A STUDY OF OVERFIT IN DECISION-TREE INDUCTION

Thomas L. Duell and Lawrence B. Holder
Department of Computer Science and Engineering
University of Texas at Arlington
Box 19015, Arlington, TX 76019-0015
Email: {duell, holder}@cse.uta.edu

Abstract

This paper studies the overfit phenomenon in ma-
chine learning induction algorithms, specifically deci-
sion tree induction. Qverfitting the training data is a
common problem with inductive learning algorithms.
The generally accepted countermeasure to overfitting
is pruning. This paper studies decision trees built
from several datasets, using Quinlan’s C4.5 program.
‘We applied different metrics to these decision trees,
changing the order in which nodes are expanded into
subtrees and studying the effects on the accuracy and
size of these subtrees. Results favor an ordering that
prefers children having the most number of examples
from their parent’s minority class. We then group
the datasets according to various features and iden-
tify patterns and relationships between these features
and the accuracy results.

1 INTRODUCTION

Overfitting the training data is a common problem
with inductive learning algorithms. Overfitting may
be the result of an algorithm learning the training
data or patterns that arise by chance, rather than
the algorithm learning the underlying concept. We
study the overfit phenomenon in the induction of de-
cision trees. For example, a decision tree that cor-
rectly classifies all of the training examples may not
be as good a classifier on unseen examples as a sim-
pler tree that does not fit all of the training data.
The generally accepted countermeasure to overfitting
is pruning. Pruning applies a metric to a decision tree
(or subtree), attempting to figure out which branches
of the tree to keep and which to reduce to a leaf node

Proceedings of the 10th Florida Artificial intelligence Research
Symposium, 1897, by the Fiorida Al Research Society
0-9620-1739-6/97/342 © 1997 FLAIRS

342

for optimal performance when classifying unseen ex-
amples. The success of pruning methods is considered
domain dependent, as will be shown in section 3. The
pruning metric will measure the relationship between
a node and its children to determine the cut point,
the node which no longer gets expanded.

This paper studies decision trees built from several
datasets. We applied different metrics to these de-
cision trees, changing the order in which nodes are
expanded into subtrees. We studied several order-
ings on each dataset, extracting the best accuracy
(on the testing set), the average accuracy for its sub-
trees, the smallest subtree having the best accuracy,
and the number of subtrees having the best accuracy.
We look at fixed cut points for certain orderings, as
well as comparing the accuracy and placement of the
optimal trees amongst the orderings.

We also extracted the number of attributes, classes,
training and testing examples, the percentage of rows
with missing values, the percentage of all attribute
values missing, the total number of nodes and the
depth of the full tree, and the baseline accuracy from
each of these trees. We then group the datasets ac-
cording to these various features along with our re-
sults from the different orderings, expecting to find
patterns and relationships between these features and
the accuracy results mentioned earlier.

The next section reviews the C4.5 program, and
section 3 reviews other work related to overfit in de-
cision tree induction. Section 4 presents our experi-
ments, how we expand the subtrees, the features of
decision trees which we studied, the accuracy results,
and the conclusions to be drawn from the results.
The final section presents conclusions and suggests
possible future studies.

2 C4.5

C4.5 [Quinlan, 1993] uses information theory to se-
lect the tests for non-leaf nodes. Quinlan gives a for-

mula for the amount of information at a node in the
decision tree. We can also compute the expected in-
formation after splitting the node using a particular
attribute. The information gain is then computed as
the difference between the expected information of
the split and the information at the node. This gain
criterion is biased in favor of attributes with many
outcomes n, so the gain ratio criterion divides the
gain by the information in an arbitrary n-way split of
the data.

In order to handle unknown attribute values in gen-
erating a decision tree, C4.5 will multiply the infor-
mation gain by the fraction F of cases whose values
are known. When C4.5 is attempting to classify an
unseen case and encounters a split attribute whose
value is unknown, equal weights are passed down for
each possible outcome of that test, and the results are
polled with the class having the highest weight being
chosen as the predicted class.

C4.5 supports three types of tests for its decision
nodes. The simplest type of test is one on a discrete
attribute with one outcome for each possible value of
the attribute. The second type is a binary test on
an attribute with continuous numeric values. C4.5
creates the binary tests by choosing a threshold Z so
that the possible binary tests are for A < Z or A
> Z. C4.5 only considers threshold values that ap-
pear in the data, giving it a finite number of tests to
consider. The third type of test allows subgrouping
within the possible outcomes of a discrete variable.
This third type may be invoked using a non- default
option of C4.5. We did not invoke this option in our
experiments.

C4.5 has some built in strategies to overcome over-
fitting, such as the ability not to build a node when
there are not enough training examples to justify one
(pre-pruning). C4.5 also has a post-pruning mecha-
nism, called pessimistic error pruning, that estimates
the error rate of every subtree, and replaces the sub-
tree with a leaf node if the estimated error of the leaf
node is lower. When generating pruned trees, our ex-
periments used the default parameter settings for the
pre- and post-pruning mechanisms.

3 PRUNING AND OVERFIT

Mingers [1989b] reviews several split-attribute selec-
tion strategies. He concludes that the predictive ac-
curacy of induced decision trees is not sensitive to the
chosen split measure, and that selecting attributes en-
tirely randomly produces trees that are as accurate as
those produced using a measure. Still, he shows that
the gain ratio produces the smallest trees of the tested
measures, and randomly selecting attributes produces

343

trees twice as large as those produced with an in-
formed measure. After pruning, Mingers notes, that
there is little difference in tree size. Since C4.5 uses
the gain ratio criterion for selecting split attributes,
we can be confident that it makes good choices in
building its decision trees, and thus is a good algo-
rithm to analyze.

Mingers [1989a] reviews several pruning strategies.
Mingers concludes that there is a significant interac-
tion between pruning and the domain, but no ev-
idence of an interaction between the type of mea-
sure used in tree creation and the pruning method.
Mingers explains that ”generally, the effects of prun-
ing are very strong, reducing large trees to only a few
leaves”. Mingers includes an earlier version of Quin-
lan’s pessimistic error pruning and concluded that it
is more crude than pruning methods which use (re-
quire) a separate test set. Pessimistic pruning was the
quickest, but gave bad results on certain datasets.

Schaffer {1993] argues that the very practice of
pruning (overfit avoidance) applies a potentially
harmfu] bias towards overly simple trees. Schaffer
performs a series of experiments in a controlled do-
main with five binary attributes and a binary class.
Schaffer -also controls the noise in the experiment
by randomly complementing class values. He uses
these experiments to illustrate “the fact that all well
known overfitting avoidance techniques are ... a form
of bias rather than a statistical improvement in in-
ducing decision trees.” Schaffer compares the results
from a sophisticated strategy which uses pruning, and
a naive strategy which simply uses the fully gener-
ated tree. The sophisticated strategy outperforms
the naive strategy on the first few simple experi-
ments, but when he infroduces the parity problem,
the naive strategy consistently outperforms the so-
phisticated strategy. Schaffer also shows that there
are more complex problems than simple problems,
and the naive strategy will produce the more accu-
rate trees on these.

One of the advantages of pruning is that it removes
branches from the decision tree which may be gen-
erated by chance occurrences (noise) in the training
data. However, Schaffer displays that for the par-
ity problem, ”as error rate increases, the naive and
sophisticated strategies disagree more often; and at
every level of noise the naive strategy proves supe-
rior.” The error rate in Schaffer’s experiments is class
noise, and as the error rate in the training exam-
ples increases, so too does the noise in the testing
examples. When Schaffer experiments with attribute
noise, he displays that the value of overfit avoidance
"substantially” increases.

Holder [1995] empirically compares intermediate

decision trees (IDTs) with full trees (grown by C4.5)
and pruned trees (using C4.5’s pruning capabilities.)
The initial IDT is the root. More IDTs are developed
by selecting a node on an IDT and adding its chil-
dren to create a new IDT. Holder uses a hill-climbing
approach to tune C4.5’s pruning parameters to gen-
erate optimal full and pruned trees (with respect to
accuracy on the test set) over 66 datasets. Holder
then generates IDTs from these full trees, called IFTs,
and pruned trees, called IPTs. Holder extracts fea-
tures from the datasets and produces 6 hypotheses
about the performance of the IDTs, such as hypoth-
esis 1 which states that ”IFT has less error than PT”
(pruned trees). Holder gives the evidence supporting
these hypotheses, then labels the datasets as positive
and negative examples of the hypotheses. This al-
lows Holder to use C4.5 to generate rules to define for
which types of datasets IF'Ts outperform trees pruned
using C4.5’s pruning capabilities and addressing the
domain dependence of pruning metrics observed by
Mingers and Schaffer.

4 EXPERIMENTS
4.1 Methodology

The 52 datasets used for these experiments all come
from the UC-Irvine machine learning repository. We
split the 52 datasets into a training set of 70% and
a testing set of 30% for each data set, repeating this
practice 5 times for each. From this, we generated
260 unpruned and 260 pruned decision trees using
C4.5 and its default parameters. Programs expanded
the unpruned decision trees to include the number of
examples, class distribution, and error count for each
node on the training and test data sets. With these
new trees, we applied several node orderings (based
on the training data statistics) and immediately pro-
duced the test set statistics in one pass (per ordering)
without reconsulting the training or test data sets.
Eight different node orderings were used for these
experiments. Each ordering ”generates” n trees
(where n is the number of nodes in the full tree)
by starting with the root node, then adding one
node (according to the ordering) to generate the
next tree. The first and second orderings, DEPTH
and BREADTH, are simple depth first and breadth
first searches. The other orderings are all best first
searches using various measurements. The INFO
measurernent is information based, similar to the way
the decision tree is generated. The IMPROVE mea-
surernent judges the best node as that which shows
the greatest improvement in accuracy (as compared
with that node’s parent, on the training set). Two

14

344

more measurements are accuracy oriented (on the
training set), measuring the number of correct clas-
sifications by a node and selecting the node with
the most (CORRECT) or the node with the fewest
(INCORRECT). The last two measurements mirmic
Quinlan’s philosophy for converting a decision tree to
rules [Quinlan, 1993], which looks for a default class,
then finds branches that classify exceptions and puts
them into the rules. Our two measurements judge a
node as best when it has the most examples from its
parent’s minority class(es) and when it has the most
examples from the overall (or root node’s) minority
class(es). We call these two PARENT and OVER-
ALL.

All of the orderings start with the root node as
the first selected node. The algorithm that grows the
trees will add all of the selected node’s children to the
list of available nodes. The first child will replace the
node being taken off the list and the other children
are added to the end. The algorithm then selects the
available node with the highest measure, depending
on the ordering. When two available nodes have the
same maximal score, the first node found (closest to
the head of the list) will be used. For classification
purposes, when not all of a parent’s child nodes are
expanded, all examples that do not pass the attribute
value tests for the expanded nodes will be classified
in the parent’s majority class.

4.2 The Results by Ordering

We applied each of the node orderings to the 260 un-
pruned decision trees. We studied each ordering and
its accuracies on the testing examples. We use four
measures to explore the node orderings. One measure
notes the average accuracy of all the trees (AVG). An-
other measures the high score from the subtree with
the best classification rate (HIGH). We also looked at
how many (few) nodes were in the smallest tree with
the best score (FEW). Finally, we counted how many
trees had the best score (MANY) as a measure of how
easy or how elusive it was to find the best tree. These
results are displayed for each ordering in Table 1.
For nine of the datasets, all eight node orderings
attain the same highest accuracy. When reporting
how many datasets a particular ordering has the high
score for, we will disregard these datasets. All eight
orderings have the same score for the root and full
tree. MANY is the only measurement that is not
normalized. AVG and HIGH are both measuring the
number of correct classifications divided by the num-
ber of testing examples. FEW measures the percent-
age of nodes in the smallest, most accurate tree, ver-
sus the number of nodes in the full tree. The count

AVG | HIGH | FEW | MANY | BestAvg | UniqHigh | WorstAvg | LowHigh
DEPTH 71.23 | 83.37| 64.60 4.53 5 3 20 12
BREADTH | 75.26 | 83.89 | 53.31 6.72 2 5 0 0
INFO 71.80 | 83.57 | 64.05 5.50 1 1 7 5
IMPROVE 75.62 | 84.00 | 58.35 6.25 9 5 1 0
CORRECT | 73.39 | 84.21 | 65.04 5.20 2 2 9 0
INCORR 7468 | 83.82 | 50.76 5.35 12 5 3 2
PARENT 77.33 | 84.07 | 37.46 8.55 24 3 2 0
OVERALL | 75.39 | 83.74 | 53.44 6.58 0 0 11 6

Table 1: Performance of each node ordering (best in boldface).

of datasets for which each ordering has the highest
and lowest AVG score is included as the BestAvg and
WorstAvg columns in Table 1. The count of datasets
for which each ordering has the unique high HIGH
score is shown in the UniqHigh column, and the count
of datasets where every other ordering finds a higher
HIGH score is included as LowHigh.

The PARENT ordering’s strategy of seeking diver-
sity early allows it to find more accurate trees with
far fewer nodes than any of the other orderings. The
PARENT ordering is somewhat modeled after C4.5’s
method for extracting rules from a decision tree. The
rule extraction process defines a default rule classify-
ing the majority of cases (the majority class). Simi-
larly, PARENT delays the expansion of segments of
the decision tree where the most examples fall into
the majority class. The rule extraction process cre-
ates rules to classify exceptions to the default rule,
and these are the parts of the tree which PARENT
visits first.

The DEPTH first search performs poorly on a
large number of datasets (relative to the other or-
derings), but still manages to outperform all other
orderings on a few datasets. The BREADTH first
ordering produces better than average classification
accuracy, occasionally outperforming all other order-
ings, but never performs poorest. IMPROVE and
INCORRECT also generally outperform other order-
ings, although INCORRECT has problems with more
datasets. Despite its similarity to PARENT, OVER-
ALL performs poorer on most datasets.

4.3 The Results by Feature

We ordered the domains according to several features,
splitting the domains into two groups, above and be-
low the average value for that feature, hoping to see
some simple relationships between the different mea-
sures of the datasets. For example, the number of
training examples splits the domains into those with

345

more than 768.46 (the average) and those with less.
We will refer to datasets which have an above av-
erage value for a particular feature as "LARGE” or
"larger”, and to datasets with a less than average
value as "SMALL” or ”smaller”. The features we
investigate include the number of attributes, classes,
examples, the percentage of rows with missing values,
the percentage of all attribute values missing, the to-
tal number of nodes and the depth of the full tree, and
the baseline accuracy of choosing the majority class.
We also investigate dividing the datasets based on the
AVG, HIGH, FEW and MANY scores from Table 1,
and the percentage of examples correctly classified by
the C4.5 post-pruned trees.

For example, Table 2 shows the properties of the
SMALL and LARGE sets divided based on the aver-
age number of attributes 28.9 {32 datasets in SMALL,
20 in LARGE). We do not have room to tabulate the
results of all divisions, but only summarize our find-
ings.

Datasets with a high number of classes (more than
4) produce large, deep trees, and the optimal subtree
tends to be very large. Datasets with many exam-
ples (more than 1200) display the same character-
istics, despite the datasets in our experiments that
have more classes having fewer examnples, and the
datasets having more examples having fewer classes.
These groups do not display the same tendency for ac-
curacy. Datasets with more examples produced the
most accurate trees, while datasets with more classes
produced trees with the lowest accuracy rates.

Missing attributes do not lead to poor classification
accuracy. Datasets with missing values had slightly
poorer maximum accuracy, but datasets with above
average scores had more missing values (and rows
with missing values).

These experiments do not show that the best sub-
tree is larger or smaller (percentage-wise) in a large
or small tree. The smallest trees with the maximum

class | egs | %miss | %miss | nodes | depth | base | AVG | HIGH | FEW | MANY

TOWS vals
SMALL | 3.44 | 310.47 | 20.08 2.83 | 56.86 9.94 | 56.54 | 73.29 | 83.03 | 51.88 6.61
LARGE | 4.95 | 502.25 | 41.24 5.78 | 70.48 | 11.23 | 58.19 | 76.01 | 85.12 | 62.92 5.25

Table 2: Comparing datasets with below and ahove average numbers of attributes.

score have the roughly the same percentage of nodes
of the full tree for both the group of datasets with
more than 62 nodes and the group of datasets with 62
or fewer nodes. The group of datasets with trees more
than 10 levels deep have larger smallest trees with
the maximum score than those the group of datasets
with trees that are 10 or fewer levels deep. Still, the
group of datasets with smaller optimal trees (less than
55.88% of the nodes in the full tree) average over 13%
more nodes than those with larger optimal trees.

We did not feel that we got a lot of information
from the ”size of the smallest optimal tree” feature.
We might have gotten more information by looking
at how soon the tree scored within 1% (or 5%, or
10%) of the maximum score. The average score over
all nodes was supposed to give data of this nature,
but the group with lower average scores reaches their
the maximum score earlier than the higher average
scores. Average scores are more influenced by the
baseline accuracy and the maximum score.

5 CONCLUSIONS

One of the main goals of this investigation has been
to improve pruning techniques by identifying opti-
mal orderings in which to generate trees. We consid-
ered the possibility of generating decision trees using
the PARENT criterion to select attribute splits. We
could create new nodes for the attribute value with
the maximum number of examples from the parent
node’s minority class(es). Such a simple counting al-
gorithm stumbles, because it is biased towards fre-
quently occurring, unrelated attribute values, which
might be prevalent in examples from both the par-
ent’s majority class and the other class(es). Chang-
ing the selection to subtract the number of parents’s
majority class examples (from the number of minor-
ity class examples) overcomes this problem. Further
examination is left to future studies.

‘When looking for a fixed point at which to prune a
tree, any subtree larger than 42% of the full tree will
produce better accuracy than a random prune for the
PARENT’S ordering. (We determined the random
prune accuracy for a sort with our AVG measure,
which scores 77.33%.) The best normalized fixed cut

(60% of the full tree) is only slightly less accurate
(80.95%) than C4.5’s pruning mechanism (82.66%)
which is slightly less than optimal (84.62%). All of
these are more accurate than the full trees, which
classify 80.9% of the examples correctly. Pruned trees
averaged 35.75 nodes/dataset, 64.92% the size of the
full trees.

The above results and those of the previous section
provide guidance for controlling a decision-tree induc-
tion method, given the properties of the domain. We
hope to uncover more such relationships in this and
other forms of inductive learning to reduce overfit-
ting based on knowledge of the method’s tendencies
in different domains.

Several aspects of the investigation could be im-
proved. The large standard deviations in many of
the dataset features suggests a more discretized ap-
proach for grouping features. Fuzzy groups, such as
few examples, many examples, and enormous num-
ber of examples would have normalized the groupings
where 10 domains had thousands of examples while
the other forty might have dozens. Also, looking at a
single binary split of the domain is greatly inferior to
the true amount of analysis needed.

References

[Holder, 1995} L. B. Holder. Intermediate decision
trees. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence,
pages 1056-1062, 1995.

[Mingers, 1989a) J. Mingers. An empirical compari-
son of pruning methods for decision tree induction.
Machine Learning, 4(2):227-243, November 1989.

[Mingers, 1989b] J. Mingers. An empirical compar-
ison of selection measures for decision tree induc-
tion. Machine Learning, 3(4):319-342, March 1989.

[Quinlan, 1993] J. R. Quinlan. C4.5: Programs for
Machine Learning. Morgan Kaufmann Publishers,
1993.

[Schaffer, 1993] C. Schaffer. Overfitting avoidance as
bias. Machine Learning, 10{2):153-178, 1993.

	_0605092751_001
	_0605092917_001
	_0605093456_001
	_0605094336_001
	_0605094508_001

