEuS however is only e�ec-
tive in cases where the input graph has a small number of unique
subgraphs that occur with high frequency, as opposed to when
the input graph has a large number of subgraphs that appear with
lower frequency. SiGram [23] is a complete method for �nding
frequent connected subgraphs (complete methods are guaranteed
to �nd all solutions that �t certain constraints such as the mini-
mum frequency threshold, unlike their approximate counterparts).
SiGram adopts a grow-and-store approach similar to gSpan, but
uses the expensive (NP-complete) Maximal Independent Set (MIS)
metric for its frequency threshold, leading the system to be com-
paratively ine�cient in practice. Additionally, like SEuS, SiGram
su�ers from a limited domain problem as it is designed speci�cally
to mine sparse, undirected and labeled graphs only. Grew [22] is
another approximate method for mining frequent connected sub-
graphs, and is similar to SUBDUE in that Grew only discovers a
relatively small subset of solutions in the search space. GraMi
[16] is a state-of-the-art complete method (with an approximate
version AGraMi) that has been shown to be highly-e�cient for
FSM on a single large graph. However, the size of the input graph
is still limited since GraMi requires the entire graph to be held in
main memory. Arabesqe [33] is a recent distributed approach
built on top of Apache Giraph [5] that can horizontally scale non-
streaming algorithms (FSM, clique �nding, motif counting, etc.)
across multiple servers. However, horizontal scaling can be cost-
prohibitive and is only capable of linearly scaling algorithms whose
runtimes o�en grow exponentially with the size of the input graph.
GERM [6] and the algorithm introduced by Wackersreuther et al.
[36] can mine frequent subgraphs in dynamic graphs, however both
methods require as input snapshots of the entire graph as opposed
to incremental updates to the graph via graph streams.

2.2 Streaming

GraphScope [31] is a parameter-free streaming method that, like
GraphZip and SUBDUE, is based on the MDL principle. Graph-
Scope encodes the graph stream with the objective of minimizing

https://github.com/cpacker/graphzip


compression cost, in order to determine important change-points
in the temporal data. Beyond change-point and community de-
tection however, GraphScope has limited use for other tasks, e.g.
mining interesting subgraphs. �ough the model itself is parameter-
free, GraphScope requires the dimensions of the graph (number
of source and destination nodes) to be known a priori, and thus is
unable to mine streams from dynamic graphs that introduce unseen
nodes in new edge streams. Braun et al. [7] proposed a novel data
structure called DSMatrix for mining frequent pa�erns in dense
graph streams, yet similar to GraphScope their approach requires
that the edges and nodes be known beforehand, limiting its real-
world applications. Aggarwal et al. [1] introduced a probabilistic
model for mining dense structural pa�erns in graph streams, how-
ever the approximation techniques used lead to the occurrence of
both false positives and false negatives in the results set, reducing
the method’s viability in many real-world se�ings. StreamFSM
[29], based on gSpan, is a recently introduced method for frequent
subgraph mining on graph streams, whose performance we com-
pare directly with that of GraphZip (see section §4). �ere also exist
several systems targeted at more speci�c graph analysis tasks in the
streaming se�ing: counting triangles [35], outlier [3] and hotspot
[40] detection, and link prediction [41]. Summarization methods
such as TCM [32], gSketch [42] and count-min sketch [14] focus
on constructing sketch synopses from large graph streams that
can provide approximate answers to queries about the graph’s
properties. For a detailed survey of state-of-the-art graph stream
techniques, see [25] (for a more general overview of graph mining
algorithms, see [2]).

GraphZip can process an in�nite stream of edges without re-
quiring details about nodes or edges beforehand, and has no re-
strictions on the type of graph being streamed. While GraphZip
is designed speci�cally for the streaming se�ing, it draws from
ideas such as grow-and-store and the MDL principle originally
applied in non-streaming methods. In contrast to summarization
methods, GraphZip returns exact subgraphs extracted from the
stream as opposed to approximate results. To the best of our knowl-
edge, GraphZip is the �rst graph mining algorithm for mining
maximally-compressing subgraphs from a graph stream.

3 METHOD

3.1 Preliminaries

In this section, we review the fundamental graph theory needed to
formulate our approach and formalize the de�nitions used in the
rest of the paper. See table 1 for symbol de�nitions.

Terminology. A graph G is composed of a vertex set V which
contains all vertices (nodes)v ∈ V , and an edge set E which contains
all edges e ∈ E, each of which connects a source vertex to a target
vertex. A subgraph д of G is a graph composed of a subset of G’s
vertices and edges. All vertices v ∈ V and edges e ∈ E have a
unique index which refers to its internal location in the edge or
vertex list (e.g., v1 in V = {v1,v2,v3} has index 0, v2 has index
1, etc.). In a vertex-labeled graph, there exists a one-to-one (i.e.,
unique) mapping from each vertex to a label, and in an edge-labeled
graph the same mapping exists for the edge set. �e value of labels
within a graph is o�en domain-dependent: e.g., in a social network,
vertex labels may correspond to a user type (e.g. ‘male’, ‘female’)

Table 1: Symbol de�nitions. Note that α and θ are the hyper-

parameters of the GraphZip algorithm.

Symbol De�nition
G Arbitrary graph
VG Vertex set of graph G
EG Edge set of graph G
S Graph stream sequence
S(i) Graph at time i of stream S
B A batch of edges from graph stream
P Pa�ern dictionary
P (i) Pa�ern (graph) i in dictionary P

VP (i ) Vertex (node) set of pa�ern P (i)

EP (i ) Edge set of pa�ern P (i)

CP (i ) Compression score of pa�ern P (i)

FP (i ) Frequency (count) of pa�ern P (i)

α Batch size
θ Size threshold of P
H (G) Compression scoring function
I (G,G) Graph isomorphism function
SI (G,G) Subgraph isomorphism function

while edge labels may correspond to di�erent relationship types
(e.g. ‘friend’, ‘family’, etc.).

De�nition 3.1. Isomorphism: Two graphs G1 and G2 are isomor-
phic (denoted byG1 ' G2) if there is a one-to-one mapping between
the edges and vertices of G1 and G2. �at is, each vertex v in G1 is
mapped to a unique vertex u in G2, the two of which must share
the same edges, i.e., be adjacent to the same vertices (if the graph
is labeled, the vertices and edges must also share the same labels).
G1 ' G2 is equivalent to G1 and G2 sharing the same structure.

De�nition 3.2. Subgraph isomorphism: Graph G1 is considered
a subgraph isomorphism of graph G2 if it is an isomorphism of
some subgraph д2 of G2. �e actual instance of д2 is called an
embedding of G1 in G2. �e subgraph isomorphism problem is a
generalization of the graph isomorphism problem, and is known
to be NP-complete [17] (unlike the graph isomorphism problem,
the complexity of which is undetermined). Despite the problem’s
complexity, many graph mining algorithms make heavy use of
subgraph isomorphism checks for graph matching, and accordingly
several optimizations have been made in the past decade which have
signi�cantly improved the e�ciency of isomorphism (or subgraph
isomorphism) checks in practice.

De�nition 3.3. Graph stream: A graph stream S can be repre-
sented as a chronological sequence of edges drawn from a graph.

S = {e(1), e(2), e(3), ..., e(n)}
We can process the graph stream by segmenting the stream into dis-
tinct sets of edges, each set forming a single (possibly disconnected)
graph stream object. In the case of a dynamic graph, updates to the
graph can be viewed as new stream objects. In the rest of the paper
we also refer to graph stream objects as batches, where batch size
refers to the size of the stream object’s edge set (i.e., the number of
edges in the batch).



Algorithm 1 GraphZip
1: Initialize P
2: while edges remain in stream do

3: Construct graph B using α edges
4: for each graph p in P do

5: E← subgraph isomorphisms of p in B
6: for each graph д in E do

7: д′ ← д.copy()
8: for each e in Eд do

9: if e not in p then

10: Extend д′ by new edge e
11: else

12: Add internal edge e to д′
13: end if

14: end for

15: Mark each extended edge e ∈ B as used
16: if д′ , д then

17: Add д′ to P
18: end if

19: end for

20: end for

21: R ← remaining unused edges in B
22: Add edges in R as single-edge pa�erns to P
23: end while

24: return P

3.2 Problem Formulation

Given a graph stream and a compression scoring functionH , our ob-
jective function equates to maximizing the cumulative compression
score of the entire pa�ern dictionary P :

f (G,H ) = arg max
P

∑
i
H (P (i)) (1)

�e direct approach to solving for f would require enumerating
over all possible subgraphs of G , a computationally intractable task
in most real-world scenarios since it would require storing the
entirety of the graph stream, in addition to computing subgraph
isomorphism checks over the entire graph. �erefore, we employ a
heuristic algorithm to approximate such a solution.

3.3 �e GraphZip Algorithm

GraphZip is a highly-scalable method for discovering interest-
ing pa�erns in a massive graph. Inspired by dictionary-based �le
compression, GraphZip builds a dictionary of highly-compressing
pa�erns by counting previously seen pa�erns in the graph stream
and saving new pa�erns that extend from old ones. �e resulting
dictionary contains highly-compressing pa�erns from the given
graph stream, which can be used directly or fed into a separate
non-streaming algorithm (e.g., a maximal-clique �nder). While
GraphZip is designed speci�cally with graph streams in mind, the
algorithm can be easily applied to smaller static graphs without
modi�cation: if GraphZip is given as input a single graph it will au-
tomatically partition it into batches of size α and process the graph
as a stream. If the total number of edges in the graph (or number
of edges remaining a�er n iterations) is less than α , GraphZip will
process the graph as a single batch. �is �exibility between input
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Figure 2: A simpli�ed illustration of the GraphZip algo-

rithm. In dictionary P , blue indicates a new pattern, orange

indicates a matched pattern extending to a new pattern, and

green indicates a non-repeated pattern. A�er processing S(1),
P contains only single edge patterns. A-B, C-A, and D-C are

embedded in S(2), so they are extended as new patterns in P .

C-A-B is embedded in S(3), and is extended with an internal

edge as a new pattern, along with the remaining edge D-B.

types allows us to compare GraphZip directly with non-streaming
methods.

�e general procedure of GraphZip is illustrated in �gure 2.
GraphZip is initialized with an empty dictionary P with max size
θ (provided by the user), which maps graphs to their frequency
(count) and compression score. GraphZip collects arriving edges
from the graph stream into batches of size α (also provided by the
user), and runs the compress procedure on each batch B: if a pa�ern
p from the dictionary is embedded in B, GraphZip increments
the frequency of the pa�ern in the dictionary and recomputes its
compression score. Additionally, for each instance i of pa�ern p
embedded in batch B, GraphZip extends p by one edge length,
tagging each of the edges from B used to extend p. �e new edges
used to extend p are the edges incident on i that exist in batch B
but not in pa�ern p. GraphZip then adds the new extended pa�ern
to P . A�er P has been updated with all the extended pa�erns, the
remaining untagged edges in B are added as single-edge pa�erns to
P . Our current reference implementation supports both undirected
and directed edges, but not hyper-edges or self-loops. However,
these limitations are implementation speci�c rather than inherent
to the algorithm. Additionally, both representational variants can
be converted to simple edges (a node and two edges).

If the dictionary exceeds size 2θ , the dictionary is sorted ac-
cording to the compression scores and trimmed to θ . A pa�ern’s
compression score is computed as follows:

H (P (i)) = (|EP (i ) | − 1) × (FP (i ) − 1) (2)

�is equates a pa�ern’s compressibility to a product of its size and
frequency. We use (FP (i ) − 1) so that a pa�ern with a frequency of
1 has a compression score of 0, since a pa�ern that only appears



once a�ords no real compression to the overall graph. �e same
o�set is applied to the pa�ern size in (|EP (i ) | − 1) to reduce the
weighting of single-edge pa�erns. Due to the fact that overlapping
instances of a pa�ern in a batch are counted independently, it is
possible that GraphZip will overestimate the compression value of
large structures with many homomorphisms.

Note that the compression method used is intrinsically lossy,
since GraphZip does not retain information on how each of the
instances are connected to the rest of the graph. �e main focus
of our work is knowledge discovery in graph streams, so lossy
compression is an appropriate trade-o� for decreased complex-
ity and increased performance. More work is necessary to make
GraphZip lossless, for example in the case where it is necessary to
fully reconstruct the original graph from the pa�ern dictionary.

See algorithm 1 for pseudo-code, and the online repository for a
reference implementation.

3.4 Scalability

Speed and memory usage are critical properties of graph mining
algorithms designed to mine large real-world graphs. A deployed
graph mining system should be able to keep up with the �ow of
data in the dynamic graph se�ing, while summarizing a possibly
in�nite graph stream in memory. Memory usage in GraphZip is
directly bounded by the maximum dictionary size (θ ), and is indi-
rectly bounded by the batch size (α ), since the pa�erns within the
dictionary cannot grow larger than the batch size (no subgraph iso-
morphisms of the pa�ern in the batch will exist). Both parameters
θ and α can be modi�ed to maximize performance given certain
hardware limitations.

�e bulk of the computation in the GraphZip algorithm hap-
pens while checking for embeddings of pa�ern p in batch B (�nd
all subgraph isomorphisms of p in B). Note that because each entry
in the pa�ern dictionary is unique, none of the subgraph isomor-
phism checks are contingent on each other, and thus the loop can
be naı̈vely parallelized across an arbitrary number of cores. �is
allows for large performance gains and means that an increase
in dictionary size can be scaled linearly with an increase in cores.
Even without parallelization of the subgraph isomorphism checks,
GraphZip is still faster than other state-of-the-art graph mining
systems (as described in section §4). See section §A for a formal
runtime analysis.

4 EXPERIMENTAL EVALUATION

�ere are two main questions we focus on when evaluating our
algorithm: does it generate objectively and subjectively good re-
sults (i.e. correct and interesting results, respectively), and does it
generate them in a reasonable amount of time? To answer these
questions we test GraphZip on an extensive suite of synthetic
and real datasets ranging from a few thousand to several million
nodes and edges (see table 3). Using these datasets, we benchmark
GraphZip against three state-of-the-art, openly available graph
mining systems: SUBDUE2, GraMi3, and StreamFSM4. Because
there is no directly comparable method to GraphZip for mining

2h�p://ailab.wsu.edu/subdue
3h�ps://github.com/ehab-abdelhamid/GraMi
4h�ps://github.com/rayabhik83/StreamFSM

3-clique 4-clique 4-star 4-path 8-tree

Figure 3: We embed di�erent types of graph substructures

into our synthetic graphs, and then test to see if they are re-

covered. Corresponding datasets (from le� to right): 3-CLIQ,

4-CLIQ, 4-STAR, 4-PATH, 8-TREE.

maximally-compressing pa�erns in graph streams, we instead eval-
uate GraphZip against a non-streaming method for mining com-
pressing pa�erns (SUBDUE), a non-streaming method for frequent
subgraph mining (GraMi), and a streaming method for frequent
subgraph mining (StreamFSM). Highly-compressing pa�erns are
o�en both large and frequent, so FSM methods serve as an appro-
priate comparison to GraphZip.

All experiments were run on a compute server con�gured with
an AMD Opteron 6348 processor (2.8 GHz) and 128GB of RAM.

4.1 Synthetic graphs

To test whether our algorithm outputs correct substructures, we
utilize a tool called SUBGEN [11] to embed ground truth pa�erns
with desired frequencies into an arti�cially generated graph. �is
allows us to test whether or not a graph mining system correctly
surfaces known pa�erns we expect to be returned in the result set.
Since both GraphZip and SUBDUE are designed to mine highly-
compressing pa�erns from a graph, we embed large and frequent
(i.e., highly-compressing) pa�erns in the graph, then record the
number of ground truth pa�erns recovered. Given a set of embed-
ded pa�erns E, and a set of pa�erns R returned by our graph mining
system, an embedded pa�ern E(i) ∈ E is considered matched if for
some returned pa�ern R(i) ∈ R, R(i) ' E(i). �us, we calculate the
fraction a of embedded pa�erns recovered using the scoring metric

a = |{E(i) |E(i) ∈ E ∧ R(i) ∈ R ∧ E(i) ' R(i)}| / |E | (3)
Which is equivalent to

accuracy = matched pa�erns / total pa�erns (4)
We count a ground truth pa�ern asmatched if it is found inGraphZip’s
pa�ern dictionary a�er the �nal batch, or in SUBDUE’s case, if it is
returned directly at the end of the program.

In addition to making the ground truth pa�erns highly-compressing,
we also design the pa�erns to cover a wide class of fundamental
graph pa�erns, including cliques, paths, stars and trees (see �gure
3). �is allows us to discern if a method has di�culty mining a
certain type of structure (e.g., a poorly designed system may have
trouble detecting cycles and therefore cliques). �e naming scheme
for each synthetic graph dataset is N-TYPE, where N is the number
of vertices in the embedded pa�ern and TYPE is a shorthand of the
pa�ern type (e.g., 3-CLIQ is a graph with embedded 3-cliques). All
synthetic graphs in table 2 are generated with 1000 nodes, 5000
edges, and 20%, 50% or 80% coverage (the percentage of the graph
covered by instances of the pa�ern).

http://ailab.wsu.edu/subdue
https://github.com/ehab-abdelhamid/GraMi
https://github.com/rayabhik83/StreamFSM


Table 2: GraphZip and SUBDUE runtime and accuracy on

various synthetic graphs. For runtime, lower is better. For

SUBDUE, the ‘+’ for runtime indicates the program was ter-

minated a�er 1000 seconds (no accuracy shown).

Dataset Cov. Runtime (sec.) Accuracy (%)
(%) GraphZip SUBDUE GraphZip SUBDUE

3-CLIQ
20 52.25 66.68 100.0 89.24
50 3.779 22.22 100.0 89.61
80 3.665 11.99 100.0 86.61

4-PATH
20 45.37 58.00 100.0 100.0
50 3.052 18.57 100.0 100.0
80 2.935 10.30 100.0 100.0

4-STAR
20 50.70 1000+ 100.0 -
50 4.184 1000+ 100.0 -
80 4.483 1000+ 100.0 -

4-CLIQ
20 68.06 1000+ 100.0 -
50 29.19 1000+ 100.0 -
80 13.92 44.78 100.0 89.51

5-PATH
20 48.47 1000+ 100.0 -
50 4.461 21.30 100.0 99.81
80 4.267 24.16 100.0 99.42

8-TREE
20 62.68 1000+ 100.0 -
50 10.39 1000+ 99.65 -
80 11.07 1000+ 100.0 -

4.2 Comparison with SUBDUE

Table 2 shows the runtime and accuracy (eq. 3) for GraphZip and
SUBDUE on the synthetic datasets. GraphZip is clearly faster than
SUBDUE, taking an order of magnitude less runtime in most exper-
iments. Decreasing the coverage across all pa�ern types increased
the runtime for both systems. SUBDUE is unable to process half
of the datasets (including all 4-STAR and 8-TREE experiments) in
less than 1000 seconds, while GraphZip is able to process the same
datasets in a fraction of the time with 99-100% accuracy in all cases.

Among the datasets SUBDUE is able to process, the greatest
di�erence in accuracy lies in the clique datasets (3-CLIQ and 4-
CLIQ), where SUBDUE misses approximately 10% of the embedded
pa�erns. �e GraphZip algorithm contains an explicit edge case
to extend internal edges in a pa�ern with no new vertices, which
enables GraphZip to capture cliques with high accuracy (see algo-
rithm 1 and �gure 2).

Our results indicate a stark di�erence in e�ciency between
GraphZip and SUBDUE: SUBDUE is signi�cantly slower than
GraphZip even on relatively small graphs with several thousand
edges, and for graphs with certain classes of embedded pa�erns in
them (stars and binary trees are particularly problematic). For this
reason, when evaluating GraphZip with larger real-world graphs
we focus on benchmarking against more scalable methods.

4.3 Real-world graphs

We use several large, real-world graph datasets to test the scalability
of the GraphZip algorithm. See table 3 for further details.

Table 3: Details of real-world datasets used. �e average

stream-rate (in edges per second) is calculated by dividing

the total number of edges by the time span of the entire

graph.

Dataset Vertices Edges Labels Stream-rate

NBER 3,774,218 16,512,783 418 1.4 × 10−2

Higgs 304,691 563,069 4 9.3 × 10−1

HetRec 108,451 241,897 5 7.8 × 10−5

NBER5: NBER [19] is a graph of all U.S. patents granted (from Jan.
1963 to Dec. 1999) and the citations between them. �e graph
contains nearly 4 million nodes (patents) and over 16 million edges.
Each node (citing patent) has edges to all the patents in its citation
section. We added time-stamps to the citation graph prepared by
[24] and removed all withdrawn patents which had missing meta-
data (< 0.04% of all edges).
HetRec6: �e HetRec 2011 MovieLens 2k [9] dataset links movies
of the MovieLens 10M7 dataset with information from their IMDb8

and Ro�en Tomatoes9 pages. We use a version of the dataset ar-
ranged by [29], in which nodes are labeled as ‘movie’, ‘actor’ or
‘director’. Edges connect movies to actors and directors: an edge
from movie to director is labeled ‘directed-by’, and an edge from
movie to actor is labeled ‘acted-by’. �e data spans 98 years, and is
split into one graph stream (batch) �le per year.
Higgs10: �e Higgs Twi�er Dataset [15] is a collection of 563,069
interactions (retweets, mentions, and replies) between 304,691 users
on Twi�er before, during, and a�er the announcement of the dis-
covery of Higgs boson particle on July 4th, 2012. �e Tweets were
scraped over the course of one week (168 hours) by �ltering tweets
for the tags ‘lhc’, ‘cern’, ‘boson’ and ‘higgs’. Edges are labeled us-
ing the type of the interaction between the two users (‘retweet’,
‘mention’, and ‘reply’), while all nodes share the same ‘user’ label.

4.4 Comparison with GraMi

Despite being designed for mining highly-compressing pa�erns
like GraphZip, SUBDUE has clear performance issues that restrict
benchmarking it against GraphZip on large real-world graphs.
�erefore we also compare GraphZip with GraMi, a state-of-the-
art graph mining system for frequent subgraph mining on large
static graphs. In contrast to SUBDUE, GraMi is e�cient enough to
process datasets with millions of edges, however GraMi’s relative
performance still allows us to motivate the need for graph mining
algorithms designed explicitly to handle streaming data.

GraMi takes as input a single graph �le as opposed to a sequence
of edges, so in order to simulate mining a dynamic graph with a
non-streaming method we append the previous graph with the next
set of edges at each iteration, initializing the graph with the �rst set
of edges. �us, each iteration represents a ‘snapshot’ of the growing
graph. Since both methods are paramaterized, we �rst tuneGraMi’s
5h�p://www.nber.org/patents
6h�p://grouplens.org/datasets/hetrec-2011
7h�p://www.grouplens.org
8h�p://www.imdb.com
9h�p://www.ro�entomatoes.com
10h�ps://snap.stanford.edu/data/higgs-twi�er.html

http://www.nber.org/patents
http://grouplens.org/datasets/hetrec-2011
http://www.grouplens.org
http://www.imdb.com
http://www.rottentomatoes.com
https://snap.stanford.edu/data/higgs-twitter.html


0 100 200 300

Iteration (month)

102

103

104

105

S
tr

ea
m

-r
a
te

(e
d
g
es

p
er

se
c.

)

NBER dataset

GraMi

GraphZip

(a)

0 100 200 300

Iteration (month)

100

102

104

106

R
u

n
ti

m
e

(s
ec

o
n

d
s)

NBER dataset

GraMi

GraphZip

(b)

Figure 4: Stream-rate (a) and runtime (b) of GraphZip and

GraMi on the NBER dataset. GraMi’s stream-rate decrease

signi�cantly near the end, while GraphZip’s stream-rate re-

mains relatively constant.
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Figure 5: Stream-rate (a) and runtime (b) of GraphZip,

GraMi, and StreamFSM on theHetRec dataset. Both GraMi

and StreamFSM experience amassive spike in runtime near

iteration 93.

0 1 2 3 4 5 6

Size

10−1

100

101

102

103

104

105

C
o
u

n
t

NBER dataset

(a)

0 1 2 3 4 5 6

Size

10−1

100

101

102

103

104

105

C
o
u

n
t

HetRec dataset

(b)

Figure 6: Distribution of GraphZip’s pattern dictionary af-

ter 300 iterations on NBER (a) and a�er 98 iterations on Het-
Rec (b). �e distribution for the larger NBER dataset (a) is

skewed towards patterns with high frequencies, while the

distribution for patterns in HetRec (b) is more varied.

minimum frequency threshold so that it returns a usable number of
non-single edge pa�erns, then set GraphZip’s parameters (batch
and dictionary size) such that the pa�ern dictionary resembles the
set of subgraphs returned by GraMi. On NBER (�gure 4), we �x
GraMi’s minimum frequency threshold to 1000 which returned a
set of subgraphs with a maximum, minimum, and average size of 6,
1, and 1.47 respectively. Running GraphZip with α = 5 and θ = 50
resulted in a pa�ern dictionary with a maximum, minimum, and
average subgraph size of 5, 1, and 2.89 (�gure 6 shows the dictionary
distributions for both NBER and HetRec). Since the overall runtime
of each model depends signi�cantly on the con�guration of the
parameters, the main purpose of our comparison is to examine
trends in the runtime and stream-rate of each model using se�ings
where they return comparable sets of subgraphs.

Our results show that GraphZip is clearly more scalable than
GraMi when mining large graphs in the streaming se�ing. While
processing NBER, GraMi’s runtime (�gure 4b) grows exponentially,
experiencing a large spike near iteration 300. Figure 4a (normalized
by patents per month) demonstrates this clearly: GraphZip main-
tains a constant stream-rate throughout, while GraMi’s stream-rate

gradually slows until it sharply drops near the �nal updates. In
fact, GraphZip’s stream-rate shows a slight increase over time;
one explanation is that as the captured pa�erns in P become more
complex, less isomorphism checks occur per batch.

Results on the HetRec dataset indicate similar trends, though to
a more extreme degree. With HetRec, we use a minimum frequency
threshold of 9,000 for GraMi and keep the previous se�ings for
GraphZip: se�ing the threshold to 1,000 causes GraMi’s stream-
rate to slow to a relative crawl, and when using 10,000, GraMi is
able to process the entire dataset but only returns two frequent
subgraphs. While processing HetRec with the threshold set to 9,000,
GraMi maintains a high stream-rate which trends upwards over
time until the 93rd iteration, where the system freezes and is unable
to make any progress despite being le� running for multiple days
(as indicated by the red ‘X’ on �gures 5a and 5b).

4.5 Comparison with StreamFSM

Since there are no algorithms for mining highly-compressing sub-
graphs from graph streams in the existing literature, we benchmark
GraphZip against StreamFSM, a recently developed streaming
algorithm for frequent subgraph mining. Subgraphs that compress
well are o�en both frequent and large, so the tasks of mining highly-
compressing and frequently-occurring subgraphs are closely re-
lated. �e StreamFSM reference implementation available online
was unable to �nd any frequently occurring subgraphs with any
large datasets other than the provided HetRec dataset (we hypoth-
esize this is likely due to an implementation error), so we report
results for StreamFSM on the HetRec dataset only.

A reasonable amount of time in the streaming se�ing equates
to processing time less than or equal (at the very most) to the
streaming-rate of the data; if the system cannot process the stream
at the speed it is being generated, then the system is much less appli-
cable in the real-life se�ing. Our results indicate that GraphZip is
signi�cantly more scalable than StreamFSM: while StreamFSM’s
stream-rate experiences an initial speedup, it quickly and consis-
tently deteriorates a�er iteration 25, drastically increasing the run-
time per iteration. �e severe increase in runtime occurs around
the same iteration that GraMi freezes (see �gure 5b). In contrast,
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Figure 7: (a) A large spike in activity occurs in the network

a�er about 80 hours a�er the �rst Tweet. (b) A�er an initial

slowdown, GraphZip converges to a constant stream-rate.

GraphZip is seemingly una�ected by the same updates that cause
massive slowdowns in GraMi and StreamFSM. GraphZip’s stream-
rate becomes relatively constant a�er an initial slowdown, and
remains constant through to the end of the experiment (see �gure
5a). In the case of GraphZip and StreamFSM, the stream-rate of
both systems is much faster than the average stream-rate of the
data (7.8 × 10−5 edges per second), despite StreamFSM’s relative
volatility. However, a constant stream-rate is crucial for a deployed
system processing a graph in real-time, since constraints on data
processing time require predictable performance.

5 TWITTER & THE HIGGS BOSON PARTICLE

One weakness of the datasets analyzed in the previous sections is
the low granularity of their timestamps, e.g., HetRec can only be split
into real-time streaming units as small as year, and the synthetic
datasets have no time information at all. Streaming intervals (and
therefore time between results) as long as a year are unlikely in
a real deployment se�ing, especially when disk space is taken
into consideration (storing a year’s worth of data before processing
largely negates the bene�t of streaming). For example, given a graph
mining system con�gured to mine activity from a live network
such as Twi�er, it is likely that the user(s) would con�gure the
interval to analyze pa�erns and trends over days, hours or even
seconds. Additionally, reducing the time period between batches
can reveal ebbs and �ows in network activity that would be hidden
by averaging out activity over a longer period.

�e Higgs’s dataset has time data in seconds for each interaction,
so we are able to pre-process the dataset into graph �les segmented
by the hour. One bene�t to using theHiggs dataset is to observe how
large spikes in network tra�c a�ect the stream-rate; the minimum,
maximum, and average number of edges streamed per hour are 43,
45,861, and 3,352 respectively, with the peak number of tweets per
hour coinciding with the o�cial announcement of the discovery.

As we can see in �gure 7b, GraphZip’s stream-rate is una�ected
by the large spike in network tra�c (using the same model pa-
rameters as the previous experiments). A�er an initial slowdown
(similar to HetRec), GraphZip’s stream-rate converges on a con-
stant stream-rate slightly faster than the maximum stream-rate the
network reaches at the 80 hour mark, and much faster than the
average stream-rate of the network (9.3 × 10−1 tweets per second).
Our results indicate that if GraphZip had been deployed to monitor
the graph stream in real-time, it would have been able to process
each set of updates before the next set of updates arrived.

6 CONCLUSION AND FUTUREWORK

In this paper, we introduced GraphZip, a graph mining algorithm
that utilizes a dictionary-based compression approach to mine
highly-compressing subgraphs from a graph stream. We showed
that GraphZip is able to successfully mine arti�cially-generated
graphs for maximally-compressing pa�erns with comparable ac-
curacy and much greater speed than a state-of-the-art approach.
Additionally, we also demonstrated that GraphZip is able to surface
both complex and insightful pa�erns from large real-world graphs
at speeds much faster than the actual stream-rate, with performance
exceeding that of openly available state-of-the-art non-streaming
and streaming methods. Future work will focus on implementing
the potential optimizations to the algorithm discussed in this paper,
including approximation algorithms for (subgraph) isomorphism
computations and naı̈ve parallelization.

A COMPLEXITY ANALYSIS

In this section we examine the time complexity of algorithm 1 in
detail. We begin by analyzing the runtime per batch B from a stream
of graph G. Given a batch B, for each pa�ern P (i) ∈ P we retrieve
the set M of all embeddings (subgraph isomorphisms) of P (i) in B:

O(|P | × O(SI (P (i),B))) (5)

�en, for each embedding M(i) ∈ M , we (a) extend a copy of M(i)
by one edge length in each direction and (b) add the new pa�ern
to the dictionary:

O(|P | × (O(SI (P (i),B)) +

|M | × (|VM (i ) | × k + |P | × O(I (M
(i)′ , P (i))))))

(6)

where k is the number of edges incident of v ∈ VB shared with
u ∈ VM (i ) , and M(i)

′ is the extended copy of M(i). Finally, we add
the remaining edges in B as single-edge pa�erns (e) to P :

O(|P | × (O(SI (P (i),B)) +

|M | × (|EM (i ) | × k + |P | × O(I (M
(i)′ , P (i))))) +

|R | × O(I (e, P (i))))

(7)



If we use the well-known VF2 algorithm to implement the subgraph
and graph isomorphism functions, the time complexity for SI (.) and
I (.) simplify to O(V 2) in the best case and O(V ! ×V ) in the worst
case, whereV is the maximum number of vertices between the two
graphs. Recall that our model is parameterized by θ and α (|P | and
|EB | respectively), which directly bounds k < |VB | < 2α , |M | < 2α
(maximum number of possible subgraphs in B), EM (i ) < α , and
|R | < α . Substituting in the worst case using VF2, we get:

O(θ × (((2α)! × 2α) +
2α × (α × 2α + θ × ((2α)! × 2α))) +
α × 2! × 2)

(8)

Which simpli�es to:
O(θ × α ! × α +
θ × (2α × α2 + 2α × θ × α ! × α)+
θ × α)

(9)

And lastly:
O(θ2 × 2α × α ! × α) = O(θ2 × α !) (10)

Since θ and α are provided as parameters (constants at run-time),
eq. 10 theoretically collapses to constant time (O(1)), meaning that
the GraphZip algorithm scales linearly with the size of the overall
graph. However, our complexity analysis illustrates an important
trade-o� in selecting the batch size and dictionary size, since too
large a value for either parameter can exponentially increase the
run-time per batch (increasing α is particularly costly).

Our theoretical complexity analysis reinforces our experimental
�ndings: that subgraph isomorphism calculations (a known NP-
complete problem) dwarf all other computations in the algorithm.
A promising area of future work would be to incorporate existing
approximation algorithms for the subgraph isomorphism problem
to increase the e�ciency of GraphZip.
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Frequent subgraph discovery in dynamic networks. In Proceedings of the Eighth
Workshop on Mining and Learning with Graphs, pages 155–162. ACM, 2010.

[37] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining signi�cant graph pa�erns by leap
search. In SIGMOD Conference, pages 433–444. ACM, 2008.

[38] X. Yan and J. Han. gspan: Graph-based substructure pa�ern mining. In ICDM,
pages 721–724. IEEE Computer Society, 2002.

[39] X. Yan and J. Han. Closegraph: mining closed frequent graph pa�erns. In KDD,
pages 286–295. ACM, 2003.

[40] W. Yu, C. C. Aggarwal, S. Ma, and H. Wang. On anomalous hotspot discovery in
graph streams. In ICDM, pages 1271–1276. IEEE Computer Society, 2013.

[41] P. Zhao, C. C. Aggarwal, and G. He. Link prediction in graph streams. In ICDE,
pages 553–564. IEEE Computer Society, 2016.

[42] P. Zhao, C. C. Aggarwal, and M. Wang. gsketch: On query estimation in graph
streams. PVLDB, 5(3):193–204, 2011.

[43] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. IEEE Trans. Information �eory, 24(5):530–536, 1978.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Non-streaming
	2.2 Streaming

	3 Method
	3.1 Preliminaries
	3.2 Problem Formulation
	3.3 The GraphZip Algorithm
	3.4 Scalability

	4 Experimental Evaluation
	4.1 Synthetic graphs
	4.2 Comparison with SUBDUE
	4.3 Real-world graphs
	4.4 Comparison with GraMi
	4.5 Comparison with StreamFSM

	5 Twitter & the Higgs boson particle
	6 Conclusion and Future Work
	A Complexity Analysis
	Acknowledgments
	References

