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Abstract 

The overfit problem in inductive learning and the 
utility problem in speedup learning both describe 
a common behavior of machine learning methods: 
the eventual degradation of performance due to 
increasing amounts of learned knowledge. Plot- 
ting the performance of the changing knowledge 
during execution of a learning method (the per- 
formance response) reveals similar curves for sev- 
eral methods. The performance response gener- 
ally indicates an increase to a single peak fol- 
lowed by a more gradual decrease in performance. 
The similarity in performance responses suggests 
a model relating performance to the amount of 
learned knowledge. This paper provides empiri- 
cal evidence for the existence of a general model 
by plotting the performance responses of several 
learning programs. Formal models of the perfor- 
mance response are also discussed. These models 
can be used to control the amount of learning and 
avoid degradation of performance. 

Introduction 
As machine learning methods acquire increasing 
amounts of knowledge based on imperfect (e.g., sparse, 
noisy, low probability) instances, the amount of low- 
utility knowledge increases, and performance degrades. 
The general utility problem in machine learning refers 
to the degradation of performance due to increas- 
ing amounts of learned knowledge [Holder, 19901. 
This term derives from the utility problem used by 
Minton [1988] to describe this phenomenon in speedup 
learning, but generalizes to other machine learning 
paradigms. Other researchers have observed the 
ubiquity of the utility problem in machine learning 
paradigms and compare the utility problem in speedup 
learning to the problems of noise and overfit in induc- 
tive learning [Yoo and Fisher, 19911. This work sug- 
gests that individual methods for avoiding the general 
utility problem may derive from a general model of 
the relationship between learned knowledge and per- 
formance that applies to several learning paradigms. 

Amount of Learned Knowledge 

Figure 1: Performance 
era1 utility problem. 

response indicative of the gen- 

identifying this lrlodel would provide a general mech- 
allisrn for preventing performance degradation due to 
the general utility problem. The analysis in this paper 
reveals some irnportant properties of such a model. 

A useful tool for analyzing the general utility prob- 
lem in machine learning is the performance response: 
the performance of the learned knowledge measured 
during the course of learning (see Figure 1). The units 
along the horizontal axis represent a simple transfor- 
mation in the learner’s hypothesis. For example, the 
transforrnatiorl performed by a splitting method is a 
single split . Since a knowledge transformation may 
not always increase the amount of learned knowledge 
in terirls of the size of the knowledge, an increase along 
this axis represents a refinement of existing knowledge. 
The vertical axis of the performance response measures 
the perforinance of the learned knowledge after each 
transformation. The classification accuracy of induc- 
tive learners and the problem-solving time of speedup 
learners are the focus of this work. 

Figure 1 illustrates the typical performance response 
of a learning method that suffers from the general util- 
ity problem: an initial performance increase to a sin- 
gle peal; followed by a more gradual decrease. The 
next two sections reveal this common trend in the per- 
formance responses of inductive and speedup learn- 
ers. A model of this trend can be used to avoid the 
performance clegradation by controlling the amount of 
lenrued knowledge to coincide with the peak of the 
performance response. Holder [1991a] describes the 
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MBAC (Model-Based Adaptive Control) system that 
uses an empirical model of the performance response 
to control learning, MBAC adapts a parabolic model 
of the performance response peak by sampling the ac- 
tual performance response of the learner. Although 
the parabolic model forces MBAC to adhere to the 
trend in Figure 1, several samples are necessary to in- 
sure identification of the true peak. A separate model 
is maintained for each learning method/performance 
dimension pair. MBAC uses the models to select an 
appropriate learning method according to the model’s 
predicted peak performance. MBAC then invokes the 
learner, performing the number of knowledge transfor- 
mations necessary to reach the peak of the performance 
response model. Experimentation with MBAC shows 
that the parabolic model is capable of choosing an ap- 
propriate learning method and controlling that method 
[Holder, 1991a]. However, a more formal model of 
the performance response is necessary to improve the 
MBAC approach. The section following the empirical 
results discusses some preliminary formal models. 

Inductive Learning 
The general utility problem in inductive learning re- 
lates to the overfit problem. Overfit occurs when the 
learning method identifies errant patterns in the train- 
ing data. Errant patterns may arise due to noise in 
the training data or inadequate stopping criteria of the 
method. As demonstrated below, the overfit behavior 
of splitting, set-covering and neural network learning 
methods follow the general utility problem trend in 
Figure 1. 

Splitting Methods 
Splitting methods recursively split the set of training 
data by choosing an appropriate feature or feature- 
value pair. The knowledge produced by a splitting 
method can be represented as a decision tree. The 
learned knowledge changes every time the method 
makes a split; therefore, one choice for the x-axis of 
the performance response is the number of splits. The 
y-axis (performance) measures the classification accu- 
racy of the knowledge after each split, as measured 
using a separate set of test data. 

Figure 2 illustrates three performance responses ob- 
tained from the ID3 inductive learner [Quinlan, 198S] 
on the DNF2 domain [Pagallo and Haussler, 19901. 
Each performance response in Figure 2 represents a 
different decision tree node expansion order. Each per- 
formance response is an average over ten trials. Each 
trial consists of selecting random training and testing 
sets, generating the decision tree using the training set, 
and measuring accuracy after each split using the test- 
ing set. As Figure 2 reveals, the order of the knowledge 
transformations is important for perceiving the desired 
performance response trend in Figure 1. The effects of 
overfit increase as the decision tree becomes deeper; 
therefore, a breadth-first traversal of the tree defers 
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Figure 2: Performance responses of ID3 on the DNF2 
domain for three different orders of decision tree ex- 
pansion. 
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Figure 3: Performance response of ID3 on the Flag 
domain. 

overfit to later splits. A general-to-specific ordering 
along the amount of learned knowledge axis is necesi 
sary for perceiving the performance response trend in 
most learning methods suffering from the general util- 
ity problem. Figure 3 shows the performance response 
of ID3 on the Flag1 domain using the breadth-first 
splitting order. Both figures illustrate a performance 
response that follows the trend of Figure 1. 

The chi-square pre-pruning [Quinlan, 1986] and 
reduced-error post-pruning [Quinlan, 19871 techniques 
help to alleviate overfit, Gut on average the accuracy 
of the resulting tree is still less than the peak accuracy 
of the performance response. Similar results were ob- 
tained with the PLSl splitting method [Rendell, 19831, 
which uses an increase in the t, parameter to increase 
pruning. Table 1 shows that these pruning techniques 
do not completely alleviate the overfit problem. 

Set-covering Methods 
A set-covering method for inductive learning con- 
structs a hypGthesis which describes a subset -of the 
training insGnces, and then applies the same method 

‘The Flag domain is available from the UC Irvine ma- 
clhe learning databases. 
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Figure 4: Performance response of AQ for three mecli- 
cal domains. 

on the remaining training instances. Since set- 
covering methods typically learn disjunctive normal 
form (DNF) expressions for the hypotheses, the dimen- 
sion used to measure the amount of learned knowledge 
is the number of disjuncts in the induced hypothesis. 

During experimentation with the AQ set-covering 
method, [Michalski, 19891 found that repetitive appli- 
cation of AQ can yield less accurate hypotheses than a 
more conservative application strategy combined with 
a more flexible inference mechanism than exact match- 
ing. Michalski compared the accuracy of the colrqlele 
DNF hypothesis produced by AQ to truncated ver- 
sions of the same hypothesis. The first truncated ver- 
sion of the hypothesis consists of the single disjunct 
covering the most examples (best disjunct). The sec- 
ond truncated version of the hypothesis consists of only 
those disjuncts covering more than one unique exam- 
ple (unique > I). The truncated hypotheses use a sim- 
ple matching procedure for classifying uncovered and 
multiply-covered examples. 

Although based on only four points, Figure 4 ap- 
proximates the performance response of AQ in three 
medical domains (Lymphography, Breast Cancer and 
Primary Tumor) averaged over four trials.2 Figure 4 
demonstrates that A& also suffers from the general 
utility problem with increasing numbers of disjuncts, 
and the response curves indicate the same trend as in 
Figure 1. Holte et al. [1989] alludes to similar behavior 
in the CN2 set-covering method. 

2Data from i ndividual trials was not available for signif- Although the utility problem has been verified in sev- 
icance testing. eral speedup learning systems [Minton, 1988; Tambe 
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Figure 5: BackProp performance response. 

Neural Network Methods 
The rnultilayer perceptron using error back- propaga- 
tion [Rumelhart et al., 19861 updates the weights of the 
network according to errors in classifying the train- 
ing instances. Each pass through the set of training 
instances is called a cycle. As the number of cycles 
increases, the network more accurately classifies the 
training instances. However, overfit eventually occurs 
as the network learns the training instances too pre- 
cisely, degrading accuracy on the testing data. To an- 
alyze the overfit of the back-propagation neural net- 
work, the performance response measures accuracy of 
the network after every five cycles. 

Figure 5 shows the performance response of the error 
back-propagation neural network (BackProp) on the 
Flag and DNF2 domains. The networks contained on 
hidden layer with four units. The BackProp response 
on the Flag and DNF2 domains follows the general util- 
ity problem trend as in Figure 1. Table 1 reveals that 
on average the network at the initial peak performs 
better than the final network. Geman et al. [1992] 
found similar behavior in the domain of handwritten 
number recognition. 

Speedup Learning 
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Figure 6: Planner performance response. 

and Newell, 1988; Mooney, 1989; Markovitch and 
Scott, 19891, the experiments typically do not show 
the performance response of the system.3 Figure 6 
plots the performance response of a macro-operator 
learner consisting of a forward-chaining planner and a 
STRIPS-like plan generalizer [Fikes et al., 19721. Two 
domains are used in the experimentation. The blocks 
domain consists of four operators for stacking and un- 

stacking blocks. The robot domain consists of eight 
operators allowing the robot to move boxes within a 
layout of connected rooms. 

The experiments proceed by solving a training prob- 
lem in the domain, generalizing the resulting plan, 
adding the generalized plan to the set of available op- 
erators, and then measuring the amount of CPU time 
needed to solve a separate set of test problems using 
the augmented set of operators. The x-axis of the per- 
formance response is the number of learned macrops. 
The y-axis measures the inverse CPU time needed to 
solve the set of test problems. Although erratic in the 
blocks domain, the performance response plots in Fig- 
ure 6 follow the trend of the general utility problem. 

3Cohen [1990] p lots control-rule learning response 5The Breast Cancer (BC), Flare and Voting (Vote) do- 
curves for several planning domains. nlains are front the UC Irvine machine learning databases. 

Table 1: Percentage final performance of peak for in- 
ductive learners. 

Method BC 
ID3 91.2 
ID3 Chi 99.0 89.0 
ID3 Chi 99.9 90.8 
ID3 Red-Err 98.6 
PLSl t, = 1.5 92.4 
PLSl t, = 2.0 94.6 
BP4 82.8 

Domain 1 

Flag , Vote I DNk2 
88.2 1 
88.5 94.4 
89.9 96.1 
95.4 98.7 
97.6 98.5 
98.4 ’ 98.5 
89.8 I 88.2 

Table 2: Percentage final performance of peak for Plan- 
ner. 

Domain 
Method Blocks Robot 
Planner 67.4 76.1 

Trends 
Previous sections verify the existence of the general 
utility problem in several learning methods. The per- 
formance responses of these methods follow the trend 
illustrated in Figure 1. Adopting a model of this trend 
permits the control of the general utility problem by 
constraining the amount of learned knowledge to reside 
at the point corresponding to the peak performance. 

Tables 1 and 2 quantify the possible performance 
gailIs by using this model-based control of the amount 
of learned knowledge. Each entry in the tables is 
the percentage final performance of peak performance 
(2 * 100) averaged over ten performance response 
curves. Table 1 lists entries for several of the pre- 
viously described inductive learning methods4 on five 
clif’feren t domains 5. Table 2 lists entries for the Planner 
speedup learner on two domains. Note that the entries 
in Table 2 can be arbitrarily deflated by allowing the 
speedup learner to acquire more macrops. 

As shown in Tables 1 and 2, the final performance 
is less than the peak performance for all but one case. 
A majority of the values are statistically significant, 
and in the cases where the siguificance is low, the peak 
of the performance response is no worse than the fi- 
nal perforrrlauce. Thus, the ability to constrain the 
alnount of learned knowledge to the point correspond- 
ing to peak performance will improve the performance 
of the learner. Although individual methods exist for 
alleviatiug the general utility problem in each particu- 
lar learning method, the performance response model 
offers a general method for avoiding the general utility 
problem in mauy machine learning methods. 

4BP4 is error back-propagation with one hidden layer 
containing fo’our units. 
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Figure 7: Performance response derived by Breiman et 
al. [1984] for a decision tree induction method. 

Fon-nal Models 
Breiman et al. [1984] d erive a formal model of the per- 
formance response for splitting methods. The shape of 
the performance response is the result of a tradeoff be- 
tween bias and variance. Bias expresses the degree of 
fit of the decision tree to the training data. A low bias 
(many small hyper-rectangles) is preferred to a high 
bias (few large hyper-rectangles), because low bias al- 
lows a more precise fit to the data. However, a low bias 
increases the likelihood that hyper-rectangles produce 
classification error (variance) due to fewer points on 
which to base the classification. 

The analysis expresses the bias and variance in terms 
of the number of leaves L in the decision tree. Assum- 
ing binary splits at each node of the tree, the number 
of splits is L - 1. Therefore, the behavior of the bias 
and variance as the number of splits increase will be 
similar to the behavior as L increases. The expression 
for the classification error R(L) in terms of the bias 
B(L) and the variance V(L) is 

R(L) = B(L) + V(L) + R* (1) 
where R* is the Bayes optimal classification error. 
Breiman et al. derive the following constraints on the 
bias B(L) and the variance V(L): 

c 
B(L) 5 L2/M’ V(L) 5 J V(L N N) 5 R* 

where C is a constant, M is the dimension of the 
instance space (i.e., number of features used to de- 
scribe the training instances), and N is the number 
of training instances. Equation 1 is an expression of 
the classification error response curve. Figure 7 plots 
the bias B(L), variance V(L), Bayes error R* , and 
estimated classification error R(L) from Equation 1, 
where C = 0.35, M = 20, N = 1000 and R* = 0.15. 
The plot extends from L = 0 to 1000. Subtracting 

this error curve from one would yield the accuracy re- 
sponse curve. The similarity of this performance re- 
sponse to that of Figure 1 supports the existence of 
a single peak and the inevitability of overfit in split- 
ting algorithms without appropriate stopping criteria 
or post-pruning techniques. Maximizing performance 
while avoiding overfit requires the determination of the 
number of splits L corresponding to the minimum of 
the error response curve. 

A similar analysis applies to set-covering methods, 
where the number of disjuncts in the DNF hypothe- 
sis replaces the number of splits in the decision tree. 
The corresponding expressions for bias and variance 
as a function of the number of disjuncts have a similar 
behavior as those depending on the number of splits, 
and the set-covering response curve follows the behav- 
ior in Figure 7. Geman et al. 119921 describe a similar 
moclel for two-layer networks in terms of the number of 
hidden units, and nearest neighbor methods in terms 
of the number of neighbors. Holder [1991a] describes a 
possible relationship between the number of cycles and 
the number of hidden layers in a multilayer network. 

These models assume that an increase in the amount 
of learned knowledge corresponds to an increase in the 
complexity of the resulting hypothesis. One definition 
of complexity is the degree of the function represented 
by the hypothesis. Given that the candidate hypothe- 
ses have a sufficient degree of complexity to allow over- 
fit, ordering the amount of learned knowledge in terms 
of increasing complexity insures the presence of the 
general utility problem trend. 

A speedup learner is similar to an inductive learner 
in that both seek a concept that maximizes perfor- 
mance. The concept sought by a speedup learner is 
a set of macro-operators or control rules minimizing 
the time taken by the problem solver to solve prob- 
lems from some domain. If the set of problems used to 
train the learner is not representative of the distribu- 
tion of problems in the domain, then the performance 
obtained for the training examples may degrade per- 
formance on the testing examples for reasons similar 
to overfit in inductive learners. However, the factors 
underlying the performance degradation are different 
from those affecting inductive learners. Minton [1990] 
identifies three ways in which macro-learning affects 
the problem-solving performance of a speedup learner. 
A simple quantification of these three components in 
terrns of branching factors behaves similarly to the 
general utility problem trend [Holder, 1991a], but the 
exact relationship between macro-operator (or control 
rule) learning and performance is not fully understood. 

Conclusions 
Both inductive and speedup learning methods suffer 
frown the general utility problem: the eventual degra- 
dation of performance due to increasing amounts of 
learned knowledge. The performance response curves 
of’ these methods indicate a common trend depicted in 
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Figure 1. A model of this trend can be used to con- 
trol the amount of learned knowledge to achieve peak 
performance, which is typically greater than the final 
performance of the learning method (see Table 1). The 
model could also predict the achievable performance of 
the learning method as a means of selecting an a pro- 
priate method for a learning task [Holder, 1991b P . 

The MBAC approach uses and empirical model of 
the performance response. However, an empirical 
model requires samples of the actual performance re- 
sponse (runs of the learning method) and suffers from 
inaccuracies due to discrepancies between the empirical 
and true model of the performance response. There- 
fore, the MBAC approach (or any approach to con- 
trolling and estimating the performance of a learning 
method) would benefit from a formal model of the 
performance response that depends on properties of 
the current learning task, such as number of instances 
and dimension of the instance space. The formal rnod- 
els discussed earlier represent preliminary progress to- 
wards this goal. The underlying forces of bias and 
variance and the constraints on the order of knowledge 
transformations serve to unify several inductive and, 
at a high level, speedup learning methods. Continued 
refinement of models of the general utility problem will 
provide a general framework for controlling and com- 
paring different learning paradigms. 
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