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.A.BSTRAcr 

Machine learning is recognized as a tool for improving the performance of many kinds of' 
systems. yet most machine learning systems themselves are not well equipped to improve their 
own learning performance. By emphasizing the role of domain knowledge. learning systems can be 
crafted as know!edge-directed systems. and with the addition of a knowledge store for organizing 
and maintaining knowledge to assist learning. a l.earnJn.g machine learning (L-~IL) algoritbm is 
possible. The necessary components of L-:\fL systems are prese~ted along with seve!"al case 
descriptions of e~isting machine learning systems that possess limited L-Mt capabilities. 
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1. L'TRODCCTIOS 


.. . . .... .. """'..... -_._ ... 
•\1<.!;. •••••e ..ca ...... ~ p .. r;orts to be an ir:1?Ortan~ too: for inc:-e.lsi:1g ~::e 

Fe:-:-,,)r:-::ar.ce cf k::.ow:edge-in~er.sive proclcm soiying ~asf.;.s. Tr.e abi:ity ~0 :ea:-:: 

1.... ....;'- • _'': ~ .. : ....t; e_ as a p ..•.. A a;)......lr.g.e.... A le,~ n· : •. T"" ,. ,.. l:1,e~ . ••lge.. ~ \*. .• ,•.~ e.e .S e·e.....-..r.eS cee.. :.....e" .. ~ ... :.......... ?"" a:1: t s. s.e:n. 

ho~e :hat ::1ad:ine :ear:1i:1g systems can conque:- the knowledge-acqt;is:tior. 

bottleneck and uiti:r:ately provide knowledge that can surprise their h:.m:an 

c:-eators [~1ichalskiS6}. It seems ironic that relatively little attention has been 

given to machine learning itself as a k.nowledge-intensive problem solving task.-a 

task whose performance we would like to see improve with experience and with 

the availability of more problem dependent and problem independent knowledge. 

Learning itself should be conducted in an intelligent way, especially because 

learning is hard. 

By its nature. it is unlikely that any single conceptualization ora learning 

algorithm will be satisfactory for even a modest range of learning situations. An 

intelligent adaptive learning algorithm is surely necessary. The focus of this 

paper is on machine learning algorithms that can learn, i.e., that can change their 

own performance as they gain experience. 

Today's typical machine learning algorithm does not improve its own 

performance over time, but remains static. "\\7hen faced with another lear.1ing 

problem, eyen one identical to a problem seen before. the same computations are 

performed again. taking no advantage of biases or constr'..lctions or gene:-alizing 

transformations that have already been shown to be effective for that class of 

circumstances. The same problem solutior. space is explored agair., as if it were 

fresh and previously unexplored. Clearly a human demonstrating such behavior 

would not be cal1ed intelligent. 

There are se\'eral key ingredients required to make a Learning ~lachine 

Learning (L-\.IL) System. Principal1~:. an L-ML system nust both be directed by 

http:Fe:-:-,,)r:-::ar.ce
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• 	 the abl::ty :0 ~se bJckg:-ounc ~:lOwledge to t~a~sfor:n re?~est';.:a:~(r. 5;:::::5. 

• 	 the ability to di:-ect learr:l:1g under the lr.ft.:c:'lce of a spe-:l::ec 60a: ~r. ~;-.f -:c:::e-\ :J;' a 
goal hierarchy2, 

• 	 the ability to compose gene:-alizations and simpli5.catlons ~:-om one Of :nore ccr.ce?ts 
in backgro1lnd K:10 v,:!edge. efficiently reusing acquired ge::.e:allz:ng a.::.c S':.''J.C:'li:ng 

concepts. 

• 	 the ability to discover patterns in examples. background knowledge, bIases. a!1d goals 
that are effective for learning. 

• 	 the ability to uJXiate a background knowledge store with discovered ge:1eral. 
domain-specific. and problem-specinc characteristics paired With the control 
knowledge that was used to accomplish effective learning in the current situation. 

• 	 the ability to recognize a class of learning problems. and to index the background 
knowledge for access to class knowledge. 

The first three of the above six capabilities of an L-NIL system relate to the 

use of knowledge to direct learning. Learning algorithms that have this 

characteristic are ca11ed kn.owledge directed (KD). KD algorithms r.eed not be 

knowledge dependent. in the sense ~hat pure explanation based lear:1ing (EEL) 

algorithms depend on having a complete domain theory. 

The last three L-ML capabilities provide an observational discovery 

component for n,:>ting st:-ong patterns in domain heuristics and conceptual 

regularities that come into play during learning. This type of introspective 

behavior has been termed self-watching. An L-ML system is thus a self-watching 

KD learning system that maintains working knOWledge across m~ltiple learning 

sessions by updating its background knowledge base. 

Learning in L-~IL systems can involve at least three different types of system 

metamorphosis in response to experience gained accomplishing prior learning tasks. 

• 	 Augmenting the concept la:1guage to be more expressive. 

Some machine learning systems have ex~er.sible concept :-eprese!l.~ation 

1. ,;':s ::llU:-"f::"l"!'.:ln IS ot~t:: cl::.eci ,,-:s:-.,;:"" I!,\~~:!()r. [~lic:-:lls\;.dJO~ 

::. Lca::.:::i;) r,IT(c:.:d i>~- :::1~Uf::'1 :'1.U<e1 :!ilt ,,~c c!C~:\'tC :re:n t::ttl·il::clI. ,teet u:d ~(\a; Hr'..:ct~:n :·c·..;.~.e ::\ ::-:~ ,ack· 
r=.:-:C "':l':-"'I.d~t. s:';c!": Hoi C.).. ; :::Xp<!::et~c\' Se:l>.oflt :S:C??3bl. 



ia~gt..:ages. :ar.gt.:ages in w~ich frequently L:sed or f'.l:1C:ior.al:y integrJ.:e':' 

succor.ce?ts can be Jer:oted by a system-defined single sy:nbol or predicate. 

Exampies of such systems include CONFtJCI'CS [Cohen -B], !v1ARVI:S 

[Sa:nm u t861. PLA:SD [\\'hi te!1allB i], and SUBDL"E [Hol.:ie:-B8]. These syste:::s 

store induc:ively derh'ed concepts in a knowledge base. The system searches 

this knowledge base for prototype concepts when working on other problems. 

The concepts the system constructs in subseque!lt learning are related to the 

experiences it has had. Knowledge that augments the concept language is 

usually domain-specific but the domain characteristics are not encoded as 

preconditions for applying the knowledge (some other agent must ensure that 

the knowledge base is used only when relevant to a new problem). 

Many similarity-difference based learning systems use fixed concept 

languages, fixed biaSes, and fixed background knowledge. Those that search 

for 	improved concept language and/or bias during learning normally do not 

add 	their improvements to a permanent knowledge store; the next run begins 

with the same initial language and/or bias, Examples of these systems 

include LEX [Mitche1183. UtgoffB2]. MIS [Shapir081 J, STAGGER 

[Schlimmer8i]. I~DUCE [Hoff83J. and CLUSTER [Stepp86]. Many of these 

systems could be promoted to L-ML systems partly through the addition of a, 

knowledge base manager to add bias knowledge to a permanent knowledge 

store . 

• 	Chunking and transforming solutions to become more operational. 

Machine learning theory includes the distinction be~ween learning at the 

knowledge level versus learning at the symbol le\'el [Die~terich86J. There has 

been some debate about how to characterize the learning embodied in 

ope:-ationality transformations that change \\-'hich and how many hypotheses a 

syste:n can consider. In any event, such transformations do profoufldly 

c~ange the rer:ormance of the system on subsequent pr0ble:n solving and 



I·.-. .....o~·aj,,. .... · "or a-.,. _-...\'L s'-,'e"""... _'" .....i .. ,:- ,... .. , 

Operational knowtecge ca:1 be applied to a probler:1 usir.g less searc~. :b:=:-e':y 

impro\'ir.g the syste:-::'s Ferfofr:1anCe against a fixed COr.l::JUta::or. ::-.res:-;o:d. 

EBL systerr.s (e.g .. GE~ESIS [~!oor.ey88J. BAGGER [ShavlikS8). PRODIGY 

(Minton8 i ], and others) are noted for their focus on impro\'ing operationality. 

From the standpoict of L-~IL systems, it is important to reaiize that the 

learning performance (as well as the problem solving perfonnance) of EBL 

systems also impro\'es when the generalized. and operationalized schemas it 

produces are retained. and available for subsequent learning. 

Few similarity-difference based learning (SDBL) systems have the above 

characteristics, but there is nothing inherent in SDBL that prevents changing 

this. SDBL discovery systems (as opposed. to discriminant concept 

generalization systems) are more lik.ely to demonstrate operationality 

improvement because they profit from remindings of solutions to similar 

problems . 

• Optimizing the learning algorithm by becoming more controlled. 

Learning algorithms are directed by internal (programmed) or external (user 

specified or knowledge based derived) control k.nowledge. Control k.nowledge 

includes heuristics. biases, feature selection rules. feature transformations3 , 

agenda manageme:1! schemes, search control strategies, and hypothesis 

evaluation functions. Csually there is no obvious or direct relationship 

between control kr:ow:edge and the detailed composition of lear:1ed domain

specific concepts. This has ofte:1 made the specification of control knowledge a 

black art. 

Learning systems that can discover relationships between problem domains 



a:1d cont:-ol knowledge will ha\'e sob'ed one of the obs:ac:es :0 :he Fe:-';:.s;';e 

use of r:-:achir.e learning, To a degree, adjustable bias syste:ns e:o..r.i:':t :1::S 

type of L-ML behavior. Systems like STABB [l'tgotf86], a::;c \'E~IS 

[Rendell8";'] adapt the way they work by ,·aryir..g the::- biases. A:thoL:g:: ::-.ese 

systems contain the needed k:lOwledge sensitive control features, a: Fresent 

only VBMS reports its control k.nowledge findings and associates them with 

characteristics of the problem domain. thus making the bias settings 

potentially available for subsequent reuse on similar problems. The tYFical 

bias adjusting algorithm rediscovers the proper choice of bias from scratch, 

for each application. The similarities between adapting control knowledge 

and automatic programming may eventually lead to an advantageous 

combination of automatic programming with machine learning. 

One cornerstone of intelligence (and of L-~1L systems) is the ability to 

discover. Crucial k.nowledge for improving learning system performance is found 

in the patterns and unsuspected relationships discovered in the course of learning. 

These patterns could be identified using conceptual clustering (e.g., CLeSTER 

[Stepp86] or COBWEB [Fisher8 j]) or a generalization based memory approach 

(e.g.. lJNIMEM [Lebowitz86]) and used during learning. Important charac:er:stics 

to discover include patterns of empirical relationships in domain data, and 

patterns between domain data and the most effective general biases. 

Some incremental learning systems can accept previous concepts as work.ing 

hypotheses, and then improve them in light of new examples, using limited 

memory resources. The ability to use preyious hypotheses gives each cycle of 

incremental learning a large performance boost when compared with repeated 

batch learning. A L-ML system should be able to do more: it should also take 

advantage of operationalized pote:1tial solutions, an extended concept lar.guage. 

and be able to utilize previously acquired concepts to compose new hr?otheses. 

potentially combining several known concepts together. 



2•.-\~ .-\~.-\L YSIS OF SYSTE~IS \\ lTH SO~IE L-!\IL BEH.\ \ lOR 

" .. -- )" ....... 
..""'\ .... ~.\". -~ .. 
50:-::'.:' ;:otat<e 5\'ste:::s do. " For examnie L-\fL behavio:- (wi:h :)er[ormance d:ar::c:s •• :> 

a":'::;::;'',l:a::::g across ?robie::-ns from rote:t::a:1y diffe:-e::t c.cmai:ls) is evide::ced. by 

!.lany EEL systerr.s. S\..ich systems discover generalized schemas that are good 

shortcuts to proble:n solving. and also good shortcuts to lea:-ning. One or more 

learned generalized schemas may be com bined to explain a r.ew example. The EBL 

learner has learned by storing and indexing learned schemas. Chunking [LairdS 7] 

provides similar effects. 

Among data-driven similarity-difference based learning systems there are few 

that demonstrate L-ML behavior. This is because many such systems use fi..."{ed or 

user supplied biases rather than knowledge--directed biases. Some SDBL systems 

that do use knowledge based adjustable biases and/or knowledge driven 

transformations (such as constructive induction [Michalski83bJ) lack a way to 

store findings to help direct subsequent learning. 

In this section. six contemporary learning algorithms are discussed with 

respect to their capabilities as L-NtL systems. 

2.1. EBL as represented by GEN'"ESIS 

As discussed in [DeJong86]. an important aspect of building a schema in EBL 

systems is the ability to use the new schema in the futu:-e. By using previously 

learned sc:temas the system is able to solve problems that would be beyond the 

processing capabilities of the system without those schemas. Another advantage is 

tha~ they provide a mechanism for generalizing the structure of the example. The 

GE~ESIS system [~10oney88] (as a prototypical EBL syste:n) improves its lear:1ing 

pe;formance by using schemas it may have discovered previously.. 

GE~ESIS learns a schema to describe events in natural language stories. 

Cor-sider GE:SESIS as it learns a schema for kidnapping gh-en a story in which 

sO:TIeone is held hostage by being threate::ed with a gun. The system possesses 

k!":ow;edge about barga£n, caprure. threalel1. etc. in sche:-::as :r.e system has built 



build a pfouf ::ee tha: explair.s the ;:;'idr.apping e\'er.t. 

In this process some of the pre\'ious!y deIinec. sche::-.as a;-e i:-.cJ;;c:-:::,~c:' ::-:',0 

the new explanation. Ha\'ing to r~ge:ierate all sd:emas mig=-:: wel: c2....:se C:::\cS:S 

to exceed i~s space-time limits, and thus do an inferior job of :ea:-ni:1g. A:sv. Llsi:1g 

previously defined schemas allows the system to inc'ease the generality of :he r.ew 

schema. In the story, suppose John points a gun at Mary to force her into tis car. 

The system recognizes this as an act of capture and uses the previously c.efined 

schema. If the capture schema were not in the system, then the new schema for 

kidnapping would only allow for a single method of abducting someone-with a 

gun. By using the previously learned generalized capture schema, the many ways 

a person may capture someone can ·be used to explain a new instance of 

k.idnapping. 

ShavEk. [Shavlik.88] has shown that EBL systems improve their performance 

by reusing learned schemas. His results indicate that the advantages of builc.ing 

new schemas from operationalized, previously acquired explanations ou!\\.:eigh the 

burden of searching a larger knowledge base. The results also indicate that the 

most general schemas built by his BAGGER system are the ones that can mcs~ 

decrease the learning time required. This is because fewer rules need to be fOll:nd 

to cover all the cases. 

2.2. Soar 

Soar [Laird87] learns by chunking. The system stores its solutions to a search 

problem in long term memory, in the form of production rules. The chunking 

mechanism adds new rules to prcx:l.uction memory after soh'ing a pre\'iously 

unobserved problem successrull:·. This solution is generalized (in a \I.-ay similar 

to EBL systems, but not as extensively) and may be called t:pon during tr.e r:ext 

cycle. 

Soar uses its learned chunks to ouild new <.:hunks. It performs ...·i:f:i.'1-!r:aZ 

http:Shavlik.88
http:sche::-.as


/I 

u::ir.1ate scl~:i0:1. as 50a: continues to work 0:1 the sarr.e prcl:km. Chur.i.:;"';1 i, a .n ..... _!) 	 "'_ 

form of ka::-:i:1g cy 0Fe:-ationalization. like that done in EBL. The sys:e~ FfOfi:s 

f;oor:! pre'·:ious experiences by building new chunks from the solution four.c by i~s 

l:-:ternal problem solver that uses previously acquired chur.ks to solve prob:e::1s. 

2.3. 	""'EMS 

The variable-bias management system (VBMS) (Rende1l8i] impr~ves its 

learning performance by learning the proper bias to use for classes of problems. 

This approach to improving learning is significantly different from the methods 

mentioned above. EBL and Soar directly use the knowledge they have gained in 

creating new knowledge. They learn domain knowledge whereas VBMS learns 

meta-knowledge for modifying inductive bias. In VBMS, a region belief table 

"(RBT) is used to indicat~ which bias point in the bias space is appropriate for the 

given problem. VBMS can improve its capabilities as it handles more problems by 

refining the RBT to make sharper distinctions between problems. The information 

in the RBT is not directly used in the solution of the problem. but rather controls 

the learning system's biases. 

VBMS works by splitting the problem space into regions using the PLSI 

algorithm. Problems are characterized by features and values that define global 

attributes of the class of problems being handled. The problem space is the set of 

all such problem points for the predefined features and their values. The problem 

belief table (PBT) contains all the biases explored for a specific problem and a 

measure of credibility for each bias. The system partitions the problem space into 

regions of points with similar PBT's. E\gery problem given to the system defines a 

point in the proble::n space and this point is contained within some PBT. Each PBT 

is defined within an RBT that indicates the type of biases that should be used for 

the problem. As the system sees more proble:r.s. the PBTs and RBTs are refined to 

improye the selection of bias for new problems which in turn allows the system to 

gi ve bette:-. faster resul ts. 



2.4. 	 LAIR 

T;,e L.l..rR s...·ste::1 ; -:.:a:anabeS -~ incre::-:entall y lea:-r.s c0n :ur:c::ve conceo: ... .. 	 ... 
c.escri;J:ions from exa:nples by a;:plying a c.omai:1 t:-:eory for perfor:ni:1g 

construc::ye incuctior. L~hd:alski83a~. LAIR uses a hill c::~ bing apF:-oac:; wi:h 

limited i.r.compiete mer:1ory that forces the system to forge: all but the last seen 

posith'e example and the current work.ing concept hYPJthes~s. 

LAIR's knowlecge base consists of examples, concept descriptions. concept 

description constraints, and learnable domain knowledge. The knowledge base is 

built of frames and production rules_ Rule frames in the knowledge base express 

first order implicative rules with literal consequents. On the other hand, concept 

descriptions determined ?y LAIR are lam bda conjunctive formulas that are refined 

by the system as it learns to recognize correctly the class of positive examples. 

By transforming a learned concept for a class into an implicative statement 

where the antecedent is the learned concept definition and the consequence is a 

predicate symbol identifying the class, the system can feed learned concepts into 

its rule base. For example if C is the learned concept description for the class 

·can-stack-on", then the rule C(x) => can-stack.-on(x) could be captured in the 

rule base and used in subsequent learning. This potential capability of LAIR is 

mentioned by its author but is not illustrated with an example. 

2.5. 	PLA~"D 

The PLANO system (v-"hiteha118:] discovers planning macro-operators 

(macrops) by observing sequences of executed actions. PLA~O incorporates many 

of the abilities required of an L-~IL system. The system uses pre\"iously learned 

struct'..lres to help discover new, more complex macro-operators. PLAl':D uses 

domain-spec:nc background k.nowledge to guide the search for new macrops. And. 

the sys~em is able tv compose hypotheses based on releyant background knowledge 

by allowing separate comex!.s (or perspecth'es) to be considered at the same time. 



"J 

A trace of obse:Ted actions descibir:g t!1e perfor:r.a:-:ce 0:' a :ask :s ::1:;"':': :0 

the PLA:"iD system. Fror:l this trace, the SDBL system disco\"ers r.:aC:-C-0!=e:-a:ors 

that consist of sequences, loops, and conditionals. If no bac~5:-0L.:r.':' i-;.:1v·<e~ge is 

applicable to the given trace, the systen finds a regular gra:-:::-:-.ar tr:a: ':'esc:ces :::e 

input. where the actions are treated as symbols of the language alphabet. \\"i:h or 

without initial background knowledge of applicable macrops. PLA~D is able to 

use newly discovered macrops in the course of further macrop generation. Such 

within-trial learning allows the system to build a hierarchical representation of 

the action trace and to discover macrops that would not be possible otherwise. As 

an example. let a trace of observed actions be denoted by the string 

ABBBBDABBBBBDACCDACCCCDABBBD. From this trace PLAND 

immediately discovers the loop constructs for 8* and C*. These are then used to 

define the macrop for the whole input (.-\ (8* + C*) D?, which would not be 

discoverable without the learned macrop components. Thus the performance of 

the system is improved by its own learning capabilities. 

PLAND performs all the discovery processing within the confines of a context. 

A context isa data structure that contains the agendas for the context, the level of 

generalizatio~ used. and pre\"iously discovered macro-operators. An agendll 

defines a search operation for a specified type of macrop (loop or conditional) and 

specifies where within the input sequence the search should occur. Before any 

agenda is executed, background knowledge is used to check the applicability of the 

agenda. An agenda may be rejected if it operates on portions of the input sequence 

that the system has reason to believe are devoid of macrops or, for example. if it is 

looking for conditionals. and the system infers that conditionals are not 

appropriate within the observed task. This use of knowledge eliminates wasted 

sea:-ch eifort. 

Kno\!.:ledge is also used to select the context. When a context is selec:ec.. 

generalizations guided by back.ground knowledge can be used to deter:nine the 

attributes of actions that are considered rele\"ant for action comparisons. For 

exanple. if actions X and r each have some prope:-ty .-\. then XX'.\'} 11YXX.'( 
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:r:e :-:-:ac:-op Z" w:--;e:-e Z c!e~otes ac:~or:s w~:r. t:-.e A ?:-op::-:y. 8:; 

;;:-oc.~c::-.g (,:.:::exts w::h c!ife:-e:1t levels of geileraliza:ion, i.te systen is al:)~e ~o 

wo:-~ wi::; proposed hypotheses. The generalizations oi t~e CO:1:ex: c!e::-.e ~r.e 

:e';e: 0:' 2i:s::-act!on. Switc:-:able contexts allow the syste~ :0 work Oil r:lo:-e ~:-:.a:: 

o~e s:...bpro1::e::1 until a predominant solution emerges. 

2.6. SUBDUE 

SC'BDUE is an L-NIL system for discovering conceptual substructure in 

examples [Holder88). The examples given to SUBDUE can be descriptions from a 

certain domain, descriptions of a knowledge base, descriptions of a goal structure, 

or any other group of structured knowledge representable in first-order calculus. 

'~nth such input, SUBDUE can discover patterns, or substructure, in the 

k.nowledge and retain the substructures for use in subsequent learning tasks. The 

substructures discovered in the knowledge can be used to compress the knowledge 

base, form new features for constructive induction and concept language 

augmentation. and suggest rules for applying the knowledge to similar domains. 

The SUBDUE system consists of a substructure discovery module, a 

substructure specialization module, and a substructure background k.nowledge 

module. The discovery module disc~vers substructures in the give:1 input 

examples using a computationally constrained best-first search guided by four 

heuristics: cognitive. savings, compactness, connectivity and coverage. These 

heuristics are moti"ated from results in gestalt psychology, data compression. and 

numerical and conceptual clustering. The specialization module specializes the 

best suostructure foune! during the discovery process by adding additional 

structure to the substructure. The additional structure represents information 

about the context in which the substructure is applicable. Both the discovered and 

specialized. substructures are stored in the background knowledge module. Within 

the background knowledge. suost:-uctures are stored hierarChically by defining the 

substructures in terms of ?rc\':ouslr defined. more primitl\"e structures. Dur:r.g 

s~':Jse'.:'.le~: disco\;ery tasks. the backgrounc k::o\\'le~ge :T:OCU:e suggesT.s 
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s;Jbs:ruC:L.:-es [ror.! whic!1 to 'cegin the c.is.;:overy prvcess. 

As an example of SCBDCE. consider the inp:.1: exa:,'q:-te shoW:1 1:-'. F:;..;:-~ 1a. 

Afte:- considering 29 alternative substructures. t~e bes: SJ":Js::-JC:'J,::-e c:s(~~\·e:-eC. 

by S1JBDL:E is that sho'''-n in Figure 1b. Figure 1c S~O\\"s t!:e SL:.8s:r'jCl.re af:er 

specialization. Both substructures are stored in the background knowledge. ~ow 

that SUBDUE has learned these new substructure concepts, they can be usee. to 

reduce the complexity of fUlure examples containing the same substructures ar:d 

improve SCBDUE's ability to discover more complex substructures. In acdition, 

the newly discovered substructures augment the concept language with new, 

constructive features. The simplified example descriptions and constructl\'e 

features can improve the speed and quality of results of other learning systems. 

One of the machine learning areas providing great challenge is the area of 

learning concepts involving structured examples, especially the task of discovering 

structural concepts. The PLA~D and SUBDUE systems show that some concepts 

cannot be learned until the system has learned simpler concepts from previous 

exercises. In this way SUBDUE and PLAND augment their own concept language 

and provide this augmented language to subsequent learning processes. 

3. CONCI.. USION 

Knowled.ge-directed machine learning algorithms proyide the advantages of 

SDBL and EBL approaches. Further power stemming from the application of 

H H 
H H I I 
I , ~c-c~ 

~c-c~ -c C-H 
c: -c C-H .... / 

.... / C=C 
H c=c H (b) DiscQ\"e:ec! Su'.:tsauctureI / .... I 

hC-C~ hC-C~ H HH-C~ ~c-cV ~C-H I I 
'\. / .... / ~C-C~

C=C c=c 
I I I I (Br v C: \" ll- C C- H 
H I Bf H 'C=C/ 

(el Spec:~!:Zed Su'.:ts;:·Jc~u:e 

Figure 1. SUBDUE Example 
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;nac:'ine learning techr.iq ues to the machi:1e learning algorith:r.s themsel yes cou:d. 

gi ve learning macbne learning systems important ad ,'antages over more limited 

cur ..ent approaches. 

It is instructive to note that current systems that have L-ML be'havior fall 

mainly into two categories: El3L systems and SnBL discovery systems. In both 

kinds of systems, concepts are built by taking account of observations of the input 

phenomena. SnBL discovery systems create concepts from observed examples, 

augmenting the concept language in a way that is useful for interpreting new 

observations on subsequent learning. EBL systems use the observed training 

example(s) to improve the operationality of both themselves and a performance 

system. The VB~1S approach is unique in its ability to optimize biases and 

heuristics based on discovered control knowledge. These system types ~xploit 

unequally different ones of the three main L-ML metamorphoses described in Sec. 

1. Incorporating the metamorphoses in one system would create a powerful L-ML 

tool. 

The chart in Figure 2 summarizes the major characteristics of the six learning 

systems that were presented. The table shows that a mechanism that chunks to 

improve operationality is provided (in some form) by all six algorithms. Also. 

! L-:vrL Prototype Systems 

feature SOAREDL VB~IS I LUR I PLAND I SUBDt."E I 
~ B.K. transforms npr~ntation 
I 

no I yeos yes ytsno no I I 
yeos!goal hierarchy in B.le.. no no yts noY" I I I 

; 
I 

B.K. helps compo~ hypotheses Y" yeos no I yeos I yes I ytsI 

I 
.. • I I!discovers patterns no no yeos no I yes yes 

yes yeos y~s yes ytsI: updates B.K. I Y" I I I 
yeos I no I no I no 

: augments concept languag~ 

I 
yes 

! recognizes similar learning situations I no no 

no 

I 
yes yes ytsI!to be more exprnsive I 

Y" 
I I I 

yes yH yH I• yes yts~ chunks and transforms to 

I 
Y" 

I 
! be more operational I ! I I 

yH no no no: optimizn biases and heuristics no no 
' to be mote controlled i I I I 

Figure 2. L-ML Characteristics of Six Learning Systems. 
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eac;-: of :hese s::s:e:::s :;2.S SO:T.e mec!1ar:ism for utxiating a pe:-xanen: ~:1ow:edge 

base of doma::1 a:1c. cont;-ol cor.ce::Hs. The select:on of representative lear:;ing 

syste:-:-:s for discussion he;-e was based on evidence of a numbe:- of L-\1L 

capabilities and to consider a wide range of approaches. Wit~ L..l:-:::er 

deveiopment of such sys:ems. there mar soon be a time when systems possess a] 

L-~fL characteristics (and the focus will be on additional facets of intelligent 

learning behavior). 
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