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1. Introduction 
 

The ability to learn patterns in relational data has become a crucial challenge in 
many security-related domains. For example, the U.S. House and Senate Intelligence 
Committees’ report on their inquiry into the activities of the intelligence community 
before and after the September 11, 2001 terrorist attacks revealed the necessity for 
”connecting the dots” [1], that is, focusing on the relationships between entities in the 
data, rather than merely on an entity’s attributes. A natural representation for this 
information is a graph, and the ability to discover previously-unknown patterns in such 
information could lead to significant improvement in our ability to identify potential 
threats. 

The main objective of this project was to design, implement and evaluate new 
methods for performing pattern learning on structured data represented as graphs and 
evaluate their application to structural, relational databases relevant to the Evidence 
Assessment, Grouping, Linking and Evaluation (EAGLE) program.  This work builds on 
existing methods for graph-based knowledge discovery and concept learning 
implemented in the SUBDUE structural pattern learning system.  The graph-based 
structural pattern learning algorithm was extended to perform structural concept 
learning and structural, hierarchical conceptual clustering.   The resulting system was 
evaluated using several structural databases, including those with known structural 
patterns, those of relevance to the target domains of the EAGLE program, and those 
developed as challenge problems within the EAGLE program. 

The specific objectives of the project were to improve the performance of graph-
based structural pattern learning both in terms of running time on large graphs and 
accuracy in predicting threat versus non-threat groups and events. Several performance 
improvements were achieved by focusing on the algorithm, especially on the primitive 
graph operations like isomorphism tests. Additional speedups were obtained by 
processing incremental graph data arriving in a stream.  We also desired to build upon 
the SUBDUE system to identify anomalies in graph data, and to learn concepts from 
training examples embedded in a single graph. 

An additional objective of this project was to transition the SUBDUE pattern 
learning technology developed by UTA to the intelligence community. One route toward 
this end was the transition of SUBDUE to the Research and Development Experimental 
Collaboration (RDEC) Facility. We also pursued an opportunity in collaboration with 
Cycorp and their Structured Knowledge Source Integration (SKSI) technology, which 
allowed us to build graphs from multiple databases via a common Cyc-based interface.   
We supported the development of the hypothesis specifications effort (HARM) by 
providing a specification of the pattern language used to express the graphical patterns 
learned by SUBDUE.  We laid out a similar goal to support the TANGRAM effort to 
develop a model of an automated end-to-end information discovery system. Finally, to 
avoid the preliminary step of converting relational databases to graphs, we investigated 
the tight integration of SUBDUE within relational database management system 
(RDBMS) technologies. 
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2. Background 
 

Numerous approaches have been developed for discovering concepts in 
databases using a linear, attribute-value representation.  Although much of the data 
collected today has an explicit or implicit structural component (e.g., spatial or 
temporal), few discovery systems are designed to handle this type of data.  Those 
systems that deal with structural databases typically do not scale for large databases 
due to the increased combinatorics inherent in the richer representations.   

We have introduced a method for discovering substructures in structural 
databases using the minimum description length (MDL) principle [3] implemented in the 
SUBDUE system [2].  Unlike many existing methods, SUBDUE is designed to discover 
knowledge in a supervised or unsupervised fashion.  In contrast to approaches that are 
designed for a single application domain, SUBDUE is devised for general-purpose 
automated discovery with or without domain knowledge.  Hence, the method can be 
applied to many structural domains. 

SUBDUE discovers patterns in structural data represented as a labeled graph and 
performs various types of data mining on the graph.  Objects in the data map to vertices 
or small subgraphs in the graph, and relationships between objects map to directed or 
undirected edges in the graph.  A substructure is a connected subgraph within the 
graphical representation.  An instance of a substructure in an input graph is a set of 
vertices and edges from the input graph that match, graph theoretically, to the graphical 
representation of the substructure. This graphical representation serves as input to the 
substructure discovery system. 

SUBDUE operates in three main modes: discovery, clustering and supervised 
learning. In discovery mode SUBDUE uses heuristic search guided by MDL to find 
patterns minimizing the description length of the entire graph compressed with the 
pattern.  Once a pattern is found, SUBDUE can compress the graph using this pattern 
and repeat the process on the compressed graph to look for more abstract patterns, 
possibly defined in terms of previously-discovered patterns. Figure 1 shows how 
SUBDUE finds four instances of a pattern S1 in the input graph, the graph compressed 
with pattern S1, the pattern S2 found in the next iteration, and the graph compressed 
with pattern S2. 

The ability of SUBDUE to iteratively discover patterns and compress the graph can 
be used to generate a clustering of the input graph.  Essentially, clustering mode 
forces SUBDUE to iterate until the input graph can be compressed no further.  The 
resulting patterns form a cluster lattice, such that if a pattern S is defined in terms of one 
or more previously-discovered patterns, then these patterns are parents of S in the 
lattice.  In the example in Figure 1, S2 is defined in terms of S1. Each cluster in the 
lattice is defined conceptually by the graphical pattern discovered by SUBDUE, producing 
a hierarchical, conceptual clustering of the input data. 
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If graphs depicting both positive and negative examples of a phenomenon are 
available for input, then SUBDUE enters supervised-learning mode, searching for a 
pattern that compresses the positive graphs, but not the negative graphs. For example, 
given positive graphs describing criminal networks and negative graphs describing 
normal social networks, SUBDUE can learn patterns distinguishing the two, and these 
patterns can be used as a predictive model to identify emerging criminal networks. 

SUBDUE offers a number of additional features.  Users can input background 
knowledge in the form of predefined patterns.  SUBDUE first compresses the input graph 
with these patterns before beginning discovery.  SUBDUE uses an inexact graph match 
to find instances of a pattern, so the instances do not all have to exactly match the 
pattern.  SUBDUE can be run on a distributed network by partitioning the input graph 
across multiple processors.  

 
2.1. Algorithm 

 
SUBDUE uses a polynomial-time beam search for its discovery algorithm, 

summarized in Figure 2.  The goal of SUBDUE's search is to find the subgraph which 
yields the best compression of the input graph.  The initial state of the search is the set 
of subgraphs consisting of all uniquely labeled vertices.  The only search operator is the 
Extend Subgraph operator, which extends a subgraph in all possible ways by one edge 
and a vertex or by a single edge if both vertices are already in the subgraph.  
Substructures are kept on an ordered queue of length determined by the beam width. 

To evaluate subgraphs the Minimum Description Length (MDL) principle is used, 
which states that the best theory is one that minimizes the description length of a 
database.  Using this principle, a substructure is evaluated by its ability to minimize the 
value of the description length of the graph when compressed using the substructure. 

The search terminates upon reaching a user-specified limit on the number of 
substructures extended, or upon exhaustion of the search space.  Once the search 

S1 

S1 

S1 

S1 

S1 

S2 

S2 S2 

Figure 1. Example of SUBDUE graph-based pattern learning. 



 4

terminates and returns the list of best subgraphs, the graph can be compressed using 
the best subgraph.  To compress a graph, all instances of the subgraph are replaced by 
a single representative vertex.  Incoming and outgoing edges to and from the replaced 
subgraph connect to the new vertex that represents the subgraph.  The discovered 
substructures allow abstraction over detailed structures in the original data. Iteration of 
the substructure discovery and replacement process constructs a hierarchical 
description of the discovered patterns.  As a result, this hierarchy provides varying 
levels of interpretation that can be accessed based on the specific goals of the data 
analysis. 

SUBDUE has been used as an unsupervised algorithm to find patterns in a 
number of structural databases.  As examples, SUBDUE has found patterns in program 
source code that, upon compression, improve the modularity of the program.  We have 
discovered patterns in CAD circuit data that represent functional concepts and aid 
experts in understanding of the data.  In the area of computational biology, SUBDUE 
identified structural patterns in primary, secondary, and tertiary structures of three 
categories of proteins obtained from the Protein Data Bank.  Additional discoveries have 
been made and validated by experts in the areas of geology, image analysis, Chinese 
character databases, and chemical reaction chains. 
 
2.2. Interface 
 

SUBDUE uses a simple text-based format for the input graphs and the graphical 
output patterns that can be easily converted to other formats for visualization. For 
example, the representation of the S1 structure in the above figure would be as follows. 
 
v 1 light_green 
v 2 red 
v 3 blue 

SUBDUE(graph G, int Beam, int Limit ) 
  queue Q = {v | v has a unique label in G} 
  bestSub = first substructure in Q 
  repeat 
   newQ = {} 
   for each S in Q 
    newSubs = S extended in all possible ways 
    newQ = best Beam substructures in (newQ U newSubs) 
    Limit = Limit - 1 
    evaluate substructures in newQ by compression of G 
    if best substructure in Q better than bestSub 
    then bestSub = best substructure in Q 
  until Q is empty or Limit <= 0 
  return bestSub 

Figure 2. Main SUBDUE discovery algorithm. 
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v 4 yellow 
d 1 2 blue 
d 1 3 red 
d 1 4 black 
 

The general format consists of vertices and edges.  The format for a vertex is “v 
<#> <label>”, where <#> are consecutive integers starting at 1 and <label> is either a 
string or real number. Edges are either undirected “u <v1> <v2> <label>” or directed “d 
<v1> <v2> <label>”, where <v1> and <v2> are the integer IDs for the connected 
vertices, and <label> is either a string or real number.  Subdue can also accept multiple 
graphs preceded by an “XP” for a positive graph or an “XN” for a negative graph. If 
negative graphs are input, Subdue automatically enters supervised learning mode to 
find a pattern distinguishing the positive graphs from the negative graphs. A more 
detailed description of SUBDUE’s interface can be found in the manual accompanying 
the download. 
 
2.3. Availability 
 

SUBDUE is written in C and runs on both UNIX and Windows platforms.  Source 
code is available for download from http://ailab.uta.edu/subdue.  

 
 
3. Performance Evaluation on EAGLE Data 
 

The primary means of evaluating SUBDUE on EAGLE data was the use of IET’s data 
generator, which simulates the evidence available about terrorist groups and their plans 
prior to their execution. This domain is motivated from an understanding of the real 
problem of intelligence data analysis. The EAGLE domain consists of a number of 
concepts, including threat and non-threat actors, threat and non-threat groups, targets, 
exploitation modes (vulnerability modes are exploited by threat groups, productivity 
modes are exploited by threat and non-threat groups), capabilities, resources, 
communications, visits to targets, and transfer of resources between actors, groups and 
targets. The domain follows a general plan of starting a group, recruiting members with 
needed capabilities, acquiring needed resources, visiting a target, and then exploiting 
the target. These events involve various forms of communication and transfer of assets.  

The EAGLE simulator generates various threat and non-threat groups, and then 
executes various vulnerability and productivity exploitations. The simulator generates 
evidence related to all these events, and this evidence is passed through filters, e.g., 
varying the degree of observability and noise in the final evidence. This final evidence is 
stored in an Evidence Data Base (EDB) and is the data from which we are to learn. We 
address two different relational learning problems in this domain. First, we attempt to 
learn patterns distinguishing vulnerability exploitation cases (terrorist attacks) from 
productivity exploitation cases (legitimate uses). Second, we attempt to learn patterns 
distinguishing threat groups from non-threat groups. 
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Figure 3. Subdue pattern-learning process on EAGLE data. 

 
Figure 3 illustrates the process of running SUBDUE on the EAGLE data. First, known 

events and groups in the EDB are extracted and converted to a graph representation. 
Threat events or groups are made the positive examples and non-threat events or 
groups are made the negative examples. SUBDUE is passed in the events or groups and 
then learns a pattern that can distinguish the threat from non-threat events or groups. 
Ultimately, these patterns are passed on to a link discovery system to help identify 
potential threat events and groups in new data. However, we perform our own 
evaluation of the results by measuring the learning time and accuracy of the result. 

Table 1 shows the performance of SUBDUE on EAGLE data throughout the program. 
In 2003, the data was small in size, which allowed SUBDUE to run fast, but accuracy 
results were poor due to lack of variability in the data. In 2004, the data increased in 
size by an order of magnitude. SUBDUE was able to improve the accuracy of its learned 
patterns due to the increased amount of data, but maintained a linear increase in 
running time based on the graph size. Numerous performance enhancements were 
made to SUBDUE in 2005, so we re-ran SUBDUE on the same data as in 2004 and found 
that we were able to reduce the running time by almost 50% with no loss in the 
accuracy of the learned pattern. 

Overall, we see that SUBDUE is able to achieve good performance on the EAGLE 
domain. 
 
 
 
 
 

EDB 

Convert EDB to 
SUBDUE graph 

format 

Positive & negative 
classified examples 

Patterns 

Evaluate 
(to Link Discovery) 

Evidence DB (EDB) 
contains simulated data 
on threat and non-threat activity 
• Persons, targets, capabilities, 
  resources, transfers, and 

communications SUBDUE
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Table 1. Performance evaluation of Subdue on EAGLE data throughout program. 
EAGLE Data 
2003 

Threat 
Examples 

Non-threat 
Examples Vertices Edges Accuracy Time 

(min) 
Mean Event 93 126 25,127 87,371 63% 23 
Mean Group 14 59 80,146 142,458 84% 103 
Mean 53 92 52,637 114,915 74% 63 
       
EAGLE Data 
2004 

      

Mean Event 28 280 533,196 630,733 80% 211 
Mean Group 22 62 457,209 597,163 85% 1453 
Mean 25 185 499,952 616,046 82% 754 
       
EAGLE Data 
2005 

      

Mean Event 28 280 533,196 630,733 80% 86 
Mean Group 22 62 457,209 597,163 85% 813 
Mean 25 185 499,952 616,046 82% 404 
 
 
4. Incremental Processing of Graph Data               

 
As part of the EAGLE project, we specified a goal to develop, implement and 

evaluate new techniques for incremental graph-based pattern learning.  New data will 
augment the graph-based representation and update candidate patterns, rather than 
running from scratch on the new graph.  

We identified the following specific challenges in performing incremental graph-
based pattern learning on streaming data. 

 
• Need to exploit previous discoveries to continuously update globally “best” 

patterns by only examining the new data increment. 
• Instances of structures may extend across temporal boundaries of data 

increments. 
• The patterns being learned may change over time. 
• New data may contradict (i.e., delete) old data resulting in modifications/deletions 

of previously-learned patterns. 
 
In the case when patterns do not extend across the boundaries of data 

increments, we developed an approach based on maintaining summary statistics of the 
compression values for the best patterns in each increment. Rather than performing a 
global re-computation of each pattern’s compression value, we sum the compression 
values over all the increments for each pattern. Those patterns with highest 
compression, summed over all increments, are identified as the best patterns for all the 
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data. Results have shown that this procedure correctly identifies the globally-best 
pattern in a majority of the cases. 

When it is possible that pattern instances extend across incremental boundaries 
(e.g., a new actor is introduced into the data, but who has a relationship to another actor 
introduced earlier in the data stream), then additional steps are required to update the 
compression statistics based on these additional instances. Specifically, we first identify 
all edges that extend from a vertex in the current data increment to a vertex in a 
previous increment.  These minimal patterns are then grown one edge at a time, as long 
as they remain a subgraph of one of the best patterns identified in step one, otherwise 
they are discarded.  Any new instances are added to the support of existing patterns, 
possibly reordering them and identifying a new best pattern. 

Using the above algorithm we have found that incremental Subdue (I-Subdue) 
can identify the same globally-best patterns, and all their instances (including those that 
cross increment boundaries), as original SUBDUE, and in less time. The plot below show 
a comparison of the two systems as the number if data increments increases. Each 
system found the same best patterns, but I-Subdue processed the data in less time. 

Figure 4 illustrates the comparative run-time performance of I-Subdue and 
SUBDUE on the same EAGLE data.  The x-axis indicates the number of increments that 
were processed and the respective size in terms of vertices and edges.  For example, 
for the 15-increment run, I-Subdue processes fifteen successive increments with edges 
spanning from vertices in the current increment back to vertices in previous increments.  
We then aggregate all fifteen increments and batch process them with SUBDUE for the 
comparative result.  The results demonstrate that I-Subdue not only accurately handles 
incremental data, but actually improves run time over the original SUBDUE algorithm. 
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5. Anomaly Detection 
 

Existing graph-based pattern learning seeks to find prevalent patterns.  However, 
detection of anomalous patterns is also of interest, especially in identifying asymmetric 
threats.  As an outgrowth of the concept drift detection work using I-Subdue, we have 
discovered a new method of identifying anomalous patterns.  Our work to develop a 
systematic process for measuring change in graph-based relational data is derived from 
the idea of computing a median graph.  If a distance measure d(g1,g2) can be efficiently 
computed, this can be used to determine the median of a set of graphs (in our case, the 
top n reported substructures from each data increment). 

To compute such a distance function in polynomial time, we rely on the error-
correcting graph isomorphism (ecgi).  An ecgi is a bijective function, f, that maps 
vertices from graph g1 to vertices in graph g2 such that the graph edit distance, or total 
cost of the operations needed to make the graphs isomorphic, is minimized.  We use a 
genetic algorithm to approximate a median graph that minimizes the total distance to 
the set of represented graphs. 

In domains with continuous data streams, one of the major goals is to guide an 
analyst to salient patterns. In the counter-terrorism example this is particularly essential 
given the voluminous amount of data that analysts receive each day. It is unrealistic to 
assume that one can simple identify interesting patterns a priori and then alert the 
analyst when they are found in the data. 

Outlier detection is a potentially useful tool to deal with this problem. Consider 
the example depicted in Figure 5, with five input graphs and the median graph. The 
input graphs are the best patterns reported by I-Subdue for five successive data 
increments. The graphs represent the star and chain communication patterns, which are 
common to the counter-terrorism domain.  

Upon examination of the patterns, the input graph g5 is clearly an outlier. To 
detect outliers automatically, we can compute a pairwise graph distance measurement 
between the median graph and each of the input graphs. For the graphs in Figure 5, the 

distances are as follows: 7),(;1),(;2),(;1),(;1),( 54321 ===== ggdggdggdggdggd  
Clearly graph g5 stands out in its distance from the median. We can employ 

statistical methods to specify the outlier threshold.  The resulting anomalies can be 
reported to the user for further investigation. 
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6. Learning from Supervised Graphs             
  
 Instead of isolating well-defined, disconnected examples of cases and groups, a 
supervised graph keeps all the data in one large graph and annotates each graph 
component with its degree of participation in the various categories of interest (e.g., 
membership in threat group). Figure 6 depicts the scenario in which threat and non-
threat examples all exist in the same graph and possibly overlap. As part of this project, 
we developed, implemented and evaluated new techniques for learning patterns in 
supervised graphs. 
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Figure 6. Learning from supervised graphs. 

 
As an outcome of this project, we implemented a new version of SUBDUE, called 

Subdue-EC for Embedded Classification, that learns to classify examples embedded in 
one large graph by building a set of substructures that can be used to classify 
designated areas of a new graph. To determine the class membership of each of the 
areas of interest in a new graph, one searches for instances of the substructures in the 
new graph, and, if an instance contains one or more appropriately labeled vertices, then 
that area is a member of the class that the substructure “classifies”.  We call these 
substructures classifying substructures, and we note that the order in which they are 
discovered by Subdue-EC is the order in which they should be applied to the new 
graph; therefore, we are learning an ordered sequence of classifying substructures.  

We evaluated the completed implementation on data from the NASA Sea 
Surface Temperature (SST) dataset as well as the EAGLE counterterrorism data using 
the graph representation described earlier.  The NASA data uses a vertex to represent 
each grid location, with connecting vertices giving the hemisphere of the location and 
current temperature.  The vertex is connected by a directed edge to its western and 
northern neighbors, and multiple graphs are created for each month.  Our goal is to 
classify location vertices by whether they will increase, decrease, or stay at the same 
temperature the next month.  Using 6,480 grid locations, Subdue-EC classified the data 
points at 85.21% accuracy using ten-fold cross-validation.  In addition, using training 
data from one year to predict monthly differences the next year resulted in 81.98% 
classification accuracy. 

For the EAGLE data, we created a graph in which vertices represent member 
agents from Threat and non-Threat groups.  Anyone with whom these agents 
communicate is also added to the graph and connected to the agent with an 
“association” edge.  Communication events between associates are similarly 
represented with “association” edges.  Finally, individuals may be described using 
attribute and capability vertices. 

Subdue 
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Our experiments were conducted on a large graph consisting of 435,429 vertices 

and 763,504 edges representing 61,105 people as well as a smaller graph consisting of 
217,901 vertices and 314,793 edges representing 30,715 people.  Class vertices 
labeled THREAT were attached to members of known threat groups, and NON-
THREAT vertices were attached to members of non-threat groups. 

Our goal of the experiments was to see how well Subdue-EC could classify 
threat and non-threat individuals, given training examples embedded in a single 
connected graph.  In the original graphs there is a large predominance of non-threat 
individuals (59,373, in contrast to the 1,732 threat individuals).  To provide a stronger 
sample to the learning algorithm, we randomly sampled non-threat individuals to create 
a training set size equal to that of threat individuals. 

For the individuals that included one or more of the classifying substructures, 
Subdue-EC’s classification accuracy was 71.98%.  However, the computational 
limitations of the discovery algorithm prevented further substructures from being 
discovered in a reasonable amount of time, so 2,304 individuals remained unclassified.  
The greatest number of misclassifications were false positives (classified as threats 
when the true classification is non-threat), which is a preferred type of mistake for this 
problem. 

Of the substructures that were discovered, many consisted of an individual 
exhibiting a particular capability.  However, a few of the substructures, such as the one 
shown in Figure 7, highlight an association between two individuals in addition to 
attributes and capabilities of the individuals. 

The fact that Subdue-EC discovered useful substructures that highlight 
relationships between the individuals to be classified highlights the strength of Subdue-
EC.  If the individuals had been separated into disjoint examples, this relationship could 
not have been found.  If we tried to extract individuals with a large enough 
neighborhood of information around them to find these discoveries, several difficulties 
would arise.  First, how much information do we retain?  The user cannot always know 
a priori how much of a neighborhood must be extracted in order to retain all potentially 
useful information.  Second, when the neighborhood of information is extracted, it is in 
essence reproduced for each example object that requires the information.  This results 
in substantial cost increase both in memory and in processing time for the discovery 
algorithm. 
 
 

Person Person

W2-3043 

weak-link

association

Figure 7. A discovered substructure showing an association between two 
individuals, each with certain capabilities.  The individual on the left is a known 

threat.
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7. Transition Subdue to RDEC 
  
 A major objective of this project was to transition the SUBDUE pattern learning 
technology developed by UTA to RDEC. The transition includes a database adapter 
capable of converting RDEC data (assuming the Y3 EDB schema) into graphical 
examples of threat and non-threat individuals, groups and/or exploitation cases. These 
examples are input to SUBDUE, which learns patterns that can discriminate threat 
examples from non-threat examples. These patterns can be converted back into a form 
useable by RDEC.  This process is illustrated in Figure 8. 
 We also pursued a second RDEC transition opportunity in collaboration with 
Cycorp and their Structured Knowledge Source Integration (SKSI) technology. The 
SKSI integrates multiple databases under one common interface (Cyc). Instead of our 
SUBDUE database adapter being fitted to each RDEC database, we interfaced the 
adapter to SKSI in order to access multiple databases as one. 

To accomplish this goal, we designed a tool to convert Y2.5 EDBs into SUBDUE 
format. The EDB Y2.5 Data Generator automatically generates Subdue-formatted input 
files from a MySQL Y2.5-schema database.  Data can be generated in the form of 
individual graphs for each instance of a particular entity type (e.g., ThreatGroup or 
NonThreatGroup in EAGLE databases). Once graphs have been generated, Subdue 
can be run on all the graphs to find common patterns, or can be run in supervised 
learning mode, where the graphs from a set (e.g., ThreatGroup) are designated as 
positive examples, and the graphs from another set (e.g., NonThreatGroup) are 
designated as negative examples. In this mode SUBDUE would find structural patterns 
that can distinguish the positive examples from the negative examples. 

RDEC 
RDBMS 

RDEC 
RDBMS 

UTA 
Database 
Adapter 

UTA 
Subdue 

Data Graph 
Patterns 

(a) 

RDEC 
RDBMS 

RDEC 
RDBMS 

Cycorp 
SKSI 

(b) Data 

Figure 8. Alternative approaches to RDEC RDBMS-Subdue integration. 
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The software is written in Java and has been developed and tested on a Linux 
system, but should run on any standard distribution.  The software is controlled by a 
number of parameters.  The entityType parameter can be set to any entity type (using 
the CYCCOLLECTION format) used in the database. The generator will generate a 
graph for each entity of this type. This is done by traversing the links from this entity to 
other entities in the database. The depthLimit controls how many links away from the 
initial entity the generator traverses to expand the graph. A value of 0 implies no depth 
limit. Note that values as small as 3 or 4 may cause each graph to encompass the 
entire database. 

In addition, as requested, we have developed a tool to convert CYC knowledge 
into a SUBDUE graph format.  Cyc knowledge can be queried by a user and the results 
are returned to the web browser.  Since the goal of this project is to take the results and 
create a SUBDUE input graph file, we created a Perl program that “dumps” the results to 
a file.  A graph is then created expressing the knowledge returned from the Cyc query. 

The implementation of this tool was successfully tested on sample Cyc 
databases.  Additional enhancements, such as a graphical interface, could be 
considered for the future. 
 
8. Integration of SUBDUE with Relational Database 
Management Systems 

 
Since most EAGLE-related data are stored in RDBMSs, a tighter integration of 

SUBDUE with RDBMS technologies allows improved scalability by reducing the 
computational and cognitive overhead of converting the database into the graph 
representation required by SUBDUE. We investigated a more incremental method 
whereby the database adapter requests data from the database only when prompted by 
SUBDUE during the pattern learning process. Therefore, data that SUBDUE deems 
uninteresting will not need to be converted to graph form. Once this capability was 
implemented, we then investigated an even tighter integration in which the data remains 
within the RDBMS and is not converted into graph form. This involves an integration of 
SUBDUE with the RDBMS at the algorithm level.  

We collaborated with Dr. Sharma Chakravarthy, a database professor here at 
UTA, to achieve this project objective. The approach developed in this task infers the 
entity-relationship model for the database using the table descriptions along with 
primary and foreign key constraints and generates the instances of the graphs from the 
populated instances of the relations. As part of this task the following issues were 
addressed: i) representation of individual relations as a graph (template), ii) 
representation of multiple relations as a graph (based on foreign key constraints), iii) 
alternative representations for ii), and iv) sequences in which to process the relations to 
generate graph instances. 

Graph representation is important as the size of the input for mining may 
increase significantly (e.g., can double) based on the representation chosen. This will 
have a critical impact on the processing time and main memory requirements. Also, 
choice of a representation that captures the semantics of the transactions is important. 
Otherwise, it may be difficult to interpret the results of mining. Finally, the sequence in 
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which relations are processed for generating the graph determines the amount of 
memory used for generating the graph and the time complexity of the algorithm. 

The XRDB2Graph algorithm developed for this task is an efficient algorithm that 
converts any relational database into a graph form that can be used by SUBDUE. 
XRDB2Graph is loosely coupled with the database platform (using the JDBC bridge) in 
order to accommodate any relational database (MySql, Oracle, MS SQLServer, etc.). 
We have used only SQL92 so that compatibility and portability is guaranteed across 
widely used databases. XRDB2Graph also minimizes the maximum memory 
requirement while transforming relational database to Graph domain; hence larger 
databases can be transformed into Graphs without need for large amounts of main 
memory. Even with SQL92, as there are some differences between create tables of 
different databases, the system is modularized. Only a small portion of the system 
needs to be customized for a particular database. 
 
9. Conclusions and Future Work 

 
All of the specified goals for this project were accomplished.  Moreover, we 

demonstrated the ability of a graph-based relational learner to discover patterns of 
importance in terrorist data.  Using the SUBDUE algorithms, these patterns can represent 
interesting behaviors needing additional analysis, or may be used to categorize data as 
potential threats or non-threats. 

Work on the EAGLE project resulted in new enhancements to the SUBDUE 
system that are a benefit to the AFRL program as well as to the scientific community.  
Through our integration efforts we greatly enhanced the scalability of SUBDUE.  
Incremental processing of data, conversion of Cyc knowledge to SUBDUE graphs, and 
integration of SUBDUE with RDBMSs greatly broadens the applications of the algorithms 
to a wide variety of data types and sizes.  In addition, we have increased the 
representational power of SUBDUE by allowing it to learn concepts from a single 
supervised graph and handle streaming graph data.  We also demonstrate that a graph-
based relational learner can be used for additional tasks such as detecting anomalies, 
all of which is useful when analyzing security data. 

Work on the EAGLE project has also highlighted a number of areas for additional 
work.  We intend to continue investigating methods of increasing the scalability of 
SUBDUE.  We will also use the algorithms to detect trends in time-varying data and 
increasing the learning power of SUBDUE using graph grammars.  We believe that this 
work will continue to provide valuable tools to the intelligence community. 
 
10. Publications from this Work 
 
Publications resulting from this project are listed in chronological order, beginning with 
2003. 
 

• I. Jonyer, L. Holder and D. Cook, “MDL-based Context-Free Graph Grammar 
Induction,” Proceedings of the Sixteenth International Conference of the Florida 
AI Research Society (FLAIRS), May 2003. 
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• R. Mehta, D. Cook and L. Holder, “Identifying Inhabitants of an Intelligent 
Environment Using a Graph-Based Data Mining System,'' Proceedings of the 
Sixteenth International Conference of the Florida AI Research Society (FLAIRS), 
May 2003. 

• L. Holder and D. Cook, “Graph-based Relational Data Mining: Current and Future 
Directions,” SIGKDD Explorations Special Issue on Multi-Relational Data Mining, 
Volume 5, Issue 1, 2003. 

• I. Jonyer, L. Holder and D. Cook, “MDL-Based Context-Free Graph Grammar 
Induction and Applications,” International Journal on Artificial Intelligence Tools, 
13(1):65-80, March 2004. 

• J. Coble, D. Cook, L. Holder and R. Rathi, “Structure Discovery from Sequential 
Data,” Proceedings of the Seventeenth International Conference of the Florida AI 
Research Society (FLAIRS), May 2004. 

• M. Mukherjee and L. Holder, “Graph-based Data Mining for Social Network 
Analysis,” Proceedings of the ACM KDD Workshop on Link Analysis and Group 
Detection, August 2004. 

• I. Jonyer, L. Holder, and D. Cook, “Attribute-Value Selection Based on the 
Minimum Description Length”, Proceedings of the International Conference on 
Artificial Intelligence, 2004. 

• J. Kukluk, L. Holder, and D. Cook, “Algorithm and Experiments in Testing Planar 
Graphs for Isomorphism”, Journal of Graph Algorithms and Applications, Volume 
8, Number 3, 2004. 

• J. Coble, R. Rathi, D. Cook and L. Holder, “Iterative Structure Discovery in 
Graph-Based Data,” International Journal on Artificial Intelligence Tools, 14(1-2), 
2005. 

• A. Rakhshan, L. Holder and D. Cook, “Structural Web Search Engine”, 
International Journal on Artificial Intelligence Tools, 13(1):27-44, 2005. 

• L. Holder, D. Cook, J. Coble and M. Mukherjee, “Graph-based Relational 
Learning with Application to Security,” in Fundamenta Informaticae Special Issue 
on Mining Graphs, Trees and Sequences, 2005. 

• L. Holder and D. Cook, “Graph-based Data Mining.” In J. Wang (ed.) 
Encyclopedia of Data Warehousing and Mining, Idea Group Publishing, 2005.  

• L. Holder, D. Cook, J. Coble and M. Mukherjee, “Graph-based Relational 
Learning with Application to Security,” in L. De Raedt, T. Washio and J. Kok 
(eds.) Mining Graphs, Trees and Sequences, IOS Press, 2005. 

• J. Potts, D. Cook, L. Holder and J. Coble, “Learning Concepts from Intelligence 
Data Embedded in a Supervised Graph,” Proceedings of the International 
Conference on Intelligence Analysis, April 2005. 

• J. Coble and D. Cook, “Structure Discovery in Sequentially Connected Data”, 
Proceedings of the Florida Artificial Intelligence Research Symposium, May 2005 
(Best Paper Award). 

• R. Rathi and D. Cook, “A Serial Partitioning Approach to Scaling Graph-Based 
Knowledge Discovery”, Proceedings of the Florida Artificial Intelligence Research 
Symposium, May 2005. 
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• J. Potts, D. Cook, and L. Holder, “Learning from Examples in a Single Graph”, 
Proceedings of the Florida Artificial Intelligence Research Symposium, May 
2005. 

• D. Cook, L. Holder, J. Coble and J. Potts, “Graph-based Mining of Complex 
Data," in S. Bandyopadhyay, U. Maulik, L. Holder and D. Cook (Editors), 
Advanced Methods for Knowledge Discovery from Complex Data, Springer, 
September 2005. 

• N. Ketkar, L. Holder and D. Cook, “Qualitative Comparison of Graph-based and 
Logic-based Multi-Relational Data Mining: A Case Study," Proceedings of the 
ACM KDD Workshop on Multi-Relational Data Mining, August 2005. 

• N. Ketkar, L. Holder, D. Cook, R. Shah and J. Coble, “Subdue: Compression-
based Frequent Pattern Discovery in Graph Data," Proceedings of the ACM KDD 
Workshop on Open-Source Data Mining, August 2005. 

• N. Ketkar, L. Holder and D. Cook, “Comparison of Graph-based and Logic-based 
MRDM,” ACM SIGKDD Explorations Special Issue on Link Mining, Volume 7, 
Issue 2, December 2005. 

• C. D. Corley, D. J. Cook, L. B. Holder, and K. P. Singh, Graph-based data mining 
in epidemia and terrorism data, to appear in Proceedings of the Conference on 
Quantitative Methods and Statistical Applications in Defense and National 
Security, 2006. 

• J. Potts, D. J. Cook, and L. B. Holder, Learning from Supervised Graphs, to 
appear in Applied Graph Theory (M. Last, A. Kandel, and H. Bunke, editors), 
2006. 

• Mining Graph Data, (D. J. Cook and L. B. Holder, editors), John Wiley and Sons, 
to appear in September 2006. 

• J. Coble, D. J. Cook, and L. B. Holder, Structure Discovery in Sequentially-
Connected Data Streams, to appear in International Journal on Artificial 
Intelligence Tools, 2006. 
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