
StreamWorks - A system for Dynamic Graph Search

Sutanay Choudhury
Pacific Northwest National

Laboratory, USA
sutanay.choudhury@pnnl.gov

Lawrence Holder
Washington State University,

USA
holder@wsu.edu

George Chin
Pacific Northwest National

Laboratory, USA
george.chin@pnnl.gov

Abhik Ray
Washington State University,

USA
abhik.ray@wsu.edu

Sherman Beus
Pacific Northwest National

Laboratory, USA
sherman.beus@pnnl.gov

John Feo
Pacific Northwest National

Laboratory, USA
john.feo@pnnl.gov

ABSTRACT
Acting on time-critical events by processing ever growing social
media, news or cyber data streams is a major technical challenge.
Many of these data sources can be modeled as multi-relational graphs.
Mining and searching for subgraph patterns in a continuous setting
requires an efficient approach to incremental graph search. The
goal of our work is to enable real-time search capabilities for graph
databases. This demonstration will present a dynamic graph query
system that leverages the structural and semantic characteristics of
the underlying multi-relational graph.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

Keywords
Continuous Queries; Dynamic Graph Search; Subgraph Matching

1. INTRODUCTION
Social networks, social media websites and mainstream news

media are driving an exponential growth in online content and net-
work traffic. This information barrage presents both a formidable
challenge and an opportunity to applications that thrive on situa-
tional awareness. Domains such as emergency response, cyber se-
curity, intelligence and finance has many applications that contin-
uously monitor the data stream to look for specific events. Time-
liness of the detection carries paramount importance for such ap-
plications. The applications derive their competitive edge from fast
detection as late detection may not have much value due to incurred
damage to resources. Our work is motivated by queries that look
for rare events, have a time constraint on the time to discovery and
never need a bulk retrieval of historic data due to their monitoring
nature.

The field of relational databases studied the topic of continuous
queries to address applications with precisely the above character-
istics. A continuous query (CQ) system is defined as one where
a query logically runs continuously over time as opposed to be-
ing executed intermittently [2–4]. Many of the prominent news,

Copyright 2013 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.

!"#$%&'())#"*+#,-.&/(0"1&23#..*.4&

5.6"0)0.7#3&'0#"6%& 8*9(#3*+#,-.&

/(0"1&:-)$-9*,-.&!"#$%&'(#)*+
!&

"&

#&
!&

Figure 1: Various components for graph mining and search.

social media or cyber data streams can be represented as multi-
relational graphs. Following the sprit of CQ systems, our work can
be viewed as continuously searching a temporally evolving (hence-
forth referred as dynamic) graph for graph based patterns repre-
senting various events of interest.

Our proposed demonstration will showcase StreamWorks (Fig.
1) - an analytics framework for dynamic graphs. With Stream-
Works, a user can register graph queries to find events as they
emerge in the data graph. The novelty of StreamWorks lies in its in-
cremental graph search algorithm based on a query decomposition
approach. The registered queries are decomposed into sub-patterns
using a novel data structure called the SJ-Tree [6] that systemati-
cally tracks the evolution of matches in the underlying graph. The
query decomposition is performed by utilizing statistics and sum-
maries about the data graph such as degree distribution, vertex and
edge type distribution and multi-retlational triad distribution.

1.1 Demonstration features
We will present an interface to compose and execute graph queries,

and query planning. Further, we will provide visualization of the
evolving graph, results from graph queries, and relevant statistics.

2. BACKGROUND AND RELATED WORK

2.1 Problem Statement
Our theoretical contribution is the development of an incremen-

tal subgraph isomorphism algorithm for dynamic graphs [6]. Given
a pattern or query graph (henceforth described as query graph) Gq

and a larger input graph (henceforth described as the data graph)
Gd, an isomorphism ofGq inGd is defined as the matching that in-
volves a one-to-one correspondence between the vertices of a sub-

SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

1101

graph of Gd and vertices of Gq such that all vertex adjacencies are
preserved.

Every edge in a dynamic graph has a timestamp associated with
it and therefore, for any subgraph g of a dynamic graph we can
define a time interval τ(g) which is equal to the interval between
the earliest and latest edge belonging to g. Given a dynamic multi-
relational graph Gd, a query graph Gq and a time window tW , we
report whenever a subgraph gd that is isomorphic to Gq appears
in Gd such that τ(gd) < tW . The isomorphic subgraphs are also
referred to as matches in the subsequent discussions. If M(Gk

d) is
the cumulative set of all matches discovered until time step k and
Ek+1 is the set of edges that arrive at time step k+1, we present an
algorithm to compute a function f (Gd, Gq, Ek+1) which returns
the incremental set of matches that result from updating Gd with
Ek+1 and is equal to M(Gk+1

d)−M(Gk
d).

2.2 Related Work
Investigation of subgraph isomorphism for dynamic graphs did

not receive much attention until recently. It introduces new algo-
rithmic challenges because we can-not afford to index a dynamic
graph frequently enough for applications with real-time constraints.
In fact this is a problem with searches on large static graphs as
well [8]. There are two alternatives in that direction. We can search
for a pattern repeatedly or we can adopt an incremental approach.
The work by Fan et al. [7] presents incremental algorithms for
graph pattern matching. However, their solution to subgraph iso-
morphism is based on the repeated search strategy. Chen et al. [5]
proposed a feature structure called the node-neighbor tree to search
multiple graph streams using a vector space approach. They relax
the exact match requirement and require significant pre-processing
on the graph stream. Our work is distinguished by its focus on tem-
poral queries and handling of partial matches as they are tracked
over time using a novel data structure. There are strong parallels
between our algorithm and the very recent work by Sun et al. [8],
where they implement a query-decomposition based algorithm for
searching a large static graph in a distributed environment. Our
work is distinguished by the focus on continuous queries that in-
volves maintenance of partial matches as driven by the query de-
composition structure, and optimizations for real-time query pro-
cessing.

3. INCREMENTAL QUERY PROCESSING

3.1 Our Approach
A simplistic approach to solving this problem would be to check,

for every edge update, if that edge matches one in the query graph.
Once an edge is considered as a matching candidate, the next step
is to consider different combinations of matches it can participate
in. While intuitively simple, this approach falls prey to combina-
torial explosion very quickly. Our objective is to introduce an ap-
proach that guides the search process to look for specific subgraphs
of the query graph and follow specific transitions from small to
larger matches. Following are the main intuitions that drive this
approach,

1. Instead of looking for a match with the entire graph or just
any edge of the query graph, partition the query graph into smaller
subgraphs and search for them.
2. Track the matches with individual subgraphs and combine them
to produce progressively larger matches.
3. Define a join order in which the individual matching subgraphs
will be combined. Do not look for every possible way to combine
the matching subgraphs.

Location

Article 2 Article 3Article 1

Keyword

Location Article 3

Article 1 Article 2

Keyword

Article 1 Article 2

Location KeywordLocation Keyword

Location Keyword

Figure 2: Illustration of query decomposition in SJ-Tree. The
graph shown in the root node represents a query to find three
articles or posts with a common keyword and location.

Although the current work is completely focused on temporal
queries, the graph decomposition approach is suited for a broader
class of applications and queries. The key aspect here is to search
for substructures without incurring too much cost. Even if some
subgraphs of the query graph are matched in the data, we will not
attempt to assemble the matches together without following the join
order. Thus, if there are substructures that are too frequent, joining
them and producing larger partial matches will be too expensive
without a stronger guarantee of finding a complete match. On the
other hand, if there is a substructure in the query that is rare or
indicates high selectivity, we should start assembling the partial
matches together only after that substructure is matched.

3.2 Subgraph Join Tree (SJ-Tree)
We introduce a tree structure called Subgraph Join Tree (SJ-Tree)

that supports the above intuitions for implementing a search and
join order based on selectivity of substructures of the query graph.
Fig. 2 shows an example decomposition of a query graph.

DEFINITION 4.1.1 A SJ-Tree T is defined as a binary tree com-
prised of the node setNT . Each n ∈ NT corresponds to a subgraph
of the query graph Gq . Let’s assume VSG is the set of correspond-
ing subgraphs and |VSG| = |NT |. Additional properties of the
SJ-Tree are defined below.

PROPERTY 1. The subgraph corresponding to the root of the SJ-
Tree is isomorphic to the query graph. Thus, for nr = root{T},
VSG{nr} ≡ Gq .

PROPERTY 2. The subgraph corresponding to any internal node
of T is isomorphic to the output of the join operation between the
subgraphs corresponding to its children. If nl and nr are the left
and right child of n, then VSG{n} = VSG{nl} 1 VSG{nr}.
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the join
operation is defined as G3 = G1 1 G2, such that G3 = (V3, E3)
where V3 = V1 ∪ V2 and E3 = E1 ∪ E2.

PROPERTY 3. Each node in the SJ-Tree maintains a set of match-
ing subgraphs. We define a function matches(n) that for any
node n ∈ NT , returns a set of subgraphs of the data graph. If
M = matches(n), then ∀Gm ∈M , Gm ≡ VSG{n}.

1102

PROPERTY 4. Each internal node n in the SJ-Tree maintains a
subgraph, CUT-SUBGRAPH(n) that equals the intersection of the
query subgraphs of its child nodes.

4. SYSTEM OVERVIEW

4.1 Query Planning
With the subgraph join-tree data structure in mind, the next task

is to automatically decompose a query graph Gq and create a sub-
graph join tree based on the decomposition. Broadly our aim is
to decompose the query graph into a number of smaller graphs,
which we refer to as search primitives, and perform local searches
for these primitives. We use the term local search to refer to a sub-
graph search performed in the neighborhood of an edge in the data
graph for a small query subgraph. The primitives are restricted to
small and "selective" query subgraphs to keep the local search ef-
ficient. An important goal of the decomposition process is to push
the most selective subgraph at the lowest level in the subgraph join-
tree to reduce the number of partial matches.

4.2 Query Execution
Our proposed subgraph matching algorithm contains two pri-

mary tasks. First, for every incoming edge we perform a local
search to detect a match with the smallest subgraphs associated
with the leaves of the SJ-Tree. When a match is found with the
subgraph corresponding to the leaf node of the SJ-Tree, we initial-
ize a match structure and insert it into the collection maintained at
that leaf node. Upon insertion of a match into a leaf node we check
to see if it can be combined with any matches that are contained
in the collection maintained at its sibling node. A successful com-
bination of matching subgraphs between the leaf or intermediate
node and its sibling node leads to the insertion of a larger match
at the respective parent node. This process is repeated as long as
larger matching subgraphs can be produced by moving up in the
SJ-Tree. A complete match is found when two matches belonging
to the children of the root node are combined successfully.

4.3 Summarization
Summarization involves collecting summary statistics about the

data graph to use for query planning. We collect three different
types of information 1) degree distribution 2) distribution of ver-
tex and edge types, 3) the frequency distribution of multi-relational
triad structures. Incorporation of triad statistics into the query de-
composition process is a work in progress at the time of this writ-
ing. Continuously collecting the statistics information from the
data stream and updating the query decomposition and search strat-
egy remains an area for future work.

5. TARGET APPLICATIONS
We focus on two major application domains: cyber-security and

news/social media monitoring. The following subsections present
a quick snapshot of some motivating queries.

5.1 Cyber-Security
A cyber system is naturally described as a graph with physi-

cal machines, IP addresses, users, and software services as entities
(vertices). The relationships between these entities such as com-
munication between machines, association of a physical machine
and an IP address, login of a user on a machine etc are modeled
as edges in the graph. From a security perspective, updates to this
dynamic graph can be constantly monitored to detect events such

Figure 3: Examples queries to detect cyber attacks.

as worm spread, virus attack, denial-of-service attack etc.. We con-
struct graph-based representation of these events (Fig. 3) and query
the data graph to detect occurrences of malicious events.

5.2 News and Social Media
Various online news or social media data sources can be repre-

sented as multi-relational graphs. Entities such as articles, events,
people, location, organizations and keywords can be represented as
vertices in the graph. Next, graph based queries can be executed
to detect the occurrence of various events in the news stream. Fig.
shows some example queries and Fig. 5 shows a map-based visual-
ization of the a series of queries executed on New York Times data
1.

6. DEMONSTRATION SETUP

6.1 Setup
Dataset: We will demonstrate the query capabilities on internet

traffic data obtained from www.caida.org. The number of records
in these datasets typically varies between 50-100 million/hour.

Software/Hardware The queries will be executed on a 48-core
shared memory system running Linux 2.6.18 and comprising 2.3
GHz AMD Opteron 6176 SE processors and 256 GB memory.
Each system node has 32 GB memory attached to it. The graph
query engine is implemented in C++.

6.2 User Interface
There are three major focus areas for visualization and UI design.

• Our primary target audience includes journalists, emergency
responders, intelligence professionals who are not expected
to use StreamWorks using an API. Fig. 4 shows an exper-
imental user interface for visual query composition. The
user interface will retrieve metadata information such as ver-
tex and edge types and their attributes to assist in drawing a
query graph.

• The query graphs are a representation of events of interest;
hence, we are developing map (Fig. 5) and tabular views
(Fig. 6) that show occurrence of events in a geospatial and
temporal context. The goal is to keep the underlying graph
representation transparent to the user. Query results from any
graph with location information available as a vertex attribute
can be displayed on the map view.

1http://data.nytimes.com

1103

Figure 4: Prototype of an interface for visual graph query com-
position.

Figure 5: A visualization of the output from a collection of
graph queries. The queries are similar to Fig. 2. Each query
graph specifies a label (such as "politics", "accident" etc.) on
the keyword vertex to indicate the event of interest.

• Graph-based visualization of the results from subgraph queries
is critical for developers and API users. Therefore, we are
adapting and applying the Gephi graph visualization and ma-
nipulation software [1] to render snapshots of the data graph
and encode the partial and complete matches. This is also
useful to observe the choice of different query decomposition
strategies. To illustrate, Fig. 7 shows snapshots of emerging
subgraph patterns in a computer network that are identified
and tracked using different SJ-Tree structures. The percent-
ages show the fraction of query graph being matched as mea-
sured by the number of edges. Each SJ-Tree is shown next
to its associated emerging subgraph pattern snapshots. The
colors of the subgraph patterns in the snapshots correspond
to particular partitions in the associated SJ-Tree to indicate
the level or degree of partial matching to the query graph.

7. ACKNOWLEDGMENTS
Presented research is based on work funded under the CASS-MT

project at Pacific Northwest National Laboratory, which is operated
by Battelle Memorial Institute.

8. REFERENCES
[1] Gephi, an open source graph visualization and manipulation

software, www.gephi.org.

Figure 6: Grid-based visualization showing cascading effect of
a Smurf DDoS attack across subnetworks (blue dots).

Figure 7: Emerging matches for Smurf DDoS subgraph pat-
terns in a dynamic computer network using different query
plans.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12:120–139, August 2003.

[3] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden,
F. Reiss, and M. A. Shah. Telegraphcq: continuous dataflow
processing. SIGMOD ’03.

[4] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: a
scalable continuous query system for internet databases. In
Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, SIGMOD ’00, pages
379–390, New York, USA, 2000. ACM.

[5] L. Chen and C. Wang. Continuous subgraph pattern search
over certain and uncertain graph streams. IEEE Trans. on
Knowl. and Data Eng., 22(8):1093–1109, Aug. 2010.

[6] S. Choudhury, L. Holder, A. Ray, G. Chin, and J. Feo.
Continuous queries for multi-relational graphs. Pacific
Northwest National Laboratory technical report,
PNNL-SA-90326, http://arxiv.org/abs/1209.2178, 2012.

[7] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu.
Incremental graph pattern matching. SIGMOD ’11, 2011.

[8] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient
subgraph matching on billion node graphs. PVLDB, 5(9),
2012.

1104

	Introduction
	Demonstration features

	Background and Related Work
	Problem Statement
	Related Work

	Incremental Query Processing
	Our Approach
	Subgraph Join Tree (SJ-Tree)

	System Overview
	Query Planning
	Query Execution
	Summarization

	Target Applications
	Cyber-Security
	News and Social Media

	Demonstration Setup
	Setup
	User Interface

	Acknowledgments
	References

