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ABSTRACT

Machine learning is recognized as a tool for improving the performance of many kinds of -
systems. vet most machine learning systems themselves are not well equipped to improve their
own learning performance. By emphasizing the role of domain knowledge, learning systems can be
crafted as knowledge-directed systems. and with the addition of a knowledge store for organizing
and maintaining knowledge to assist learning, a learning machine learning (L-ML) algoritkm is
possible. The necessary components of L-ML systems are preseated along with several case
descriptions of existing machine learning systems that possess limited L-ML capabiliues.
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1. INTRODUCTION

Machine learning purports to be an important two. for increasin: th
rerformence cf knowledge-intensive protlem soiving tasis. The ability to lsarn
has teen identifed as a primary ingredient in any intelligent sysiem: there iseven
hope that machine learning systems can conquer the Knowledge-acquisition
bottieneck and uitimately provide knowledge that can surprise their human
creators {MichalskiS6]. It seems ironic that reiatively littie attention has been
given to machine learning itself as a knowledge-intensive problem soi»'ing task—a
task whose performance we would like to see improve with experience and with
the availability of more problem dependent and problem independent knowledge.
Learning itself should be conducted in an intelligent way, especially because

learning is hard.

By its nature, it is unlikely that any single conceptualization of a learning
algorithm will be satisfactory for even a modest range of learning situations. An
intelligent adaptive learning algorithm is surely necessary. The focus of this
paper is on machine learning algorithms that can learn, i.e., that can change their

own performance as they gain experience.

Today’s typical machine learning aigorithm does not improve its own
performance over time, but remains static. When faced with another learning
problem, even one identical to a problemn seen before, the same computations are
performed again, taking no advantage of biases or consiructions or generalizing
transformations that have already been shown to be effective for that class of
circumstances. The same problem solution space is explored again, as if it were
fresh and previousiy unexplored. Clearly a human demonstrating such behavior

would not be called intelligent.

There are several key ingredients required 0 make a Learning Machine

Learning (L-ML) System. Principally, an L-ML sysiem must both be directed by
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ard be an updater of Tecxground Knowledge. Sgecilcaily, en L-ML custem neads
e  the abuiily 0 use background knowledge to transiorm representaticn sgiies .

e the ability to direct learning under the infuence of 2 speciZec zoai .o “heconiew o7 2
goal hierarchy?,

e  the ability o compose generalizations and simplications from one or more concepts
in background knowledge. efficiently reusing acquired generzlizing and stiructuring
concepts,

e the ability to discover patterns in examples. background knowledge, bizses, and goals
that are effective for learning,

® the ability to update a background knowledge store with discovered general,
domain-specific, and problem-specific characteristics paired with the control
Kknowledge that was used to accomplish effective learning in the current situation,

e the ability 1o recognize a class of learning problems, and to index the background
knowledge for access to class knowledge.

The ﬁrst three of the above six capabilities of an L-ML system relate to the
use of knowledge to direct learning. Learning algorithms that have this
characteristic are called knowledge directed (KD). KD algorithms reed not be
knowledge dependent, in the sense that pure explanation based learning (EBL)

algorithms depend on having a complete domain theory.

The last three L-ML capabilities provide an observational <discovery
component for noting strong patterns in domain heuristics and conceptual
regularities that come into play during learning. This type of introspective
behavior has been termed self-watching. An L-ML system is thus a seif-watching
KD learning system that maintains working knowledge across multiple learning

sessions by updating its background knowledge base.

Learning in L-ML systems can involve at least three different types of system

metamorphosis in response to experience gained accomplishing prior learning tasks.

e Augmenting the concept language to be more expressive.

Some machine learning systems have extensible concept representation

. Thaus tmansiormalion is of ten Calied ¢o=siuciive induciion [Micnalskiso).
. Learzing o directed by managing Mases that are denved from meld-know edge and 20al structures “ounc i the dack-

1
-
g7cund anouledge, suen 23 2 Coal Depencency Network Sienzssl.



languages, .anguages in which frequently used or functorally integrated
subconcepts can te deroted by a system-defined single symbol or predicate.
Exampies of such svstems include CONFUCIUS [Cohen™8), MARVIN
(Sammut86], PLAND {Whitehall87], and SUBDUE [Holder88]. These systems
store inductively derived concepts in a knowledge base. The system searches
this knowledge base for prototype concepts when working on other problems.
The concepts the system constructs in subsequent learning are related to the
experiences it has had. Knowledge that augments the concept language is
usually domain-specific but the domain characteristics are not encoded as
preconditions for applying the knowledge (some other agent must ensure that

the knowledge base is used only when relevant to a new problem).

Many similarity-difference based learning systems use fixed concept
languages, fixed biases, and fixed background knowledge. Those that search
for improved concept language and/or bias during learning normally do not
add their improvements to a permanent knowledge store; the next run begins
with the same initial language and/or bias. Examples of these systems
include LEX [Mitchell83, Utgof82], MIS [Shapiro81], STAGGER
[Schlimmer87), INDUCE [Hoff83], and CLUSTER (Stepp86]. AI'VIany of these
systems could be promoted to L-ML systems partly through the addition of a.
knowledge base manager to add bias knowiedge to a permanent Knowledge

store.

¢ Chunking and transforming solutions to become more operational.
Machine learning theory includes the distinction between learning at the
knowledge level versus learning at the symbol level [Dietterich86]). There has
been some debate about how to characterize the learning embodied in
operationality transformations that change which and how many hypotheses a
system can consider. In any event, such transformations do profoundly
change the performance of the system on subsequent problem solving and

. - K|

fearning tasis, Thev recresent a second kind of metamorchosis that is



importan: Jor an L-NL swstem.

Operational knowlecdge can be appiied 10 a problem using less search, thereby
improving the system’s performance against a fixed computation :hreshold.
EBL systems (e.g.. GENESIS [Mooney88), BAGGER [Skavlik388]. PRODIGY
[Minton87), and others) are noted for their focus on improving operationality.
From the standpoint of L-ML systems, it is important to reaiize that the
learning performance (as well as the problem solving performance) of EBL
systems also improves when the generalized and operationalized schemas it

produces are retained and available for subsequent learning.

Few similarity-difference based learning (SDBL) systems have the above
characteristics, but there is nothing inherent in SDBL that prevents changing
this. SDBL discovery systems (as opposed to discriminant concept
generalization sysiems) are more likely to demonstrate operationality
improvement because they profit from remindings of solutions to similar

probiems.

@ Optimizing the learning algorithm by becoming more controlled.

Learning algorithms are directed by internal (programmed) or external (user
specified or knowledge based derived) control knowledge. Control knowledge
includes heuristics, biases, feature selection rules, feature transformations?,
agenda management schemes, search control strategies, and hypothesis
evaiuation functions. Usually there is no obvious or direct relationship
between contirol Knowledge and the detailed composition of learned domain-
specific concepts. This has often made the specification of control knowledge a

black art.

Learning systems that can discover relationships between problem domains

3

E.g.. when 1€ periarm constricive (nCuct.or and Now 10 seiect e ANIIOTmadn rules,



and cortrol knowledge will have solved one of the obstacies 10 the pervasive
use of machire learning. To a degree, adjustatle bias systems exhizit this

tvpe of L-ML behavior. Systems like STABB [Utgof86), and VEMS

systems contain the needed knowledge sensitive control features, a: present
only VBMS reports its control knowledge findings and associates them with
characteristics of the problem domain, thus making the bias settings
potentially available for subsequent reuse on similar problems. The typical
bias adjusting algorithm rediscovers the proper choice of bias from scratch,
for each application. The similarities between adapting control Knowledge
and automatic programming may eventually lead to an advantageous

combination of automatic programming with machine learning.

One cornerstone of intelligence (and of L-ML systems) is the ability to
discover. Crucial knowledge for improving learning system performance is found
in the patterns and unsuspected relationships discovered in the course of learning.
These patterns could be identified using conceptual clustering (e.g.,, CLUSTER
[Stepp86] or COBWEB [Fisher87]) or a generalization based memory approach
(e.g., UNIMEM [Lebowitz86]) and used during learning. Important characteristics
to discover include patterns of empirical relationships in domain data, and

patterns between domain data and the most effective general biases.

Some incremental learning systems can accept previous concepts as working
hypotheses, and then improve them in light of new examples, using limited
memory resources. The ability to use previous hypotheses gives each cycie of
incremental learning a large performance boost when compared with repeated
batch learning. A L-ML system should be able to do more: it should also take
advantage of operationalized potential solutions, an extended concept language,
and be able to utilize previously acquired concepts to compose new hypotheses,

potentialiy combining several Known concepts together.



2. AN ANALYSIS OF SYSTEMS WITH SOME L-ML BEHAVIOR

Although most learning systems do not have a self imrproving comporent,
some notebie systems do. For exampie L-ML behavior (with performance changes
accumulating across protiems from potentaly different demains) is evidenced by
many EBL swvstems. Such systems discover generalized schemas that are good
shortcuts to probiem solving, and also good shortcuts io learning. One or more
iearned generalized schemas may be combined to explain a new example. The EBL

learner has learned bty storing and indexing learned schemas. Chunking [Laird87]

provides similar effects.

Among data-driven similarity-difference based learning systems there are few
that demonstrate L-ML behavior. This is because many such systems use fixed or
user supplied biases rather than knowledge-directed biases. Some SDBL systems
that do use knowledge based adjustable biases and/or Knowledge driven
transformations (such as constructive induction [Michalski83b]) lack a way to

store findings to help direct subsequent learning.

In this section, six contemporary learning algorithms are discussed with

respect to their capabilities as L-ML sysiems.

2.1. EBL as represented by GENESIS

As discussed in [DeJong86), an important aspect of building a schema in EBL
systems is the ability to use the new schema in the future. By using previously
learned schemas the system is able to solve problems that would be beyond the
processing capabilities of the system without those schemas. Another advantage is
that they provide a mechanism for generalizing the structure of the example. The
 GENESIS system [Mooney88] (as a prototypical EBL system) improves its learning
performance by using schemas it may have discovered previously.

GENESIS learns a schema to describe events in natural language stories.
Corsider GENESIS as it learns a schema for kidnapping given a story in which
someone is held hostage by being threatened with a gun. The system possesses

xnowiedge about bargain, caprure, threaten, etc. in schemas the system has built



‘rom previous exampies. Using its decductive mechanisms 02 sysiem 15 &72 0
build a proo! iree tha: explains the xidrapping event.
In this process some of the previously defined schemas are incorzerzted nwo

the new expianation. Having to regenerate all schemas might well cause CZNES]
10 exceed iis space time limits, and thus do an inferior job of iearning. Also. using
previously defined schemas allows the system to increase the generality of the rew
schema. In the story, suppose John points a gun at Mary to force her into iis car.
The system recognizes this as an act of captwre and uses the previously defined
schema. If the capture schema were not in the system, then the new schema for
kidnapping would only allow for a single method of abducting someone—with a
gun. By using the previously learned generalized capture schema, the many ways
a person may capture someone can -be used to explain a new instance of
kidnapping.

Shavlik [Shav1ik88] has shown that EBL systems improve their performance
by reusing learned schemas. His results indicate that the advantages of building
new schemas from operationalized, previously acquired explanations outweigh the
burden of searching a larger knowledge base. The results also indicate that the
most general schemas built by his BAGGER system are the ones that can most
decrease the learning time required. This is because fewer rules need to be found

to cover all the cases.

2.2. Soar

Soar [Laird87] learns by chunking. The system stores its solutions to a search
problem in long term memory, in the form of production rules. The chunking
mechanism adds new rules to production memory after solving a previousiy
unobserved problem successfully. This solution is generalized (in a way similar
to EBL systems, but not as extensively) and may be called upon during the next
cycle.

Soar uses its learned chunks to build new chunks. It performs wichin-rriai

Transfert 2 chunk found easiv in oronlem seivire mav Te used as zart o7 the
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Lltimate sclution, as Svar continues to work on the same pretlem. Chunking is a
form of learning ty orerationalization, like that done in EBL. The sysiem profi's
from previous experiences by building new chunks from the solution fourd by its

internal probiem soiver that uses previously acquired churks to solve protiems.

2.3. VBMS

The variabie-bias management system (VBMS) [Rendell87] improves its
learning performance by learning the proper bias to use for classes of problems.
This approach to improving learning is significantly different from the methods
mentioned above. EBL and Soar directly use the knowledge ‘they‘ have gained in
creating new knowledge. They learn domain knowledge whereas VBMS learns

meta-knowledge for modifying inductive bias. In VBMS, a region belief table

'(RBT) is used to indicate which bias point in the bias space is appropriate for the

given problem. VBMS can improve its capabilities as it handles more problems by
refining the RBT to make sharper distinctions between problems. The information
in the RBT is not directly used in the solution of the problem, but rather controls

the learning syvstem'’s biases.

VBMS works by splitting the problem space into regions using the PLSI
algorithm. Problems are characterized by features and values that define global
attributes of the class of problems being handled. The problem space is the set of
all such problem points for the predefined features and their values. The problem
belief table (PBT) contains all the biases explored for a specific problem and a
measure of credibility for each bias. The system partitions the problem space into
regions of points with similar PBT's. Every problem given to the system defnes a
point in the problem space and this point is contained within some PBT. Each PBT
is defined within an RBT that indicates the type of biases that should be used for
the problem. As the system sees more problems, the PBTs and RBTs are refined 10
improve the selection of bias for new problems which in turn allows the system 10

give better. faster results.



2.4, LAIR

The LAIR system ["Vatanabe§8~) incrementally learns coniunciive concept
descriptions from examples by applying a domain theory for performing
constructive induction {Michalski83al. LAIR uses a hili climbing approach with
limited incompiete memory that forces the system to forge: ail but the las: seen

positive example and the current working concept hypothesis.

LAIR’s knowledge base consists of examples, concept descriptions, concept
description constraints, and learnable domain knowledge. The knowledge base is
built of frames and production rules. Rule frames in the knowledge base express
first order implicative rules with literal consequents. On the other hand, concept
descriptions determined by LAIR are lambda conjunctive formulas that are refined

by the system as it learns to recognize correctly the class of positive examples.

By transforming a learned concept for a class into an implicative statement
where the antecedent is the learned concept definition and the consequence is a
predicate symbol identifying the class, the system can feed learned concepts into
its rule base. For example if C is the learned concept description for the class
“can-stack-on", then the rule C(x) => can-stack-on(x) could be captured in the
rule tase and used in subsequent learning. This potential capability of LAIR is

mentioned by its author but is not illustrated with an exampgle.

2.5. PLAND

The PLAND system [Whitehall87] discovers planning macro-operator
(macrops) by observing sequences of executed actions. PLAND incorporates many
of the abilities required of an L-ML system. The systemn uses previously learned
structures to help discover new, more complex macro-operators. PLAND uses
domain-specific background knowiedge to guide the search for new macrops. And,
the system is able to compose hypotheses based on relevant background knowledge

by allowing separate contexts (or perspectives) to be considered at the same time.



A trace of obtserved actions describing the performance ol a tasx is Helelande
the PLAND system. From this trace, the SDBL system discovers macre-operators
that consist of sequences, loops, and conditionals. If no background Xnowledze is
applicable to the given trace, the system finds a regular grammar that descrites the
input, where the actions are trealed as symbols of the language aiphabet. With or
without initial background knowledge of applicable macrops, PLAND is able to
use newly discovered macrops in the course of further macrop generation. Such
within-trial learning allows the system to build a hierarchical representation of
the action trace and to discover macrops that would not be possible otherwise. As
an example, let a trace of observed actions be denoted by the string
ABBBBDABBBBBDACCDACCCCDABBAD. From  this trace  PLAND
immediately discovers the loop constructs for B* and C*. These are then used to
define the macrop for the whole input (4 (B* + C*) D, which would not be
discoverable without the learned macrop components. Thus the performance of
the system is improved by its own learning capabilities.

PLAND performs all the discovery processing within the confines of a contexz.
A context is a data structure that contains the agendas for the context, the level of
generalization used, and previously discovered macro-operators. An agendu
defines a search operation for a specified type of macrop (loop or conditional) and
specifies where within the input sequence the search should occur. Before any
agenda is executed, background knowledge is used 1o check the applicability of the
agenda. An agenda may be rejected if it operates on portions of the input sequence
that the system has reason to believe are devoid of macrops or, for example, if it is
iooking for conditionals, and the system infers that conditionals are not
appropriate within the observed task. This use of knowledge eliminates wasted

search effort.

Knowledge is also used to select the context. When a context is seiectec,
generalizations guided by background knowledge can be used to determine the
attributes of actions that are considered relevant for action comparisons. For

example, if actions X and } each have some property 4. then XXXIIITXAY
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could prodace the macrop Z* where Z denotes actions with the A properiv. By
croducing contexts with diferent levels of generalization, the sysiem is abie 10
work with proposed hypotheses. The generalizations of the contex: celre ihe
level of arsiraction. Switchable contexts allow the system 10 work on more than

one subprotlem until a predominant solution emerges.

2.6. SUBDUE

SUBDUE is an L-ML system for discovering conceptual substructure in
examples [Holder88). The examples given to SUBDUE can be descriptions { rom a
certain domain, descriptions of a knowledge base, descriptions of a goal structure,
or any other group of structured knowledge representable in first-order calculus.
With such input, SUBDUE can discover patterns, or substructure, in the
knowledge and retain the substructures for use in subsequent learning tasks. The
substructures discovered in the knowledge can be used to compress the knowledge
base, form new features for constructive induction and concept language

augmentation, and suggest rules for applying the knowledge to similar domains.

The SUBDUE svstem consists of a substructure discovery module, 2
substructure specialization module, and a substructure backgréi.md knowledge
module. The discovery module discovers substructures in the given input
examples using a computationally constrained best-first search guided by four
heuristics: cognitive savings, compactness, connectivity and coverage. These
heuristics are motivated from results in gestalt psychology, data compression, and
numerical and conceptual clustering. The specialization module specializes the
best supstructure found during the discovery process by adding additional
structure to the substructure. The additional structure represents information
about the context in which the substructure is applicable. Both the discovered and
specialized substructures are stored in the background knowledge module. Within
the tackground knowledge, substructures are stored hierarchically by defining the
substructures in terms of previously defined, more primitive structures. During

subsecuent discovery tasks. the background Knowledze mocule sugges's
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subsiruciurss from which to tegin the discovery process.
As an example of SUBDUE, consider the inpu: examgle shown in Fizice la,
iter considering 29 alternative substructures, the best substructiure discovered
by SUBDUE is that shown in Figure lb. Figure lc shows the subsiruciure alzer
specialization. Both substructures are stored in the background knowledge. Now
that SUBDUE has learned these new substructure concepts. they can be used to
reduce the complexity of future examples containing the same substructures and
improve SUBDUE's ability to discover more complex substructures. In dcdition,
the newly discovered substructures augment the concept language with new,
constructive features. The simplified example descriptions and constructive

features can improve the speed and quality of results of other learning systems.

One of the machine learning areas providing great challenge is the area of
learning concepts involving structured examples, especially the task of discovering
structural concepts. The PLAND and SUBDUE systems show that some concepts
cannot be learned until the system has learned simpler concepts from previous
exercises. In this way SUBDUE and PLAND augment their own concept language

and provide this augmented language to subsequent learning processes.

3. CONCLUSION

Knowledge-directed machine learning algorithms provide the advantages of

SDBL and EBL approaches. Further power stemming from the apglication of

H H
'y il
1 1 -
e 7N
V4 A\ "C/ C—H
ci=¢ C-H Ne=e”
N 7 Cc=C
Ii! /C-—C\ 7 (b) Discovered Subsiructure
c—C C=C
H c"// \\C C/'? \\C H {? *'{
Yoz ez Y
i i (BrvCivD=C ,C-H
H ! Br H cZ¢e
(a) Izput Example (c) Specialized Subsiruciure

Figure 1. SUBDUE Example
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machine learning technicues to the machine learning algorithms themseives could
give learning machine learning systems important advantages over more limited

current approaches.

It is instructive to note that current systems that have L-ML behavior fall
meainly into two categories: EBL systems and SDBL discovery systems. In both
kinds of systems, concepts are built by taking account of observations of the input
phenomena. SDBL discovery systems create concepts from observed examples,
augmenting the concept language in a way that is useful for interpreting new
observations on subsequent learning. EBL systems use the observed training
example(s) to improve the operationality of both themselves and a performance
system. The VBMS approach is unique in its ability to optimize biases and
heuristics based on discovered control knowledge. These system types exploit
unequally different ones of the three main L-ML metamorphoses described in Sec.
1. Incorporating the metamorphoses in one system would create a powerful L-ML
tool.

The chart in Figure 2 summarizes the major characteristics of the six learning
systems that were presented. The table shows that a xhechanism that chunks to

improve operationality is provided (in some form) by all six algorithms. Also,

| L-ML Prototype Systems

j feature EBL | SOAR | VBMS | LAIR | PLAND | SUBDUE
%B.K. transforms representation no no no | ves l yes ] ves
| goal hierarchy in B.X. yes yes no no [ yes no
;' B.K. helps compose hypotheses ves yes no ves l yes ves
| discovers patterns no no ves | no | yes l ves
? updates B.K. ves yes ves f ves l yes l ves
§ recognizes similar learning situations no no yes | no | no no
! augments concept language yes yes no ves yes ves
' 10 be more expressive i
! chunks and transforms to ves yes ves ves | yes ves
! be more operational
. optimizes biases and heuristics no no yes ne no no
- 1o be more controlied

Figure 2. L-ML Characteristics of Six Learning Systems.
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each of these sysiems has some mechanism for updating a permanent xnow.edge
tase of domain and control concepts. The selection of representative learning
syvstems for discussion here was based on evidence of a number of L-ML
capebilities and to consider a wide range of approaches. With further
development of such sysiems, there may soon be a time when systems possess a’l
L-ML characteristics (and the focus will be on additional facets of intelligent

learning behavior).
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