
Generalized Query-Based Active
Learning to Identify Differentially

Methylated Regions in DNA
Md. Muksitul Haque, Lawrence B. Holder, Michael K. Skinner, and Diane J. Cook

Abstract—Active learning is a supervised learning technique that reduces the number of examples required for building a successful

classifier, because it can choose the data it learns from. This technique holds promise for many biological domains in which classified

examples are expensive and time-consuming to obtain. Most traditional active learning methods ask very specific queries to the Oracle

(e.g., a human expert) to label an unlabeled example. The example may consist of numerous features, many of which are irrelevant.

Removing such features will create a shorter query with only relevant features, and it will be easier for the Oracle to answer. We

propose a generalized query-based active learning (GQAL) approach that constructs generalized queries based on multiple instances.

By constructing appropriately generalized queries, we can achieve higher accuracy compared to traditional active learning methods.

We apply our active learning method to find differentially DNA methylated regions (DMRs). DMRs are DNA locations in the genome

that are known to be involved in tissue differentiation, epigenetic regulation, and disease. We also apply our method on 13 other data

sets and show that our method is better than another popular active learning technique.

Index Terms—Active learning, generalized query, DNA methylation, bioinformatics

Ç

1 INTRODUCTION

IN many scientific domains, there is an abundance of data.
Such domains or topics can range from networks to

weather to biology. Much of these data are unlabeled and
unknown; therefore, labeling these data is the first step in
working with them. This requires the help of a domain
expert (e.g., human experts). To make effective use of an
expert’s knowledge and time, a new machine learning
approach has arisen, called active learning, that is designed
to maximize the potential of the Oracle (the human expert)
in labeling data. Active learning (ACL) has been widely
studied but popular ACL methods show shortcomings. For
example, in traditional active learning methods, it may not
always be easy for the Oracle to label a very specific case.
The query may contain many features, some with high
precision values. Labeling instances also can have varied
cost and quality issues. A better approach is to remove
some of the irrelevant features for a certain query such that
it results in a shorter and more readable query. This will
lead to less confusion for the Oracle. Using such generalized
queries will help achieve higher accuracy with fewer
queries than traditional active learning methods.

Human experts or Oracles are more readily able to
answer a generalized query. As an example, for a car
purchasing data set, we may construct a generalized query
such as “if the car has 4 doors and the price is $20,000 and
the engine size is 3.0 liters, then is it a family car?” For a car
expert Oracle, such a generalized query is easier to answer.
There may be 20 other features of the car that can be used to
construct specific queries, but for this case a generalized
query suffices. If the answer to the question is “yes,” the
machine learning system will note that all cars with those
three characteristics are family cars. But the problem with a
generalized query is that sometimes the answer from the
Oracle can be uncertain. For example, for the above query,
the Oracle may answer yes with 85 percent probability, but
an overly generic query such as the one above may give a
yes answer with probability of 65 percent. Since highly
uncertain answers can add noise to the learning process, it
is known that the more generalized the query the more
uncertain the answer can be.

The goal is to model an active learning system that can
construct generalized queries with highly certain answers.
For our approach, we use a pool-based uncertainty
sampling method [1] where we pick the most uncertain
query from the pool (according to uncertainty sampling the
most uncertain example in the pool is the most valuable
one) such that it adds more knowledge to the current
model. For example, if the probability of the majority class
is 50 percent, then an instance with an Oracle confidence
closer to this majority class probability will be uncertain.

2 CONTRIBUTION

The main contribution of this work is the use of active
learning with a generalized query algorithm to obtain

632 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 3, MAY/JUNE 2013

. M.M. Haque is with the School of Electrical Engineering and Computer
Science and the School of Biological Sciences, Washington State
University, PO Box 4236, Pullman, WA 99164-4236.
E-mail: mhaque@eecs.wsu.edu.

. L.B. Holder and D.J. Cook are with the School of Electrical Engineering and
Computer Science, Washington State University, PO Box 642752,
Pullman, WA 99164-2752. E-mail: holder@wsu.edu, cook@eecs.wsu.edu.

. M.K. Skinner is with the School of Biological Sciences, Washington State
University, Pullman, WA 99164-4236. E-mail: skinner@wsu.edu.

Manuscript received 9 Jan. 2013; revised 9 Apr. 2013; accepted 30 Apr. 2013;
published online 7 May 2013.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2013-01-0007.
Digital Object Identifier no. 10.1109/TCBB.2013.38.

1545-5963/13/$31.00 � 2013 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

higher accuracy with fewer queries to the Oracle. This
algorithm can construct generalized queries using a pool-
based uncertainty method and will construct these queries
with do not care features (irrelevant features in the most
uncertain examples). Experiments performed on real-world
data sets from the University of California, Irvine (UCI)
database [2], some with multiple classes, indicate that the
active generalized query approach poses fewer queries than
other active learners, allowing the learner to improve
learning efficiency.

One of the main goals of active learning is to build a
classifier in situations where few labeled instances are
available. With most biological data sets, this seems to be a
major concern. Epigenetic data can be of low volume and
high dimensionality. We may have only a few labeled sites
with several thousand features. In these cases, active
learning-based approaches can be used to find the most
relevant examples and features to build a reliable classifier.
Especially with experiments where data comes in stages
(e.g., first generation, second generation of a species), we
can build a classifier early on in the experiment and use it to
test on newer data from later experiments. We also use our
approach to identify differentially DNA methylated re-
gions. DMRs are important molecular modifications classi-
fied as epigenetic regulations. Two of the main biochemical
mechanisms for epigenetic regulations are DNA methyla-
tions [3], [4] and Histone modifications [5]. They regulate
chromatic structures, control gene expression, and regulate
genome activity. Epigenetic effects include gene silencing,
gene imprinting, X chromosome inactivation, and elements
of carcinogenesis. Epigenetic regulation can have a major
effect on phenotypic expression that is independent of the
underlying DNA sequence. The position of a gene in a
chromosome can influence its expression, because genes
can relocate to other heterochromatic regions in the genome
and can cause human diseases. Genes are epigenetically
modified from our parents and later on in our life can
impact disease and longevity. Further studies have shown
that epigenetics has a part in transgenerational inheritance
that impacts epigenetic markers that later on can influence
health and risk for diseases [6]. DNA methylation-based
biomarkers are very promising, and a large number of
potential biomarkers have been identified for diseases such
as cancer [7]. To classify DMR against non-DMRs in the
genome using active learning would allow us to identify
potential biomarkers.

3 CURRENT STATE OF ACL WITH GENERALIZED

QUERY SYSTEMS

A number of active learning approaches have been
proposed in the last few years. The most common and
widely used form of active learning is uncertainty sampling
[1]. Uncertainty sampling considers the most uncertain
example as the most important one and asks for the
corresponding label from the Oracle. One problem with
uncertainty sampling is that it may choose outliers, which
are highly uncertain data points. Therefore, it does not
always follow the underlying distribution of data points.
Another popular active learning method is query by

committee (QBC) [8]. QBC considers minimizing the
version space, which is the subset of hypotheses that are
consistent with the examples seen so far [9]. A popular
technique is to use a QBC from an ensemble of methods and
try to find the unlabeled example that leads to the
maximum disagreement among the classifiers [10], [11].
Other techniques have been used such as variance reduc-
tion [12], Fisher information ratio [13], estimated error
reduction [14], and density-weighted methods [15], [16],
[17], [18]. Additional methods include batch mode active
learning [19], [20]. This technique queries in groups of a
batch, instead of a single instance at a time. Batch mode
active learning needs the Oracle to label all of the instances
in the batch, and it does not produce a generalized query.
Another approach that groups multiple instances together
is multiple instance learning [21]. This also does not lead to
a generalized query as the Oracle has to label all the
instances. This technique differs from the batch mode
learning in that here the entire group is labeled as positive if
there is a single positive instance in the group, whereas the
entire group is labeled as negative if all the instances are
negative in the group [22].

A novel technique called rule-induced active learning
query method (RIQY) [23] has been proposed based on rule
induction. This technique is based on examining the
underlying density distribution to find informative in-
stances that are similar. The method avoids outliers by
using a density-weighted method. A rule induction classi-
fier is then applied to separate similar instances from the
rest of the data and construct a generic query. The proposed
method has been applied to two real-world data sets: 1) the
human activity recognition data set from the Washington
State University (WSU) repository [24] and 2) the UCI
repository [2]. While selecting the most informative in-
stance, this approach also looks into how similar or
dissimilar this instance is from the previously chosen most
informative instance that allows it to choose an instance that
is similar to many other instances so that it teaches a concept
well but at the same time makes sure it does not teach
similar concepts repeatedly leading to effective learning.

Another technique is called active learning through
querying informative and representative examples (QUIRE)
[25]. In this pool-based active learning, two criteria are
widely used for active query selection. They are informa-
tiveness and representativeness. While informativeness
checks the ability of an instance to reduce the uncertainty
of a statistical model, representativeness checks whether the
chosen instance will represent the input pattern of
unlabeled data. Comparing QUIRE to other baseline
approaches (RANDOM/MARGIN/CLUSTER/IDE/
DVAL) shows that QUIRE is able to outperform other
baseline methods significantly.

One important active learning method is called active
learner with generalized queries (AGQ+) [26]. It is known to
produce meaningful new features that are automatically
generated unlike previous approaches [27] where new
features are manually adjusted. AGQ+ also constructs
generalized queries with numeric attribute ranges that are
automatically produced from raw numeric attribute data.

HAQUE ET AL.: GENERALIZED QUERY-BASED ACTIVE LEARNING TO IDENTIFY DIFFERENTIALLY METHYLATED REGIONS IN DNA 633

As the last three models of active learning show, there is
a general need of using better techniques for grouping
instances together.

4 GENERALIZED QUERY-BASED ACTIVE LEARNING

This paper proposes active learning methods that allow the
learner to ask generalized queries to the Oracle, which is
able to answer such generalized queries with high accuracy.
Our generalized query-based active learning (GQAL)
method closely follows the AGQ+ method described in [26].

Our GQAL method differs from the AGQ+ method in
the following ways. First, we use a tree augmented naive
Bayes (TAN) classifier instead of a decision tree-based
classifier. Second, the GQAL technique supports more than
two classes unlike the AGQ+ method that only supports
binary classes. Third, the AGQ+ method has used an
ensemble of 100 J48 decision trees [28] to improve the
accuracy. In our approach, we have not used any ensemble-
based method. We show that our TAN-only model outper-
forms uncertainty sampling. Finally, the AGQ+ method
uses the whole data set to train the target function. Often,
the whole data set may not be available with class labels to
construct such a model.

One machine learning technique is called supervised
learning, as the learning operates with the supervision by
being given the class of each example. In supervised
learning, the class of each example in the training set is
known beforehand. Among supervised learning methods,
naive Bayes classifier (NBC) is a simple Bayesian classifier
with the assumption of independence among features, yet is
competitive with other classifiers having more restrictive
assumptions. A tree augmented naive Bayes classifier uses
the simplistic approach of naive Bayes but augments the
NBC by constructing correlation between features [29]. The
advantage of TAN over NBC is that in the TAN model no
exponential search is used, yet it outperforms NBC. Similar
to NBC, in a TAN model, the feature node is pointed to by
the parent node, but feature nodes in TAN can have
additional parents. Because of such properties, the TAN
model can avoid having “double counting” that often
happens in NBC where some features are used but are
highly correlated or are very similar. One of the advantages
of naive Bayes over other classifiers is that naive Bayes has
high bias and low variance when the training set is small
compared to low bias and high variance classifiers such as
decision trees. The disadvantage of decision tree-based
classifiers is that they easily overfit, whereas NBC will
converge quickly with less training data. The main
disadvantage of NBC is that it does not take into account
interaction between features that the TAN model handles.

Our experiments in Section 6 show that accuracies from
the GQAL method are comparable to another well-known
active learning method: uncertainty sampling. In addition,
for our study, we have used data sets where there are more
than two classes. In the following, we will discuss this active
learning technique. The model uses generalized queries by
masking some features as do not care features. For this
algorithm, we used pool-based uncertainty sampling meth-
ods. Also, the proposed method can be easily extended to
QBC and other methods. We define our data set as
consisting of a number of numeric or discrete features

X1; X2; . . . ; Xn and label Y. We have a set of unlabeled
examples U and start with a set of labeled examples R. The
learner can query from the unlabeled examples and ask the
Oracle to label these examples.

The following steps describe the GQAL algorithm:

1. We are given a set of labeled examples in a training
set R. A learner L is trained on R. A set of unlabeled
data U is given as an unlabeled set and for testing a
separate test set T is used.

2. Learner L is used on the unlabeled training set U to
find the most uncertain instance available. (In QBC,
the chosen instance would be the one on which the
committee disagrees the most). In our model, an
uncertain instance is the one on which the learner is
least certain of its label. For example, if the
probability of the majority class is 50 percent, then
an instance with Oracle confidence closer to this
majority class will be uncertain. For example, in a
binary class if the classifier predicts both the class
probabilities are close to 0.50 (e.g., 0.55 probability
of the instance to belong to class “A” and 0.45 prob-
ability for the instance to belong to class “B”), then
the classifier seems uncertain of which class
the instance belongs to. This would make it an
uncertain instance.

3. The algorithm then takes this uncertain instance,
finds the do not care features in this instance, and
replaces them with “*.” It also finds weak features
(nominal or numeric depending on the type of
features) and replaces them with a subset of values
(in case the features is nominal) or range (in case the
feature is numeric). By replacing do not care feature
with “*” and replacing weak features with their
range (or nominal values), it constructs the general-
ized query. Details are given in Section 4.2.

4. Then, the algorithm can pose this generalized query
to the Oracle, which gives a label and a probability
estimation that is the Oracle’s confidence about the
query label. Hence, each instance can have a
weighted label. For a generalized query such as
[*, 1, *, 1, 1], it may return probabilities such as 0.85
for class “A” or 0.15 for class “B.”

5. GQAL will use this generalized query and match
with existing instances. For example [*, 1, *, 1, 1] will
match with [0, 1, 0, 1, 1], [0, 1, 1, 1, 1], [1, 1, 0, 1, 1], and
[1, 1,1, 1, 1], where an “*” can match with a 0 or 1.
Such unlabeled instances are labeled and moved
from the unlabeled data set U to the labeled training
set R.

6. The algorithm then learns on the updated training
set R and tests on the remaining unlabeled examples
in U .

7. The algorithm then returns to Step 2 and repeats this
until it reaches a threshold of number of times
querying the Oracle or a predefined accuracy. The
predefined accuracy can be set by what fraction of
the initial error rate is reduced by the learning
process. With the initial training set R, the classifier
starts with an initial error rate and that error rate
reduces over iterations.

8. Once the learning is complete, GQAL will use the
learner L to test on the testing set T .

634 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 3, MAY/JUNE 2013

Fig. 1 shows the important components of the GQAL
method.

The four important components of this algorithm
include:

1. selecting the most uncertain instance,
2. using do not care features to construct the general-

ized query,
3. querying the Oracle, and
4. updating the training and the testing set.

They are described as follows.

4.1 Select the Most Uncertain Instance

Our TAN classifier-based GQAL method is used to find the
probability of decision for each instance. For finding the
most uncertain instance, a pool-based active learning
method is used. As described in GQAL algorithm Steps 1
and 2 after a learner L is trained on a training set R, GQAL
uses the current labeled data to construct a predictive
model, and then an unlabeled data set U is given as a pool
of candidates, and GQAL uses the model to predict each
example in the pool-set.

It then picks the most uncertain example from the pool.
The most uncertain example can be one whose probability
of the classification is the closest to that of the majority class.
For example, for a two-class scenario assuming the
probability of the majority class is 50 percent, an example
can have an predicted probability of 48 percent to belong to
the majority class but still may not be the most uncertain
example in the pool (e.g., another examples in the pool have
higher majority class probability of 49 percent).

4.2 Using Do Not Care Features to Construct the
Generalized Query

Once the most uncertain instance is found, it is time to find
which of the features are irrelevant. One way to find this is
to make sure that any combination of the features’ values
will make the same prediction with the same probability
estimation. If a set of m features are irrelevant, then for that
instance all 2m value combinations (for binary) must be
tested. The task of finding the probability estimation of all
2m combinations is computationally expensive.

A technique for finding the largest item set in mining
association rules [30], [31] is used, where we divide the set of
features into two subsets. We have D, the set of do not care

features,Xu the uncertain instance, andA the list of features.
We start D as an empty set and for each attribute in A that is
not in D, we generate 100 randomly assigned values in D
andA. The attribute inAwith the least change in probability
distribution over 100 examples is regarded as irrelevant. We
check if the change is less than the predefined threshold and
then add the attribute to D. We continue this process until D
cannot grow any further. The details of this algorithm are
presented in Algorithm 1. One thing to note is that the
generalized query with too many do not care features may
well result in an overly generic query and end up to be very
uncertain. Hence, the threshold is taken to be very small
(0.005), which allows the algorithm to find a query general-
ized enough to find the most relevant features. This method
has been tested in a previous study [26].

Algorithm 1: Algorithm for Constructing Generalized

Query.

Input: The most uncertain instance xu

Probability of the majority class (xu) is pu

The predefined threshold �ð� ¼ 0:005Þ
Output: The don’t care attribute list D

procedure:FindDontCareAttribute(xu; pu;�)

D ¼ fg;
done = false;

while not done do

for all Xi in for all Xi in (A-D)do

n ¼ 0;

changei ¼ 0;

while n < 100 do

Generate instance xn and

assign xu to xn

Assign random values for

all features in D;

Assign random Xi;

pn = majority class

probability for xn

changeiþ ¼ ðpn � puÞ2
increment n;

end while

changei= ¼ 100;

end for

Select the Xi with the smallest changei
if changei < � then

Add Xi to D;

else

done = true

end if

end while

return D;

end procedure

4.3 Query the Oracle

We make the assumption that the Oracle can answer
generalized queries correctly. Larger training sets can help
build better classifiers, because we have labels for many
examples with different attribute values. To simulate a
human Oracle, we train the TAN classifier with the entire
data set (apart from a small portion of the data set as a test
set) to represent the target model. As the target model

HAQUE ET AL.: GENERALIZED QUERY-BASED ACTIVE LEARNING TO IDENTIFY DIFFERENTIALLY METHYLATED REGIONS IN DNA 635

Fig. 1. Important parts of the GQAL method.

cannot answer generalized queries, once a generalized
query is given to the Oracle we generate specific queries
by setting do not care attributes in the generalized query
with random values. To avoid exponential complexity, we
generate 100 specific queries from the generalized query.
The Oracle (the target model) then returns the predicted
probability distribution of these 100 examples.

4.4 Update the Training Set and the Unlabeled Set

The Oracle gives the probability distribution of the general-
ized query. The generalized query not only helps the Oracle
to easily label the data set but also allows us to add similar
instances (to the training set) that match this generalized
query. This technique helps us build a better classifier at
each iteration. For our method, we allow a maximum of
100 examples to be added from the unlabeled data set to the
training set over all the generalized queries asked to the
Oracle. (For our experimentation section part (a), we used
as many instances as needed for the classifier to reduce its
classification error by 3

4 .) If such examples are realistic, then
that improves the learning substantially compared to
traditional methods.

5 HANDLING DIFFERENT FEATURE TYPES

Algorithm 1 is capable of constructing a generalized query
dealing with discrete features, but allowing only specific
types of features can add limitations to the learner. A single
feature can have a subset of nominal values or a numeric
range of values. For example, the feature “weather” can
have nominal values such as cloudy, sunny, windy, or
rainy, while the price of a product can have a numeric range
from $50 to $100. So to incorporate these scenarios, we
extend our current algorithm. However, Algorithm 1 sets
the base of the main parts of the GQAL method. The
following sections provide a brief overview of the numeric
and nominal methods.

5.1 Nominal Features

For finding the set of nominal features, we still find the set
D of strongly irrelevant features and then try to find the set
W of weak irrelevant features from the most uncertain
instance Xu. First, we start with an empty set W , then we
gradually start filling up W with weak-irrelevant features
using the following technique. After we have selected the
most uncertain instance Xu, we find each feature Xi that is
not in D and W . For each feature value Xi ¼ aij, we
randomly generated 100 feature values for features in D
and W that are based on Xu. If all the examples produce
the same class probability for that feature, then we add
that feature and its value aij to the W list. Similarly, we go
to the next features and repeat this until our weak features
list W no longer expands. Finally, we replace all D with *
and all the W with their respective values from the most
uncertain example.

5.2 Numeric Features

Similar to the nominal features list for each most uncertain
instance Xu, we have a strong irrelevant feature list D and
weak irrelevant feature list W . Here, for each feature Xi that
is not in the strongly irrelevant listD or the weakly irrelevant
list W, we expand the current feature value by �. Unlike a
nominal feature list, we need to find a numeric range, and

thus, we have more values. Each time we expand the

feature’s value Xiðxi þ �; xi��Þ and randomly assign values

of features in D and W , we check with the current class

probability for the most uncertain example Xu. If the class

probability is the same, we expand the range. We stop once

there is a difference in the class probability, and we add this

Xi to the W list with the expanded range of values. Finally,

we replace values of D with * and values of W with their

numeric range. Details of the nominal and numeric feature

algorithms are given in Algorithms 2 and 3 [26].

Algorithm 2: Algorithm for finding weak nominal

features.

Input: The most uncertain instance xu
The don’t care feature list (D)
Probability of the majority class (xu) is pu

Output: The weak nominal feature list W

procedure: FindWeakNominalFeatures (xu; pu;D)

W ¼ fg;
for all Xi in ðA�D�WÞ do

for all Xi ¼ aij do

n ¼ 0;

changeij ¼ 0;
while n < 100 do

Generate xn and assign xu
to xn
Assign random values for all

features in D;

Assign possible nominal

values for all features in W ;

pn ¼ majority class

probability for xn
changeij þ ¼ jðpn � puÞj
increment n;

end while

if changeij ¼ 0 then

Add Xi and aij to W ;

end if

end for

end for

return W;

end procedure

Algorithm 3: Algorithm for finding weak numeric

features.

Input: The most uncertain instance xu
The don’t care feature list (D)

Predefined threshold �

Probability of the majority class (xu) is pu
Output: The weak numeric feature list W

procedure:FindWeakNumericFeature (xu; pu;D)

W ¼ fg;
for all Xi in ðA�D�WÞ do

high ¼ low ¼ ai
changeij ¼ 0;

do

high ¼ high þ�
low ¼ low ��
n ¼ 0;

636 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 3, MAY/JUNE 2013

while n < 100 do

Generate xn and assign xu
to xn
Assign random values for

all features in D;

Assign random values for

all features in W ;

Assign random Xi within

[low,high];

pn ¼ majority class

probability for xn
changeijþ ¼ jðpn � puÞj
increment n;

end while

while changeij ¼ 100;

high = high - �

low = low + �

if (low < high) then

Add Xi with numeric range

to W ;

end for

return W ;

end procedure

5.3 Implementation

The code was implemented using the C language and run
on the Linux platform.

6 EXPERIMENTAL SETUP

We ran three different types of experiments on 14 data sets.
All tests were performed using 10-fold cross validation.
First, we ran GQAL on all of the data sets and calculated
their accuracy and average queries using the Oracle query
restriction as shown in Table 3. Next, we compared the
GQAL method with the uncertainly sampling active
learning method based on accuracy versus number of
queries on the first 12 queries as shown in Fig. 3. Finally, we
compared the GQAL method without query restriction with

popular nonactive machine learners NB, SVM, and KNN,
and the results are given in Table 4.

The 14 data sets used for the experiments are taken from
diverse domains. Among the data sets, two data sets are
nominal only, one is numeric/nominal and the remaining
11 are numeric only. The number of instances for the data
sets ranges from 150 to 8,124, and the number of features
range from 4 to 38. Four of the data sets have more than two
classes. Details of the data sets are given in Tables 1 and 2.

First the GQAL system was tested on the voting data set
(438 instances). Fifty randomly chosen labeled instances
initially were used to train the classifier. Then, generalized
queries using do not care features were used to add
50 additional instances from the unlabeled pool to the
training set. GQAL was used to find the most uncertain
instances from the unlabeled pool. Finally, the learner was
tested on the test set of 335 instances. Fig. 3 shows the last
three consecutive generalized queries in a sample run. The
last line “finally” shows the classification accuracy of the
learner when applied on the test set.

The top line shows the iteration number between braces
“(“and”)” followed by the most uncertain example in that
iteration and its probability. The second line (with no
number at beginning) is the generalized query whose
features are masked by the do not care feature set.
Positions marked by star can have any feature value. Each
generalized query can match from 1 to 50 instances
(50 max). A maximum of 50 queries can be asked and
corresponding instances (instances matching the query) are
asked for labeling. The maximum instances used for this
training is 100 (50 initially + 50 in this stage). “Most
uncertain” shows the instance the classifier is least sure of
(of the rest of the set) belonging to any class. After the first
line, the rest of the lines are instances having the same
masked features set. All of them are moved from the
unlabeled set to the training set letting the classifier learn
how to classify those specific examples.

The output shows consecutive results after querying the
Oracle, adding some additional data to the training set, and
training the classifier on the updated training set. Once
learning is done, we apply the learned classifier on the test

HAQUE ET AL.: GENERALIZED QUERY-BASED ACTIVE LEARNING TO IDENTIFY DIFFERENTIALLY METHYLATED REGIONS IN DNA 637

TABLE 1
Description of Selected Data Sets

set, and we achieve 304 correct and 31 incorrect classifica-
tion results; accuracy achieved is 90.746 (Fig. 2).

The voting data set has some missing values, do not care
features (*) will match any missing (empty) values. In those
places, empty spaces will show up (e.g., instances 99, 132,
and 134 have missing values).

After testing Algorithm 1 on the voting data set, we
implemented Algorithms 2 and 3 and tested our method on
13 more data sets. They were taken from the Orange
machine learning suite [32] and the UCI repository [2] along
with our own epigenetic data set. The descriptions of the
data sets are given in Table 1. All of the data sets are in tab
file format that is also the input to our program.

7 RESULTS

Experiment A. For this experiment, we used 10-fold cross
validation. At each fold, we first trained the classifier with a
sizeable fraction of the total instances. The initial training
size column in Table 3 specifies the fraction of the total
instances that were used to train the initial classifier for each
data set. During each iteration, we add more instances from
the unlabeled set to the training set and test against the
remaining unlabeled set until the classifier error is reduced
to 3

4 of the maximum error. Then, finally, after we have built
the learner with these instances, we again test it on the set
aside test set. The results of GQAL on all 14 data sets are
given in Table 3. We picked different types of databases and
many of them with more than two classes, unlike some of
the previous studies (e.g., [26]). Finally, we tested our

638 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 3, MAY/JUNE 2013

TABLE 2
Description of UCI and Epigenetic Data Set

Fig. 2. ACL method on the voting database.

approach on an Epigenetic data set from the Skinner Lab at
Washington State University [33]. Details of the epigenetic
data set are given in Section 7.1. One thing to note is that the
performance of GQAL depends on how well the general-
ized queries are formed and how many instances match
those generalized queries. Table 1 shows all the data sets
used, type of features, total number of instances for each
data set, number of features, and the class distribution.
Table 3 shows the average number of do not care features,
the average number of added instances, average Oracle
confidence for each iteration, and the initial training set size.
The initial training size ratio (column 5) is dependent on the
size (total instances) of the data set. Initially, the learner L is
trained with an average of 35 instances for each data set.

Experiment B. We compared our GQAL-based method
with another popular active learning method: uncertainty
sampling. We again used both ACL based techniques on all
14 data sets. We show the results based on the first
12 iterations in Figs. 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k,
3l, 3m, and 3n. The results are based on 10-fold cross
validation. The results are shown from iteration 1, and the
accuracy axis has been started from different values for
different data sets to show the performance comparison
clearly. We can see that our GQAL method outperforms the
uncertainty sampling method in most cases (except glass
data set; with ionosphere, voting, and epigenetic data set
showing close accuracy) with fewer queries. The reason is
because of the GQAL method utilizing generalized queries.
At each iteration, uncertainty sampling matches with a single
instance while GQAL can match with multiple instances.

Although we get higher accuracy compared to uncer-
tainty sampling, our result and accuracy can vary among
data sets since the number of do not care features created for
each query and the number of matching instances can vary.
Having more instances and more features does not
necessarily mean the average added instances per query
will be higher or the percentage of do not care features will
be more. As we can see, the reduction in the number of

features can vary from 21 to 87 percent, while the number of
average instances added can vary from 3 to 52. If we increase
the number of queries to the Oracle, the accuracies will
increase (as we have kept our observation limited to 3/4 of
the maximum error rate) but due to the generalized query
method increasing the number of queries to the Oracle will
still keep the number of features in the query small.

Experiment C. In addition to comparing our GQAL
method with another active learning technique, we also
compare our method with nonactive learners. We calcu-
lated the average maximum accuracy by our GQAL
method on all data sets without query restrictions using
10-fold cross validation. Our results are compatible
with several base learners (naive Bayes, KNN, SVM) using
10-fold cross validation on the data sets. The results are
given in Table 3. The ANOVA test between them did not
show any statistically significant result (p-value = 0.3217).
The t-test assuming unequal variances showed the GQAL
result not to be statistically significant compared to KNN
(p-value = 0.76), SVM (p-value = 0.6853), or NB (p-value =
0.1504). The results show a number of times when GQAL
performs better than the nonactive learning methods on
particular data sets, but overall it does not outperform the
other classifiers on all occasions. One thing to note is that
active learning uses fewer instances to train, while the
nonactive learners use all of the instances available to train
their classifiers.

7.1 Epigenetic Data Set Analysis

The new scientific paradigm in the biological sciences is that
there exists an epigenetic genome (epigenome) in parallel to
the genome that regulates genome activities. For finding
such epigenetic sites, we looked for differentially DNA
methylated regions. To determine whether an instance is
DMR or non-DMR, first we tried to use a regular classifier
such as naive Bayes, SVM, and KNN. Since most of the
DMR and non-DMR sites are predicted, and only a few sites
can actually be tested due to cost issues, it is not always
possible to train a classifier using a large training set. While

HAQUE ET AL.: GENERALIZED QUERY-BASED ACTIVE LEARNING TO IDENTIFY DIFFERENTIALLY METHYLATED REGIONS IN DNA 639

TABLE 3
Data Sets Used and Their Results Based on Applying the GQAL Method

using only a few confirmed sites as the training set, the

accuracy of the classifiers was low. Since there are only a

few confirmed labeled sites and many unknown/unlabeled

sites, we next tried a machine learning approach like active

learning. Active learning can build a classifier with few

confirmed sites and pick the next important unlabeled site

to be labeled by the Oracle to build a better classifier. We

show that using few instances, we can build a classifier

using our GQAL method that can outperform nonactive

learning methods such as NB, SVM, and KNN.

The sequence data set (epigenetics) in the Table 1 was

used to identify DMRs. The data set is based on sets of DMR

with vinclozolin-induced transgenerational changes in

DNA methylation in Sertoli and Granulosa cells [34].

Epigenetics refers to the chemical modifications that

happen in the genome that are independent of the under-

lying DNA sequence, but functionally relevant in terms of

gene expression. Examples of such changes are DNA

methylation and histone deacetylation [35]; both can

regulate gene expression without changing DNA sequence

640 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 3, MAY/JUNE 2013

Fig. 3. (a) Chess data set. (b) Breast-cancer data set. (c) Ionosphere data set. (d) Bupa data set. (e) Glass data set. (f) Hepatitis data set. (g) Iris data

set. (h) Monk data set. (i) Shuttle-landing-control data set. (j) Voting data set. (k) Wdbc data set. (l) Wine data set. (m) Mushroom data set.

(n) Epigenetic data set.

in the regulated gene. The current study of the data set is

focused on an investigation of how an environmental

compound (endocrine disruptor) can promote an epigenetic

transgenerational disease state. DNA methylation is inves-

tigated because it is the primary epigenetic mechanism that

has been shown to mediate generational inheritance

through the male germ line [36], [37]. Predicting regions

to be DMR and correctly labeling them to be DMR or non-

DMR is of crucial importance in epigenetics.
Mining of epigenetic profiles starts with extraction of

interesting properties from the DNA sequence data. After

sites of differentially methylated changes have been found

between control and treatment (using statistical method

and R [38]), the sites are annotated using Nimblegen GFF

annotation files to find the gene associated (and their

orientation) with each of the DMR regions. FASTA files are

created from upstream and downstream of the target

genes up to 100 Kb. After construction of FASTA files for

extraction of genomic features, RepeatMasker was used to

find SINE, LINE, ERVL, ERV, and other repeat elements

from the upstream and downstream of the DMR locations.

One of the common ways of extracting genomic features
from sequences is through repeat elements. Repeat ele-
ments and consensus sites detect interesting patterns from
interesting sites. Other genomic features are GC content
(percent of G (guanine) and C (cytosine) in the sequence)
and CpG sites. Then, CpGislandSearcher [39] was used to
find CpG islands in these regions. CpG islands denote
high frequency of CpG sites. A CpG site is denoted by a C
followed immediately by a G. Epigenetic sites have been
found in low-CpG-density regions, and therefore, a lack of
such feature in interested sites will be helpful. Another
important genomic feature used is DNA Motifs [40], [41].
Common patterns between biologically relevant sites can
be identified using Motif findings tools. DNA Motifs
representing binding sites of transcription factors and can
be represented by a probability matrix for each base
position such that a certain combination of those sequences
matches with every subsequence.

In the data set we have used, there are 130 negative and
425 positive sites for the DMR regions. Each of these
regions corresponds to a gene promoter location. The
database has 38 genomic features (26 repeat elements,

HAQUE ET AL.: GENERALIZED QUERY-BASED ACTIVE LEARNING TO IDENTIFY DIFFERENTIALLY METHYLATED REGIONS IN DNA 641

Fig. 3. (Continued).

10 motifs, GC content, and CpG islands) for each of those
regions. With 38 features, we get 79.78 percent accuracy
using only 37 queries to the Oracle in our ACL-based
generalized query model. This accuracy is closer to the
majority class (76.57 percent), but this is still better than
other learners such as KNN, SVM, and NB (Table 4). The
results also show better accuracy with the first 12 queries
over uncertainty sampling (Fig. 3n). The goal is to train the
classifier with the help of the Oracle to predict new regions
that can be tested for DMR properties. We have a number
of newly predicted sites that need laboratory confirmation
to verify them as positive DMR regions.

8 DISCUSSION

Overall, the results show that our model performs better

than other approaches by using pool-based uncertainty

sampling and generalized queries. There are concerns

regarding several issues:

1. Since we assume that the Oracle always provides us
with the correct answer, can we trust the Oracle to
provide us with a reliable probability estimation on
the generalized query?

2. How well does our method perform when we
have a training set with a small number of labeled
examples?

3. What is the number of queries that needs to be asked
to the Oracle to achieve high accuracy?

4. Is a feature selection technique better than active
learning with generalized query?

We address these concerns with the following recom-

mendations.
Here, we have assumed that the answer from the Oracle

is always reliable. There are a number of techniques [37]

used to check if there is any noise or unreliable answers, but

we have not used those techniques in our approach. This

can be added as an extension of the current work.

We have already stated that having fewer initial labeled
examples in the training set can lead to unreliable answers
from the Oracle. Fewer examples lead to generalized
queries based on too many do not care features. Such
experiments can lead to uncertain answers from the Oracle
as it is difficult for the Oracle to correctly find the do not
care features. To overcome this problem, it is possible to
take a proportion of the features to be do not care features,
which depends on the number of examples present for the
training. For example, if we have 10 training examples, a
maximum of five features can be labeled as do not care
features and used to construct a generalized query, for
20 training examples up to 10 do not care features can be
used, and so on.

We ran tests on some of the data sets counting the
number of queries that were asked to the Oracle. We found
from the tests that the number of queries ranged from 14 to
50 for different accuracy rates. The number can vary
depending on which most uncertain example the model
chooses and how many unlabeled examples are added to
the training set. It also depends on whether the test involves
a restricted number of Oracle queries. In unrestricted form,
we can keep adding instances to the training set from the
unlabeled set until we reach the maximum accuracy or run
out of instances in the unlabeled training set.

Active learning has sometimes been compared to feature
selection techniques. In feature selection, important features
can be removed globally from the entire data set, but for
generalized queries, some features are essential for some
queries while they are not essential for other queries. Hence,
different generalized queries to the Oracle make use of the
importance of different feature sets at a time, which cannot
be done using a one-time global feature selection method.

In comparison to GQAL versus uncertainty sampling,
the performance of our GQAL method is dependent on how
well it can convert the most uncertain instances to general-
ized query. If it converts them to generalized queries that
are too generalized (have too many do not care attribute) or
not generalized enough (have too few do not care attribute),

642 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 3, MAY/JUNE 2013

TABLE 4
Comparison of Accuracy from Our GQAL Query-Based Approach with Other Learners

then the performance of GQAL will degrade. Again, if the
generalized query matches with one instance only each time
(for the entire training and testing), then there is no
difference between GQAL and uncertainty sampling. So, it
is apparent that if the target concept is hard to capture
through generalized query for any data set large or small,
GQAL performance will suffer significantly.

9 CONCLUSIONS

This work starts with the current scenario in active learning
and describes different applied techniques. Having visited
current query-based active learning techniques, we look into
a do not care features-based ACL implementation. We show
accuracy versus number of queries and show that even with
few queries we achieve performance commensurate with
nonactive learning approaches. We also show how general-
ized query can be performed on instances when we have
numeric and nominal features present. One problem with
generalized query is that the answer from the Oracle can be
uncertain. Although including multiple instances into gen-
eralized query can reduce the effect of noise in our GQAL
method, having more instances with noisy labeling will lead
to performance degradation. This happens when the initial
labeled instances represent a small subset of the training set.
We also elaborate on how our approach can be improved
when the number of labeled examples initially is very low.

A number of additions can be proposed to the existing
framework:

1. consider different base learners apart from the
TAN model,

2. more data sets,
3. dealing with noisy data,
4. dealing with noisy answers from the Oracle,
5. comparing results with other existing methods.
6. Since generalized query adds similar instances, we

can avoid asking similar generalized queries to
avoid biasing the learner toward only one type of
examples. We can also ensure the dissimilarity
among generalized queries to make the learner learn
from a variety of examples in few queries, and

7. the GQAL method can also be extended to stream-
based online active learning.

Our approach is the first of its kind to use ACL on an
epigenetic data set. The number of queries used by GQAL
on the epigenetic data set is fewer than all available
examples. If we do not restrict the number of queries that
can be asked to the Oracle for training, then GQAL with no
query restriction will perform better on the test set than
GQAL with query restrictions. Similarly with uncertainty
sampling, if it can make use of all the examples for training,
it performs better than GQAL with query restriction on the
test set. However, our goal is to show that with fewer
queries GQAL performs better than uncertainty sampling
as it makes use of generalized query. So, when the numbers
of queries are low, GQAL performs better than uncertainty
sampling. Overall, we can state that our framework will
become very useful in several domains including biology
where only a small portion of the data is labeled and the
rest are unlabeled data, and where we can get accurate
classification results using minimum Oracle intervention.

REFERFENCES

[1] D.D. Lewis and J. Catlett, “Heterogeneous Uncertainty Sampling
for Supervised Learning,” Proc. Int’l Conf. Machine Learning (ICML
’94), pp. 148-156, 1994.

[2] A. Frank and A. Asuncion, “UCI Machine Learning Repository,”
http://archive.ics.uci.edu/ml/index.html, 2010.

[3] C. Bock and T. Lengauer, “Computational Epigenetics,” Bioinfor-
matics, vol. 24, pp. 1-10, Jan. 2008.

[4] M. Weber and D. Schubeler, “Genomic Patterns of DNA
Methylation: Targets and Function of an Epigenetic Mark,”
Current Opinion Cell Biology, vol. 19, pp. 273-280, June 2007.

[5] A. Bird, “DNA Methylation Patterns and Epigenetic Memory,”
Genes Development, vol. 16, pp. 6-21, Jan. 2002.

[6] M. Manikkam, C. Guerrero-Bosagna, R. Tracey, M.M. Haque, and
M.K. Skinner, “Transgenerational Actions of Environmental
Compounds on Reproductive Disease and Epigenetic Biomarkers
of Ancestral Exposures,” PLoS ONE, vol. 7, article e31901, 2012.

[7] P.P. Anglim, T.A. Alonzo, and I.A. Laird-Offringa, “DNA
Methylation-Based Biomarkers for Early Detection of Non-Small
Cell Lung Cancer: An Update,” Molecular Cancer, vol. 7, article 81,
2008.

[8] H.S. Seung, M. Opper, and H. Sompolinsky, “Query by
Committee,” Proc. Fifth Ann. Workshop Computational Learning
Theory, pp. 287-294, 1992.

[9] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[10] Y. Freund, H.S. Seung, E. Shamir, and N. Tishby, “Selective

Sampling Using the Query by Committee Algorithm,” Machine
Learning, vol. 28, pp. 133-168, 1997.

[11] A. McCallum and K. Nigam, “Employing EM and Pool-Based
Active Learning for Text Classification,” Proc. Int’l Conf. Machine
Learning (ICML ’98), pp. 350-358, 1998.

[12] D.A. Cohn, Z. Ghahramani, and M.I. Jordan, “Active Learning
with Statistical Models,” J. Artificial Intelligence Research, vol. 4,
pp. 129-145, 1996.

[13] T. Zhang and F.J. Oles, “A Probability Analysis on the Value of
Unlabeled Data for Classification Problems,” Proc. Int’l Conf.
Machine Learning (ICML ’00), pp. 1191-1198, 2000.

[14] N. Roy and A. Mccallum, “Toward Optimal Active Learning
through Sampling Estimation of Error Reduction,” Proc. Int’l Conf.
Machine Learning (ICML ’01), pp. 441-448, 2001.

[15] Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang, “Representative
Sampling for Text Classification Using Support Vector Machines,”
Proc. European Conf. IR Research (ECIR ’03), pp. 393-407, 2003.

[16] H.T. Nguyen and A. Smeulders, “Active Learning Using Pre-
clustering,” Proc. Int’l Conf. Machine Learning (ICML ’04), pp. 79-89,
2004.

[17] Z. Xu, R. Akella, and Y. Zhang, “Incorporating Diversity and
Density in Active Learning for Relevance Feedback,” Proc.
European Conf. IR Research (ECIR ’07), pp. 246-257, 2007.

[18] B. Settles and M. Craven, “An Analysis of Active Learning
Strategies for Sequence Labeling Tasks,” Proc. Empirical Methods in
Natural Language Processing, pp. 1070-1079, 2008.

[19] K. Brinker, “Incorporating Diversity in Active Learning with
Support Vector Machines,” Proc. Int’l Conf. Machine Learning
(ICML ’03), pp. 59-66, 2003.

[20] Y. Guo and D. Schuurmans, “Discriminative Batch Mode Active
Learning,” Proc. Advances in Neural Information Processing Systems,
vol. 20, pp. 593-600, 2008.

[21] T.G. Dietterich, R.H. Lathrop, and T. Lozano-Perez, “Solving the
Multiple Instance Problem with Axis-Parallel Rectangles,” Artifi-
cial Intelligence, vol. 89, pp. 31-71, 1997.

[22] B. Settles, “Active Learning Literature Survey,” technical report,
http://www.cs.cmu.edu/~bsettles/pub/settles.activelearning.
pdf, 2010.

[23] P. Rashidi and D. Cook, “Ask Me Better Questions: Active
Learning Queries Based on Rule Induction,” Proc. Int’l Conf.
Knowledge Discovery and Data Mining, pp. 904-912, 2011.

[24] D. Cook, L. Holder, B. Shirazi, and M. Schmitter-Edgecombe,
“WSU CASAS Smart Home Project,” http://ailab.eecs.wsu.edu/
casas/data sets.html, 2010.

[25] S. Huang, R. Jin, and Z. Zhou, “Active Learning by Querying
Informative and Representative Examples,” Proc. Neural Informa-
tion Processing Systems, 2010.

[26] J. Du and C.X. Ling, “Asking Generalized Queries to Domain
Experts to Improve Learning,” IEEE Trans. Knowledge and Data
Eng., vol. 22, no. 6, pp. 812-825, June 2010.

HAQUE ET AL.: GENERALIZED QUERY-BASED ACTIVE LEARNING TO IDENTIFY DIFFERENTIALLY METHYLATED REGIONS IN DNA 643

[27] J.W. Smith, J.E. Everhart, W.C. Dickson, W.C. Knowler, and R.S.
Johannes, “Using the ADAP Learning Algorithm to Forecast the
Onset of Diabetes Mellitus,” Proc. Symp. Computer Applications and
Medical Care, pp. 261-265, 1988.

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I.H. Witten, “The WEKA Data Mining Software: An Update,”
SIGKDD Explorations, vol. 11, pp. 10-18, 2009.

[29] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian Network
Classifiers,” Machine Learning, vol. 29, pp. 131-163, 1997.

[30] R. Agrawal, T. Imielinski, and A.N. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” Proc. ACM
Sigmod Int’l Conf. Management of Data, pp. 207-216, 1993.

[31] B. Liu, W. Hsu, and Y. Ma, “Integrating Classification and
Association Rule Mining,” Proc. Int’l Conf. Knowledge Discovery and
Data Mining, pp. 120-128, 1998.

[32] T. Curk, J. Demsar, Q. Xu, G. Leban, U. Petrovic, I. Bratko, G.
Shaulsky, and B. Zupan, “Microarray Data Mining with Visual
Programming,” Bioinformatics, vol. 21, pp. 396-398, Feb. 2005.

[33] M.K. Skinner, “Skinner Laboratory, Center for Reproductive
Biology,” http://skinner.wsu.edu/, 2010.

[34] C. Guerrero-Bosagna, M. Savenkova, M.M. Haque, I. Sadler-
Riggleman, and M.K. Skinner, “Environmentally Induced Epige-
netic Transgenerational Inheritance of Altered Sertoli Cell
Transcriptome and Epigenome: Molecular Etiology of Male
Infertility,” PLoS ONE, vol. 8, no. 3, article e59922, 2013.

[35] M. Itoh, S. Goto, T. Akutsu, and M. Kanehisa, “Fast and Accurate
Database Homology Search Using Upper Bounds of Local
Alignment Scores,” Bioinformatics, vol. 21, pp. 912-921, Apr. 2005.

[36] M.K. Skinner, M. Manikkam, and C. Guerrero-Bosagna, “Epige-
netic Transgenerational Actions of Environmental Factors in
Disease Etiology,” Trends Endocrinology Metabolism, vol. 21,
pp. 214-222, Apr. 2010.

[37] M.D. Anway, A.S. Cupp, M. Uzumcu, and M.K. Skinner,
“Epigenetic Transgenerational Actions of Endocrine Disruptors
and Male Fertility,” Science, vol. 308, pp. 1466-1469, June 2005.

[38] C. Guerrero-Bosagna, M. Settles, B. Lucker, and M. Skinner,
“Epigenetic Transgenerational Actions of Vinclozolin on Pro-
moter Regions of the Sperm Epigenome,” PLoS ONE, vol. 5,
article e13100, 2010.

[39] D. Takai and P.A. Jones, “Comprehensive Analysis of CpG Islands
in Human Chromosomes 21 and 22,” Proc. Nat’l Academy of
Sciences USA, vol. 99, pp. 3740-3745, Mar. 2002.

[40] M.K. Das and H.K. Dai, “A Survey of DNA Motif Finding
Algorithms,” BMC Bioinformatics, vol. 8, no. Suppl. 7, article S21,
2007.

[41] G.D. Stormo, “DNA Binding Sites: Representation and Discov-
ery,” Bioinformatics, vol. 16, pp. 16-23, Jan. 2000.

Md. Muksitul Haque received the BS degree
from the Department of Computer Science and
Engineering, University of Rajshahi, Bangladesh,
in 2000, the MSE degree in software engineering
from the Department of Computer Science,
University of Alaska Fairbanks, in 2008, and the
MS degree in computer science from the School
of Electrical Engineering and Computer Science,
Washington State University, in 2010. He is
currently a research associate/computer analyst

in the Skinner Lab, School of Biological Science, Washington State
University. His research interests include studying the effects of early
developmental exposures to environmental compounds on epigenetic
features and the potential for its transgenerational transmission and
applying machine learning (active learning, imbalance class) approaches
to identify potential differentially methylated regions in the epigenome.

Lawrence B. Holder received the BS degree
with honors in computer engineering and the PhD
degree in computer science from the University
of Illinois at Urbana-Champaign, in 1986 and
1991, respectively. He is currently a professor at
the School of Electrical Engineering and Com-
puter Science, Washington State University. His
research interests include artificial intelligence,
machine learning, data mining, graph theory,
algorithms, security and bioinformatics.

Michael K. Skinner received the BS degree in
chemistry from Reed College in Portland Oregon,
the PhD degree in biochemistry from Washington
State University, and the postdoctoral fellowship
from the C.H. Best Institute, University of
Toronto. He is currently a professor at the School
of Biological Sciences, Washington State Uni-
versity. His research interests include mamma-
lian reproduction and environmental epigenetics.

Diane J. Cook received the BS degree from
Wheaton College in 1985, and the MS and PhD
degrees from the University of Illinois at Urbana-
Champaign, in 1987 and 1990, respectively. She
is a Huie-Rogers Chair Professor at the School
of Electrical Engineering and Computer Science,
Washington State University. Her research
interests include artificial intelligence, machine
learning, data mining, robotics, smart environ-
ments, and parallel algorithms for artificial

intelligence. She is a director in the AI Laboratory and a head of the
CASAS Smart Home Project.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

644 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 3, MAY/JUNE 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

