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Abstract

The complezity of most machine learning techniques
can be improved by transforming iterative compo-
nents into their parallel equivalent. Although this
parallelization has been considered in theory, few im-
plementations have been performed on existing par-
allel machines. The parallel architecture of the Con-
nection Machine provides a platform for the imple-
mentation and evaluation of parallel learning tech-
niques. The architecture of the Connection Machine
is described along with limitations of the language in-
terface that constrain the implementation of learning
programs. Connection Machine implementations of
two learning programs, Perceptron and AQ, are de-
scribed, and their computational complexity is com-
pared to that of the corresponding sequential versions
using actual runs on the Connection Machine. Tech-
niques for parallelizing ID3 are also analyzed, and
the advantages and disadvantages of parallel imple-
mentation on the Connection Machine are discussed
in the context of machine learning.

Introduction

The explosive complexity of most machine learn-
ing algorithms is dominated by an iterative search
through a large concept space. This complexity
can be reduced by transforming the iterative com-
ponents into parallel procedures. The advent of par-
allel machines such as the Connection Machine pro-
vides the means to implement parallel versions of
machine learning algorithms. Despite the availabil-
ity of parallel hardware and theoretical methods for
parallelization, virtually no actual implementations
of parallel learning algorithms have been attempted.

This paper describes the Connection Machine im-
plementation of two learning algorithms: Percep-
tron and AQ. Samples of the parallel Lisp code are
given to illustrate the Lisp interface language. Ac-
tual runs of the parallel versions are compared to

the sequential versions to demonstrate the signifi-
cant increase in speed. This paper also describes
constraints imposed by the Connection Machine en-
vironment, which affect the design of these parallel
algorithms and future parallel machine learning al-
gorithms.

In this paper, we first provide a general description
of the Connection Machine’s architecture and *Lisp
programming environment. Next, we describe the
parallel implementation of the perceptron learning
algorithm and compare its performance to that of
the sequential version. A similar treatment of the
AQ learning algorithm is then presented. Finally,
we illustrate the difficulties met while attempting to
parallelize the ID3 learning algorithm and possible
alternative approaches.

The Connection Machine

Computers use their powerful hardware inefficiently

most of the transistors in a von Neumann com-
puter are idle at any given instant. It is speculated
that humans make much better use of their brains by
computing in parallel. Only recently have engineers
simulated this approach by building concurrent ma-
chines machines that are able to split a task among
various processors which solve the sub-tasks in par-
allel.

A few applications of parallelism that are venturing
into the realm of Artificial Intelligence are mentioned
in [6, 7, 8], including pattern perception, computer
vision, image processing, knowledge representation,
and natural language understanding. Virtually no
work has been done to parallelize inductive learning
techniques.

The Connection Machine is a “data parallel” com-
puting system. Most high-performance comput-
ers, including popular parallel machines such as the
Cray, include a small number of fast, relatively com-
plex processors and a single large working-memory



space. In contrast, a data-parallel machine has a
large number of individual processors, each with a
relatively small memory space of its own, and an in-
terconnection scheme allowing rapid communication
with and among processors. The goal is to speed up
computation by “parceling out” individual data el-
ements (or small groups of elements) to individual
processors, and allowing the processors to operate si-
multaneously on their own small pieces of the overall
problem.

The algorithms described in this paper are imple-
mented on the Connection Machine Model CM-2,
built by Thinking Machines Corporation (See [2] for
a more complete description of the CM-2). The
CM-2 has 32,768 processors structured in a two-
dimensional grid. The programming environment
includes the *Lisp language [1], which we have used
to implement Parallel-Perceptron and Parallel-AQ.

The main data structure found in *Lisp is the pvar.
A pvar represents a collection of values. Each ele-
ment of the pvar is stored in a unique processor on
the Connection Machine. The components of a pvar
may be (theoretically) any Lisp value. *Lisp also
contains a set of predefined functions that operator
in parallel on pvars. These functions usually end
with ! (if they return a pvar) or begin with *. For
example, the command (*defvar a (! 5)) creates a
pvar that stores the integer 5 in each processor. The
function (*setf a (+!! b c)) sets the contents of pvar
a to the sum of the contents of pvar b and pvar c.

The current version of *Lisp is very limited in its
capabilities. This version has a very small set of par-
allel lisp functions, and the data structures do not
allow symbols or lists to be represented, but only
numbers and arrays. This means that each symbol
must be converted to a number, and each list must
be converted to an array. Thus, there is a great deal
of overhead in transforming a sequential representa-
tion into its *Lisp representation.

Each processor in the Connection Machine is very
small, and by itself could not hold much data. In-
stead, the data is distributed across the proces-
sors and the host computer signals a single op-
eration that each processor performs in parallel.
The Single-Instruction-Multiple-Data (SIMD) archi-
tecture of the Connection Machine limits the type
of parallelization that can be performed. A proce-
dure such as examining the contents of each node in
a graph is easy to perform in parallel on the Con-
nection Machine, while a procedure which applies a
different function to each node in the graph is not

possible to parallelize on the Connection Machine.

The advantages and disadvantages of the Connec-
tion Machine architecture and language interface
will be illustrated as we describe the parallel imple-
mentations of Parallel-Perceptron and Parallel-AQ
in the next few sections. Constraints on the design
of these algorithms resulting from the Connection
Machine environment will be shown to affect the de-
sign of parallel learning programs in general.

Perceptron

This section presents the perceptron learning model
and describes a parallel implementation of the algo-
rithm. The complexity of the sequential and parallel
procedures are compared.

The Algorithm

The perceptron learning algorithm invented by
Rosenblatt [5] is a very natural one to parallelize.
The perceptron is a neural network model. In a
simple perceptron, each node z; in the first layer
represents an element of the vector of feature val-
ues, and is assigned a weight w;. The output y of
the network is a linear combination of the feature
vector  and the weight vector w:

Y =wr = E TiWw;.

i

The sequential Perceptron procedure uses this per-
ceptron model to learn a concept. Each node rep-
resents a particular attribute-value pair v;. Each
example e fed to the network is described by a set
of attribute-value pairs. If the example contains the
attribute-value pair v;, the corresponding node z;
is assigned the value 1, otherwise z; has the value
0. To classify the input as a positive or negative
example of the concept the network represents, the
procedure uses the formula above to determine the
output y of the network. The output is compared to
a threshold ¢:

Ify>t
Then e is a positive example of the concept
Else e is a negative example of the concept

The perceptron is usually given a set of examples
on which it is t¢rained. If it incorrectly classifies
a training example, the threshold and the weights
corresponding to the misclassified example are ad-



justed. The network is said to have learned the con-
cept when it correctly classifies the training set of
examples.

Parallel Implementation

Two operations dominate the computation per-
formed by Perceptron: the calculation of the output,
and the adjustment of the weights. These operations
are also consistent across the nodes in the network;
that is, the same set of operations are performed for
each node. The parallel version of Perceptron, called
Parallel-Perceptron, vectorizes these operations.

To parallelize Perceptron, we must first decide what
data to parallelize. The operations we wish to paral-
lelize are performed across the nodes in the network,
so the nodes can be spread out across the processors.
Each processor contains the following structure:

(*defstruct NODE
;; Weight assigned to this node
(weight 0.0)
;7 Instance values for this node
(examples (make-array *numexamples*)))

The structure contains the current weight for the
node, and an array of examples. Each element of the
example array has the value 0 or 1. If the example
includes that particular attribute value, it is assigned
a 1, otherwise it is assigned a 0. When a set of
training examples is input to the system, Parallel-
Perceptron performs the following functions until all
of the training examples are correctly classified:

;; Look at all of the examples
(dotimes (i *numexamplesx*)
(*if
(compute-perceptron-output!!
nodes i threshold)
(*cond
;; Misclassified a negative example
((false-positive!!
(node-examples!! nodes) i)
(*setf threshold (+!! threshold delta))
;; Adjust the node weights
(*setf (node-weights!! nodes)
(-!! (node-weights!! nodes) delta)))
( ));; Correctly classified the ezample
t nil!!
(*cond
;7 Misclassified a positive exzample
((false-negative!!
(node-examples!! nodes) i)
(*setf threshold
(=!! threshold delta))
;; Adjust the node weights
(*setf (node-weights!! nodes)
(+!! (node-weights!! nodes) delta)))
;5 Correctly classified the ezample
(t nil!1))))

The above code first calls compute-perceptron-
output!!, shown below, which returns TRUE if the
example is classified by the network as a positive ex-
ample, and NIL (false) otherwise. If the example is
incorrectly classified as positive (as determined by
the call to false-positive!!), then the threshold is
increased and the weights reduced. If the example
is incorrectly classified as a negative instance (as de-
termined by the call to false-negative!!), then the
threshold is reduced and the weights increased.

Parallel-Perceptron computes the output of the net-
work for example; by summing the values of the
corresponding weights. The function that computes
the output value is defined as:

(*defun compute-perceptron-output!!
(nodes i threshold)
;; Returns network’s classification of example 1
(let ((sum 0))
;7 Select attribute-values referenced by example

(*when
(eq!!
(aref!! (node-examples!! nodes) (!! i))
(re 1)

;5 Sum node weights

(setf sum (*sum (node-weights!! nodes))))
;; Compare sum to the threshold
(>!! (!'! sum) threshold)))

When a parallel conditional statement such as *cond
or *when is executed, *Lisp activates only the
processors for which the condition returns TRUE.
Only those processors can be accessed throughout
the corresponding block of code. Because each
processor represents a distinct attribute-value pair,
compute-perceptron-output!! selects those pro-
cessors whose corresponding attribute-value pair is
referenced by the current example. The weights for
only those selected processors is summed and com-
pared to the threshold.

The output is used to determine if the input is a pos-
itive or negative example of the concept. If the net-
work misclassifies the example, Parallel-Perceptron
updates the weights for each node using a single par-
allel operation.

It should be noted here that the operation used to
sum the weights is not a purely parallel operation,
since a single variable is being updated by the value
in each processor. However, *Lisp provides the *sum
operator which utilizes the organization of the pro-
cessors to minimize the number of operations per-
formed. While the time spent performing the sum-
mation is thus greater than a single operation, it is
much less than would be required to iterate over ev-
ery node, as is done in the sequential implementation
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Figure 1: Sequential and Parallel Perceptron Results

of Perceptron.

Comparison of Complexity Results

Because the operations involving the nodes of a per-
ceptron are now parallelized, it is expected that
the time complexity of Parallel-Perceptron would re-
main constant as the number of attribute-value pairs
increases, while the complexity of sequential Percep-
tron would increase linearly. To test this hypothesis,
the sequential and parallel versions of Perceptron
were run on a series of examples. The number of
attribute-value pairs were increased by 10 for each
test, and the number of examples was always half
the number of attribute-value pairs (half of these
were positive and half were negative). The sequen-
tial version was run on the Connection Machine, but
did not utilize multiple processors.

Figure 1 shows the results of this experiment. The z
axis represents the number of attribute-value pairs,
and the y axis represents the time in CPU seconds
taken to learn the concept from the training set. As
is expected, the line representing the sequential im-
plementation run on this data increases more rapidly
than the parallel version. The parallel version also
increases in complexity over the number of attribute-
value pairs, but this is primarily due to the corre-
sponding increase in examples.
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Figure 2: Perceptron Time per Trial

The previous experiment increases the number of ex-
amples along with the number of attributes. A sec-
ond experiment was run in order to compare the per-
formance of the sequential and parallel perceptron
programs as only the number of attributes increases.
Starting with ten binary-valued attributes, the ex-
perimental method selects three sets of fifty exam-
ples (chosen at random). Each set is run through
both sequential and parallel versions, and the exe-
cution time per trial is averaged over the three runs.
Further results are gathered for increments of five at-
tributes, up to 100 attributes. A trial occurs when
the perceptron classifies every example in the exam-
ple set, adjusting node weights for misclassifications.
The perceptron continues trials until every example
is classified correctly.

Figure 2 shows the results of this second experiment.
The z axis displays the number of attributes, and
the y axis displays the average time per trial (in
seconds) over the three sets of fifty examples. The
results show that the sequential perceptron’s time
per trial increases with the number of attributes,
while the parallel perceptron’s time per trial remains
essentially constant.

As is demonstrated in this section, learning al-
gorithms exist whose parallel implementation is
straightforward and resulting decrease in complexity
is impressive. Neural network models in general lend
themselves to parallelization. The following sections



describe algorithms whose operations are not as eas-
ily segregated. As a result, the parallelization of
these procedures is much more difficult.

AQ

This section describes the sequential AQ algorithm
and the parallel implementation. Complexity results
for both implementations are compared.

The Algorithm

The AQ algorithm was developed by Michalski [3].
Given a set of positive and negative examples ex-
pressed as a conjunction of attribute-value pairs, AQ
finds a disjunctive normal form description (called a
complex) of a concept covering all the positive ex-
amples and none of the negative examples. The al-
gorithm proceeds by first selecting a seed from the
set of positive examples. Next, a star is generated
for the seed. A star contains a set of complexes that
cover the seed, but do not cover any of the negative
examples. The search for a star is a beam search
with *maxstar® as the beam width.

Once a star has been generated for a seed, the com-
plexes in the star are sorted using a lexicographic
evaluation function (LEF). The LEF used in both
the sequential and parallel implementations sorts
first by number of positive examples covered and
then by the generality of the complex. The best
complex according to the LEF is retained as a dis-
junct in the final concept, and the positive examples
covered by the disjunct are removed from the set of
positive examples. Until all positive examples are
covered, AQ selects a new seed, generates a star for
the seed and retains the best complex from the star
according to the LEF. When all positive examples
are covered, AQ returns the set of retained disjuncts
as the final concept.

Most versions of AQ allow internal disjunction
within the final concept description. Internal dis-
junction provides the ability for features within a
single disjunct to have more than one value. Nei-
ther the sequential or parallel versions of AQ used
here allow for internal disjunction.

Parallel Implementation

The main operation that dominates the computa-
tion of AQ is star generation. The star for a seed
begins with a single complex covering every exam-
ple. For each negative example, the complexes in the

star are specialized so that they no longer cover the
negative example. Because there are multiple spe-
cializations possible for each negative example, the
star can grow to be exponential in size. Specifically,
the star can grow to be 2/ in size, where f is the
number of features. This exponential growth is the
reason for the beam search constrained by the beam
width *mazstar*.

AQ can be parallelized by storing each element of
the star in a separate processor. The corresponding
*Lisp structure is defined as:

(*defstruct STAR-ELEMENT

;; Pointer to a positive event
(seed-index -1)

;; Pointer to a negative event
(neg-index -1)

;5 Lef value for this element
(lef -1)

;; Complex for this element
(complex (make-array *numfeatures*)))

Whereas sequential AQ must consider the elements
of the star one at a time, Parallel-AQ specializes each
element simultaneously. With 2'5 processors on the
Connection Machine, problems with 15 features or
less can be handled. If the number of features is
less than 15, another avenue for parallelizing AQ is
revealed. Because each seed requires 27 processors
to hold its star, (15 — f) seeds may be considered
simultaneously instead of just one. The best com-
plex can then be selected from amongst several stars
generated for multiple seeds, possibly improving the
accuracy or reducing the number of disjuncts in the
final concept.

The final parallelization possible for AQ is the cal-
culation of the LEF. Because each complex is now
contained in a unique processor, the LEF for each
complex in each star can be calculated simultane-
ously. The sequential AQ must calculate the LEF
iteratively for each complex in the star.

Parallel-AQ employs all of the parallelizations de-
scribed above. There is no need for *mazstar*, be-
cause all possible complexes in the star can be op-
erated on simultaneously. Multiple seeds are used
when the problem does not exceed the capacity of
the CM-2.

Comparison of Complexity Results

In order to compare the complexity of sequential and
parallel versions of AQ, the sequential AQ was mod-
ified to allow multiple seeds, and *mazstar* was set
to infinity. Thus, both the sequential and parallel
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Figure 3: Sequential and Parallel AQ Results

versions are considering | seeds | ¥2/ complexes for
each disjunct in the final concept. Because Parallel-
AQ operates on each complex simultaneously, we ex-
pect an exponential speedup over sequential AQ.

Figure 3 compares the results of 10 runs of both se-
quential and parallel versions of AQ. For each run,
the number of positive and negative examples was
set to the number of features. The sequential ver-
sion was run on the Connection Machine, but was
not vectorized. As expected, the time complexity of
the sequential AQ increases exponentially with the
number of features, while the CPU time for Parallel-
AQ remains virtually constant. The time complexity
of Parallel-AQ actually increases linearly with the
number of negative examples.

In addition to the improvement in time complex-
ity, the parallelization of AQ offers the possibility of
producing a better concept (i.e., simpler or more ac-
curate) over traditional sequential implementations
of AQ. This is due to the capability of consider-
ing multiple seeds. Although the sequential version
used here could consider multiple seeds, this abil-
ity greatly degrades the time complexity of sequen-
tial AQ. The disadvantage for Parallel-AQ is that
each 27 complexes for a seed is stored in a proces-
sor. Thus, the CM-2 may be unable to handle prob-
lems with a large number of features. Furthermore,
the addition of internal disjunction functionality in-
creases the number of complexes per seed to 2°f,

where v is the number of possible values for each
feature. However, for problems that fit within the
number of processors of the Connection Machine,
Parallel-AQ offers considerable improvements over
the sequential version.

ID3

This section describes the sequential ID3 algorithm
used to build a decision tree for a given concept.
Ways of parallelizing this algorithm are presented,
and limitations are described that make such an im-
plementation difficult.

The Algorithm

ID3 is a program developed by Quinlan to induce
decision trees [4]. A decision tree represents a deci-
sion procedure for determining whether an instance
is a positive or negative example of the concept. A
decision tree is formally defined to be either:

1. A leaf node (or answer node) that contains a
class name, or

2. A non-leaf node (or decision node) that contains
an attribute test with a branch to another deci-
sion tree for each possible value of the attribute.

The sequential ID3 procedure builds a decision tree
from a set of training examples by choosing one of
the given features as the root of the tree and recur-
sively making trees for each of the resulting cate-
gories. The feature is chosen based on its entropy
value at that point in the tree the feature with
the highest entropy value is selected. Computing
the entropy value for a feature involves counting the
number of positive and negative examples for each
of the values.

Possible Parallel Implementations

There are a number of ways that ID3 could be par-
allelized. The features could be distributed across
the processors, and for a given level in the tree each
feature computes its entropy value in parallel. Al-
ternatively, the feature values could be distributed
across the processors, each calculating in parallel the
number of positive and negative examples referenc-
ing that value (this sum is then used to compute
the corresponding feature’s entropy value). Finally,
the examples themselves could be distributed across
the processors and a *sum could be used to compute



the number of positive or negative examples with a
certain value.

These ideas for parallelization are appealing in the-
ory but are actually very difficult to implement. Al-
though it is desirable to have each feature compute
its entropy value in parallel, it is not a feasible task.
This is due to the fact that each node at the current
level of the decision tree examines each feature. Let
n represent the number of nodes at the current level
i. FEach feature is being considered not just once at
a level 4, but n times, using n different sets of data.
Unfortunately, this requires performing a separate
operation for each set of data, yet using only one
processor’s feature information, a task which is not
possible on the Connection Machine.

The only way this implementation would be possible
is if the features are duplicated. A duplicate must
be created for each node at level i. As the number of
nodes increases, the number of duplicates and thus
processors required becomes very large. The time
expense is traded here for space expense, and the al-
gorithm used to duplicate the features and calculate
which processor to hold them is very complex. The
same problem occurs when values are distributed
among the processors — the number of corresponding
positive and negative values for each node at level i
must be counted, thus the values must also be du-
plicated.

Neither of these alternatives provides much benefit
over the sequential ID3 procedure. The last alterna-
tive, distributing the examples over the processors,
provides some benefit, but as the *sum operation
must be used to count the number of possible pos-
itive or negative examples for a given value, this is
not a completely parallel implementation.

The discussion in this section should bring to light
the nature of algorithms that can be parallelized on
the Connection Machine. While the machine can
parallelize operations, these operations must be the
same for each piece of data. It is the data that is
truly being parallelized. There may be additional
methods of parallelizing ID3, but this remains an
avenue of future research.

Conclusion

The parallel implementations described in this paper
push the intersection of parallel methodologies and
parallel hardware into the realm of machine learning.
Experimentation with the perceptron and AQ learn-
ing algorithms illustrate the computational benefits

possible by implementing these algorithms on the
Connection Machine. Descriptions of the implemen-
tations offer a valuable analysis of the types of paral-
lelizations and performance benefits possible on the
Connection Machine using *Lisp as the parallel im-
plementation language.

The implementations also revealed constraints im-
posed by the Connection Machine architecture and
environment. The “data parallel” architecture lim-
its the types of parallelizations that can be per-
formed. Constraints on the availability of data struc-
tures provided by the *Lisp programming environ-
ment, complicates the transformation of sequential
programs. These constraints will affect the design
of future parallel implementations of learning algo-
rithms on the Connection Machine. Despite the
complications in merging theoretical parallelizations
with existing parallel hardware, the parallel imple-
mentations of perceptron and AQ demonstrate the
feasibility of accelerated learning on the Connection
Machine.
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