
Citation: Boult, T.E.; Windesheim,

N.M.; Zhou, S.; Pereyda, C.; Holder,

L.B. Weibull-Open-World (WOW)

Multi-Type Novelty Detection

in CartPole3D. Algorithms 2022, 15,

381. https://doi.org/10.3390/

a15100381

Academic Editor: Vangelis Th.

Paschos

Received: 10 August 2022

Accepted: 3 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Weibull-Open-World (WOW) Multi-Type Novelty Detection
in CartPole3D
Terrance E. Boult 1,* , Nicolas M. Windesheim 1, Steven Zhou 2, Christopher Pereyda 3 and Lawrence B. Holder 3

1 VAST Lab, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
2 Cheyenne Mountain High School, Colorado Springs, CO 80906, USA
3 School of Electrical Engineering and Computer Science, Washington State University,

Pullman, WA 642752, USA
* Correspondence: tboult@uccs.edu; Tel.: +1-719-255-3510

Abstract: Algorithms for automated novelty detection and management are of growing interest but
must address the inherent uncertainty from variations in non-novel environments while detecting
the changes from the novelty. This paper expands on a recent unified framework to develop an
operational theory for novelty that includes multiple (sub)types of novelty. As an example, this
paper explores the problem of multi-type novelty detection in a 3D version of CartPole, wherein the
cart Weibull-Open-World control-agent (WOW-agent) is confronted by different sub-types/levels of
novelty from multiple independent agents moving in the environment. The WOW-agent must balance
the pole and detect and characterize the novelties while adapting to maintain that balance. The
approach develops static, dynamic, and prediction-error measures of dissimilarity to address different
signals/sources of novelty. The WOW-agent uses the Extreme Value Theory, applied per dimension
of the dissimilarity measures, to detect outliers and combines different dimensions to characterize the
novelty. In blind/sequestered testing, the system detects nearly 100% of the non-nuisance novelties,
detects many nuisance novelties, and shows it is better than novelty detection using a Gaussian-based
approach. We also show the WOW-agent’s lookahead collision avoiding control is significantly better
than a baseline Deep-Q-learning Networktrained controller.

Keywords: novelty detection; weibull; extreme value theory

1. Introduction

Detecting and dealing with novelty is an inherent part of dealing with the open world.
There is almost no greater source of uncertainty for a Weibull-open-world control-agent
(WOW-agent) than being presented with a novel change in the world, especially novel
independent agents in an uncontrolled world. While novelty is something sufficiently
dissimilar to the past experience, that does not mean the WOW-agent cannot reason about
the novelty. While there have been multiple papers addressing out-of-distribution detection,
novel class discovery, and open-world learning, not all novelty is out-of-distribution data or
a novel class. A WOW-agent could be observing known classes taking part in novel actions,
known classes involved in novel interactions, or novel changes to known classes, as well as
observing novel classes. We need more general models of novelty, ways of detecting that
novelty, and ways of testing multiple levels of novelty. This paper address all three goals.

This paper considers the simulation domain of CartPole3D, allowing us to study
different subtypes of novelty. CartPole3D is largely based on the well-known classic control
task CartPole [1], where the task is to control the cart action to keep the pole balanced for as
long as possible or until an episode generally (ends 200-time-steps). The primary difference
between the CartPole3D environment and classic CartPole is that CartPole3D lives in a
(simulated) 3-dimensional world that has flexibility/complexity, and requires the controller
to choose between Front, Back, Left, Right, and no action. While 3D Cartpole environments
have been used in other RL-based control studies [2], our usage is different because we add

Algorithms 2022, 15, 381. https://doi.org/10.3390/a15100381 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15100381
https://doi.org/10.3390/a15100381
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5007-2529
https://orcid.org/0000-0002-6586-3144
https://doi.org/10.3390/a15100381
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15100381?type=check_update&version=1

Algorithms 2022, 15, 381 2 of 17

independently moving agents to introduce/study novelty. Different independent agents are
introduced into the environment to create new types of novelty; see Figure 1 for an example.
The test environment can introduce novelties where there is a difference in the independent
agents (e.g., the number, size, or stickiness of the agent), the actions of the spherical agents
(e.g., random motion versus directed attacking motions), or even the interactions (if balls
coordinate in action). These would all be novelties the WOW-agent needs to detect and
manage. If a WOW-agent can recognize which type of novelty has been introduced, it
might impact how they choose to behave (e.g., a sticky/stationary ball could help balance
the pole), while attacking independent agents should be avoided. The experiments in this
paper will use this domain, comparing a one- and two-step lookahead WOW-agent using
Extreme Value Theory (EVT) for multi-type novelty detection with the same WOW-agent
using a Gaussian-based novelty detection. We also compare a Deep-Q-learning Network
(DQN)-based control algorithm [3] that is not novelty aware.

To address the problem of multiple subtypes of novelty, this paper adopts and ex-
tends a recent framework for defining novelty theory [4] and expands it to formalize the
definition of and detection of multiple semantically different levels of novelty. In the
original Boult et al. [4] framework, novelty was defined using abstract dissimilarity mea-
sures in the world or observation spaces. However, the theory did not define “agents
spaces,” which are required to build novelty detection.

Observation Vector:
6D Cart [x,y,z,x’,y’,z’]
7D Pole [x,y,z,w,x’,y’,z’]
N*6D EAs[1..N][x,y,z,x’,y’,z’]
8*3D Walls[1..8][x,y,z]

Pole

Figure 1. Our multi-type novelty experimental environment uses CartPole3D, where the goal is to
keep the pole balanced. The environment has a controllable cart (green) balancing a pole (blue). It
also has added independently moving environmental agents (red). The environment can be changed
to provide for multiple subtypes of novelty. The Open World Control Agent (WOW-agent) only
sees the observational vector of 37-73 numeric values of the position/velocity of the cart, pole, the
environmental agents, and the walls that define the world boundaries. In each episode, it receives the
observations of each step, makes a control decision (left, right, front, back, none), and tries to keep
the pole balanced for 200 timesteps. It reports the probability the world is novel in each episode. The
image also shows episode (E=) and step number (S=), the WOW-agent’s probability that the world
has changed (WC=) to a novel state and the WOW-agent score (S=).

The WOW-agent developed for this research seeks to detect previously unseen novel-
ties and classify them into different semantic novelty subtypes. In particular, we consider
novelty in classes, agents, actions, relations, and interactions, see Figure 2. Thus, we extend
the Boult et al. [4] framework to include agent novelty, with a computable EVT-based
dissimilarity in the agent-space. Secondly, we extend it to multi-type novelty by hav-
ing multiple dissimilarity measures in all three spaces defined in that paper: world-space,
observed-space, and agent-space. These are logically defined in the associated spaces and

Algorithms 2022, 15, 381 3 of 17

allow us to have different dissimilarity measures defining the different subtypes of novelty.
Our WOW-agent can classify previously unseen novelties using the multiple dissimilarity
measures and use that classification to formulate responses.

Observed Space

Agent Action

World Dissimilarity Operators

World regret functions

with State recognition function

Ag
en

t

In
pu

t

Task

Experience

Perceptual Operator

World State in World Space

World Dissimilarity Operators:

 World Regrets: Based on ground
truth from novelty generator + how

long pole was balanced

Observable Dissimilarity
Operators:

 (Note that these often define
different novelties from world
dissimilarity, e.g. because we

cannot observe mass directly.)

Agent Dissimilarity Operators

Agent regret for performance
based on how long pole

balanced

Figure 2. In the Boult et al. [4] framework for novelty, the critical elements for defining novelty are
task-dependent dissimilarity functions Dw,T ;Et Do,T ;Et , and associated thresholds δw and δo for the
world and observational space respectively. This paper shows that multiple dissimilarity operators
support defining multiple subtypes of novelty (e.g., novel agents, novel actions by agents, novel
interrelations, etc). We also define a WOW-agent agent-dissimilarity-operator and show how to
use Extreme Value Theory (EVP) to deal with the inherent uncertainty in the world while defining
an effective threshold δa for the WOW-agent to declare novelty subtypes. Finally, we show that
EVP can be effectively used to determine probabilities and the novelty detection thresholds in a 3D
CartPole environment.

The observation-spaces and agent-spaces include random variations, and dissimilarity
measure computation will have noise. Hence, there is uncertainty in deciding if this dissim-
ilarity is from noise or is caused by a novelty. A robust detection process is required. We
show how to use EVT to determine when a measured dissimilarity is sufficiently different
from training to declare something novel. Using the same dissimilarity variables/struc-
tures as our EVT-based solution, we also detect novelty using Gaussian-based uncertainty
models for comparison.

The contributions of this paper include:

• Extension of the Boult et al. [4] framework to be computationally tractable, support
agent-space dissimilarity, and support our formalization of multi-type novelty discovery.

• Formalization of the use of per-dimension EVT for dissimilarity-based novelty discov-
ery in the presence of uncertainty.

• Formalization of multiple new dissimilarity operators for novelty in CartPole, and in
general, for any simulator-based domain.

Algorithms 2022, 15, 381 4 of 17

• Experiments on CartPole3D with active environmental agents to evaluate how well
EVT-based novelty detection works for multi-level, including comparison with Gaussian-
based novelty detection and a DQN-based control agent.

2. Problem Formalization

In multi-agent problems, the term agent can become overloaded; we use the term
WOW-agent to refer to our software-agent that controls the cart while detecting/managing
novelty. We also have a DQN-based agent and a Gaussian-control agent, which are baseline
software agents that control the cart and detect novelty, respectively. We use the term
environmental agents to refer to other independently moving agents in the environment.

We also have two teams involved in the research: we refer to the Eval-Team team as
the team that generated the core environment and environmental agents, as well as, ran the
sequestered tests. We use Control-Team to designate the team that created the controlling
agent that needs to control the cart while also detecting novelties in the open-world.

2.1. CartPole3D with Environmental Agents

As stated in the introduction, the novel CartPole3D environment has been constructed
to utilize BulletPhysics [5], with a mixed C++/Python code base. The Eval-Team and Con-
trol0Team developed a slightly modified version of pyBullet that uses a modified planar con-
strained joint for the cart and to support setting state of the position and joints used for the
cart. The latter was a crittical function for the look-ahead controller used by the Controller-
team. This was incorporated into a python environment use by both teams—in particular,
this paper uses v0.7.9 of the system from https://github.com/holderlb/WSU-SAILON-NG
(accessed on 10 December 2021). The resulting CartPole3D model is a simulated environ-
ment with roughly 200 total changeable parameters/properties/attributes, some of which
have easily changeable python interfaces, some of which are in model “urdf” files, and
some of which are only in the C++ code.

Figure 2 shows a graphic rendering of the basic CartPole3D environment, the cart, the
pole, the walls, and an example with four environmental agents. While the simulator can
generate images, in this project, we do not receive images, just low-dimensional observation
vectors, which is all the information the controlling agents receive about the environment.

For the cart controllers, we consider three different models,

• DQN-agent: Deep-Q-learning Network (DQN)-based control algorithm, which is
the baseline

• GOWN-agent: Gaussian-based Open-World Novelty agent
• WOW-agent: our Weibull-based Open-World controller agent

The Eval-Team-team developed trainined a DQN-based agent for CartPole3D to serve
as a baseline. The baseline DQN-agent was a standard deep neural network with two
layers of 512 fully connected nodes with rectified linear unit activation. The agent used
DQN training, similar to that in [3,6,7]. The agent was trained on non-novel CartPole3D
episodes and converged after 500k steps. The final average performance reached was 0.8
out of 1.0, which represents keeping the pole balanced for 160-time steps on average out of
the possible 200-time steps.

The Control-Team-team implemented the WOW-agent and GOWN-agent; see the
MDPI branch of git@github.com:Vastlab/SAILON-CartPole3D.git (accessed on 10 Decem-
ber 2021). Both used a lookahead-based control algorithm, where it received the current
observational vector and compared that with its projected state. We noted that to support
the Control-Team state setting functions needed for the WOW-agent lookahead type con-
troller, Control-Team developed a modified pybullet. The state setting was imperfect as
the test system only provided truncated position and velocity of the cart, pole, and active
agents—which produced insufficient information to exactly recreate the state. Thus the
lookahead state prediction was inherently noisy, and the WOW-agent must detect novelty
in the presence of a noisy world model.

https://github.com/holderlb/WSU-SAILON-NG
git@github.com:Vastlab/SAILON-CartPole3D.git

Algorithms 2022, 15, 381 5 of 17

2.2. Formal Models of Novelty

The Boult et al. [4] framework has critical elements defining novelty based on task-
dependent dissimilarity functions Dw,T ;Et Do,T ;Et , and associated thresholds δw and δo for
the world and observational space respectively. We generalize this by defining multiple
dissimilarity measures in each space using task-semantics to provide multiple types of
novelty. First, as shown in Figure 2, we expand the definition to have four dissimilarity
operators in each of the world-spaces and observed-spaces:

• Agent Dissimilarity: Dw,T ,A/Do,T ,A
• Motion Dissimilarity: Dw,T ,M/Do,T ,M
• Relations Dissimilarity: Dw,T ,R/Do,T ,R
• Interaction Dissimilarity Dw,T ,I/Do,T ,I

In the two-party evaluation used in this paper, the definitions of these dissimilarity
measures are up to the Eval-Team, who defines the worlds with novelties. In the real world,
we never know the actual novelty. In this formulation, the Control-Team does NOT get
to know how the world/observed dissimilarity measures are defined or even what of
the four dissimilarity to use. The control-team must detect novelty and estimate novelty
subtype based on the combination of its own dissimilarity functions and the roughly
implied semantics.

The definitions of novelty can be generalized to as many semantic subclasses of
novelty as one wants for the given task. In particular, the control agent defines 64 different
dissimilarity dimensions for agent-dissimilarity. Probabilities over subsets of these 64
dimensions are combined to approximate the unknown measures for world/observed
dissimilarity measures.

Note that this approach is explicitly anticipating particular classes of novelty which we
contend is still consistent with the idea of novelty. This approach also uses properties of the
observed novelty to determine a more semantically meaningful label. While not explored
in this paper, such a classification may be useful for adapting to that novelty. For example,
with finer subtypes/categories such as attacking-motion versus supporting-motion (e.g.,
one would adapt differently by avoiding the spheres displaying former novel motions and
seeking out those with the latter).

The second expansion of the Boult-et-al model is by adding dissimilarity operators
for the agents. While their model provided the observed data to the agent, it defined by
to the EvalTeam (our oracle) with their dissimilarity operators in the world-space. Hence,
we define a dissimilarity operator for agents who can use a mixture of the observed data
and the full agent state history. In particular, this allows us to define a formal process
for the agent to use an EVT-based process, described in the next section, to estimate a
threshold. It is worth noting that the agent-dissimilarity may declare something novel
where the observed dissimilarity may not. The discrepancy can occur because the agent
chooses a limited set of data for computing/normalizing its dissimilarity; in our case,
we use a distributional model even if the observed-space has a large set of actual states.
We also introduce an agent-space regret operator. Let Pa,T : (x) 7→ [0, 1] be the task
performance measure, which for CartPole is the percentage of time the pole was balanced.
Then we define agent regret asRa,T (x) = 1−P(x), i.e., the failure percentage for the task
performance operator.

In the Boult et al. [4] framework, they provided a formal definition of nuisance novel-
ties, which we also adopt as it is useful to be able to distinguish novelties for which there is
a novelty but where the world and observation regret differ. For example, in the CartPole
domain, using just the state interface (versus image interface), the agent can never detect a
“cart-color” novelty as it is not observable. Hence, if world regret depends on the detection
of that novelty, there will be inherent disagreement.

While that paper was a nice start, its model was not operationally, not precise and
ignored uncertainty/variations. In this paper we propose an operational definition: a
non-detection nuisance novelty occurs when the agent regret is not statistically different from
its performance in the normal world but when world regret is statistically different. While

Algorithms 2022, 15, 381 6 of 17

there may be more general models for statistically significant testing, we use a very simple
model. Let µâ,R, σâ,R be the mean and standard deviation in a normal world of the regret
of the baseline agent â. Then an agent is robust if |Ra,T (x) − µâ,R| < 2σâ,R where the
baseline can be the agent itself but ideally is a near-optimal algorithm so that robustness is
not measured with respect to a badly performing algorithm. Let µw,R, σw,R be the mean
and standard deviation of normal world regret, respectively. Then we declare a novel
world instance x to be a nuisance novelty, if and only if, the agent is robust on input x
and |Rw,T (x)− µw,R| > 2σw,R. Intuitively, nondetection nuisance novelty occurs when the
world regret is significantly impacted by x while the agent is robust, i.e., the agent regret
with respect to task performance is not impacted by the novelty.

3. Method

The problem here has three aspects. First is the core CartPole3D task—keep the pole
balanced. The second is the detection of novelty, and the third is the characterization of the
subtype of novelty. In this section, we describe the key methods used for each task.

3.1. Control

Our WOW-agent is a classic lookahead where we consider one-step and two-step
lookaheads. To implement a lookahead WOW-agent, we had to augment the CartPole++
3D world with a set-state function, which was more complex than it might sound. The
CartPole++ environment implemented the cart using only a partially implemented (and not
officially supported) planar joint, which constrains the object to move only within the x-y
plane. Unfortunately, the class did not have a sufficient implementation to support even a
basic set-state function. The second issue is that in the planar joint model, the cart is defined
with a base position plus a joint offset but then returns position via a center-of-mass that is
neither of those values. Thus, given the final position, infinitely many combinations can
result in the same endpoint. The pole position is specified as attached to the “top” of the
cart, but that position is unknown (e.g., because it depends on the unknown size of the cart).
Unlike the 2D CartPole environment, where lookahead can have a near-perfect prediction,
even in a normal world, the “set-state” function is inherently noisy, and prediction errors
are non-zero and vary by variable. Thus, setting the internal state of the simulator for
lookahead is inherently uncertain.

The scoring function is a combination of how far the pole is off vertical plus a novel
element added to try to avoid the bouncing balls. Unlike traditional CartPole, we know
there will be agents flying around the arena, and in general, if they collide, it will likely
impact the pole. Hence, we compute the distance to the closest potential collision point and
include an inverse weighted version of that into the score. We note that we cannot avoid
collisions with fast agents aiming at the cart because they can move faster than we can get
out of the way. Though not included in this paper, one way to adapt to novelty may be
to adjust the scoring weight for potential collisions to start moving out of the way sooner.
Others would be to change the force or angle of the push, but neither was an option in this
version of CartPole3D.

3.2. EVT-Based Probability of Per-Instance Novelty and Overall Novelty Detection

As discussed in the previous section, we use dissimilarity measures + EVT for detec-
tion. We broke the dissimilarity measure computation into 34 static variables, 9 dynamic
variables, and 21 prediction-error variables. The static variables are the min and max of
the absolute value of the initial position of all the objects in the world. To deal with the
variable number of agents, we build one static model for agents by combining variables
from all agents using the appropriate min and max operators. We compute the min/max of
cart/pole/block velocity for dynamic variables. For prediction-error variables, we use the
per-dimensional prediction error between the predicted and the actual state after an action,
and we do this for the cart and ball positions (3D*2), the cart, pole, and ball velocities
(3D*2), and the pole angle (4D). Static dimensionality would include the wall locations if

Algorithms 2022, 15, 381 7 of 17

the novel world had different initial wall locations. Since we even hypothesized that walls
could move as a potential novelty, we include it in the state. Finally, we also keep track of
and utilize the collision and failure frequencies.

We run 3000 trials and collect the dynamics for the first 40 steps of control and then
collect the values of all the above variables. We treat each dimension separately and do
Weibull fitting using a tail size of 100, producing 64 different Weibull models. At test
time, we compute the variables and sum the Weibull cumulative distribution function
(CDF) probability from each for the time step. We also track which individual dimensions
had significant EVT probability (>0.01) and use that to build our characterization strings
discussed below.

While the above gives us a probability of the current time step being “novel,” collisions
will often produce variable values unlike those seen in training. We limit training to only
the first 40 timesteps to reduce the number of collisions. In 3000 trials, we only see roughly
50 collisions in the training data, which does not provide enough data to characterize the
collision effect. Furthermore, since some novelties may reduce impacts, for overall novelty
detection, we want something that looks at the distribution of scores independent of the
subtype of novelty or variable used and incorporates a model of reliability. Looking at
the literature, we decide to build roughly the approach described in [8]. This approach
builds a Kullback–Leibler (KL) divergence model, using a truncated Gaussian, from a
vector of probability scores. We compute the expected KL divergence over the first 40 steps
in training. Then at test time, we do the same and use the probability of exceeding that
value as the overall novelty signal that the world has changed. We then accumulate that
probability over trials with a blending to smooth out the impact of occasional collisions.

While we have described this use of EVT-based novelty computation in relative
CartPole-specific terms, the reader should see how it can be applied to any set of variables
in a simulator in both the raw form as well as their prediction error. The task-specific issues
are mapping those to the different dissimilarity levels.

3.2.1. WOW Novelty Detection: EVT Per-Step Combined

When using the dissimilarity-based theory, multiple sources of uncertainty impact
how to set the novelty detection threshold. The first is the normal uncertainty caused
by random variations in the measure. But the second source of uncertainty would be
associated with any model assumptions (e.g., if one assumes Gaussian distribution on
values that may or may not hold). The important observation of this section is that we
remove the second source of uncertainty by using Extreme Value Theory (EVT) because we
do not need to assume much about the distribution of dissimilarity in the normal world.

In the [4] framework, they simply declare thresholds for dissimilarity δw,δo, without
providing any meaningful discussion on how they might be defined/estimated. Given the
inherent variations and noise in real problems and the undefined scaling issues, defining
these to account for uncertainty in the actual task/worlds is critical. In this section, we
propose using EVT to define meaningful thresholds, including the agent threshold δa.

There are two primary Extreme Value theorems, and we build from the Fisher-Tippet
Theorem, also known as the statistical EVT of the first type. Just as the Central Limit
Theorem dictates that the random variables generated from certain stochastic processes
follow Gaussian distributions, EVT dictates that given a well-behaved initial distribution
of values (e.g., a distribution that is continuous and has an inverse), the distribution of the
maximum (minimum) values can assume only limited forms. We restate the core theorem
here for reader convenience, and one can find proofs in many books, including in [9].

Theorem 1 (Fisher-Tippet Theorem:). Let (v1, v2, . . .) be a sequence of i.i.d samples. Let ζn =
max{v1, . . . , vn}. If a sequence of pairs of real numbers (an, bn) exists such that each an > 0 and
limz→∞ P

(ζn−bn
an
≤ z

)
= F(z) then if F is a non-degenerate distribution function, it belongs to

the Gumbel, the Fréchet, or the Reversed-Weibull family.

Algorithms 2022, 15, 381 8 of 17

Assuming dissimilarity, like distance, is bounded from below by 0, of the three distri-
butions only the Reversed-Weibull can apply for maximum (and hence Weibull for minima).
This EVT, and in particular the Weibull-based fitting, is widely used in many fields [9],
such as manufacturing (e.g., estimating time to failure), natural sciences (e.g., estimating
100- or 500-year flood levels), and finance (e.g., portfolio risks). EVT has recently been
(re)introduced and applied in recognition, machine learning, and computer vision [8,10–12]
where it is often used in open-set or open-world recognition tasks.

We note that some of the fields we will model are not bounded apriori, e.g., maximum
velocity is not easily bounded. Such fields might be better modeled with a different type-1
EVT distribution (e.g., Freshet or Gumbel), or may even be better modeled with a peak-
over-threshold, i.e., EVT type 2 [13,14], approaches. However, for simplicity we have used
Weibull modeling for all fields and found it to be sufficiently effective and leave the search
for better per-field models to future work.

To apply the Weibull to determine a novelty detection threshold we consider some
dissimilarity measures and collect values of this measure of a large number of trials in the
normal world. We can then use the largest or smallest of these scores, depending on the
variable type, and fit a three-parameter Weibull distribution to them:

W(x; µ, σ, ξ) =

 ξ
σ

(
x−µ

σ

)ξ−1
e−(

x−µ
σ)ξ

x < µ− σ
ξ

0 x ≤ µ

where µ ∈ R, σ ∈ R+, and ξ ∈ R− are locations, scale, and shape parameters. Multiple
libraries can compute the three-parameter Weibull, including SciPy, used for this paper.
The associated CDF is given by:

Wcdf(x; µ, σ, ξ) =

{
1− e−(

x−µ
σ)ξ

, x < µ− σ
ξ

0 , x ≤ µ

which can be used to compute the probability of novelty for any given dissimilarity score
x. In our control system, we accumulate this probability over different items and then
threshold (p = 0.99), which simplifies processing varying numbers of dissimilarity. If
desired, one can use the distributional parameters µ, σ, ξ, to compute the dissimilarity
threshold δ that yields a given probability 0 < p < 1 such that probability (Da,T > δ) ≥ p

implies novelty. We use the inverse CDF to derive δa = µ + σ ∗ (−ln(1− p))
1
ξ .

3.2.2. KL-Divergence over Per-Episode Novelty-Detection

The per-dimension approach produces a vector with per-time step probabilities of
novelty. If the simulation and predictions were perfect, thresholding such per-time step
data may be sufficient to detect novelty. However, we found probability from a single trial
was too noisy to use directly. This is because the 200-time steps per episode and 100 s of
episodes per trial, combined with the noise inherent in the simulation with a imperfect
set-state function, have too high a probability of false detection. To improve robustness, we
consider the distributions of the novelty probabilities over time and inspired by [8] we use
KL-divergence to compare the normal distribution to the distribution from the test data,
see Figure 3. To improve sensitivity for small differences, we also use the accumulation of
novelty probability over time.

The Kullback–Leibler divergence is a fundamental measure of the difference between
distributions. It measures the relative entropy

KL (P‖Q) =
∫ +∞

−∞
p(x) log(

p(x)
q(x)

) dx (1)

where p(x) is the probability density function of the testing vector, and q(x) is the probabil-
ity density function of normal world vectors. In our case both the training and test vectors

Algorithms 2022, 15, 381 9 of 17

are distributions of per-time novelty probabilities, and the goal is to detect changes in that
distribution. Intuitively the training vector would be all small value and the test all large
values, but KL allows us to formalize “how” different is the distributions.

Your Team’s
Logos Here

Gaussian Fitting over the temporal vector of
probabilities for a test episode

KL-divergence between test episode
Gaussian and normal world Gaussian

Accumulate World Novelty Probability

Per-Dimension
Dissimilarity
Extraction

For each dimension fit Weibull to tail of
extreme (max or min) value for each

dimension of dissimilarity

Weibull fit in Training Weibull applied in Testing

Per-time step
Feature Vectors

Accumulate the Distribution of per-
dimensional values.

TA1 Simulator

Accumulate over dimensions and append to
the temporal vector of probabilities of per

simulation time-step

Use per-dimension Weibull to compute
the probability of novelty per-dimension

Gaussian modeling of probabilities
from normal worlds

Gaussian Fitting over the noisy vector of
probabilities of 1000s of normal worlds

Normal world Gaussian-
model

KL Test for Novelty Introduction

Figure 3. Overall novelty processing per instance and per episode. Data is collected from each
dissimilarity dimension during testing, and Weibulls are fit the extreme value for each. Given a
trial, at each time step, the dissimilarity values are computed and the per-dimensional Weibull
models yield probabilities that accumulated over dimensions and appended to a temporal probability
vector. For 300 normal trials, i.e., examples of normal worlds, the system builds a Gaussian model
(mean/standard deviation) of the elements of the temporal probability vector. For each episode of a
test trial, the temporal probability vector is computed and KL-divergence is computed comparing
that to the Gaussian of the normal world. The per-episode probabilities are accumulated over time to
allow for high sensitivity with low false detection rates.

Making the classic Gaussian assumption for the pair of distributions, i.e., letting
p(x) ∼ N (µt, σ2

t) and q(x) ∼ N (µn, σ2
n), be the distribution parameters of the test and

normal worlds respectively, the KL divergence measure is:

KL (P‖Q) = log(
σn

σt
) +

σ2
t + (µt − µn)2

2 σ2
n

− 1
2

(2)

3.3. Overall World-Changed Novelty Detection

As an experimental trial for this task is a sequence of episodes, we compute the KL-
divergence per episode and accumulate that over time. This allows small subtle changes to
accumulate evidence. One issue for using KL is that, in some episodes, the environmental
agents impact the cart and the temporal probability vector cannot be filled; hence KL
detection becomes even noisier. To address this, we do not reduce the accumulation weight
for KL for episodes that do not get at least 40/200 samples. This, however, reduces detection
in highly unstable environments, so we increase the overall probability of novelty based on
consecutive failures. Future work should formalize that process using EVT, but that takes
way more runs to gather enough data, so for the experiments herein, it is an ad-hoc increase.

3.4. GOWN Per-Instance Novelty

The above described is the core WOW system. For novelty detection, we also devel-
oped a Gaussian-based GOWN baseline. It is identical to the EVT agent in all respects
except that the per-instance novelty is based on truncating a Gaussian model. We computed

Algorithms 2022, 15, 381 10 of 17

the mean µ and standard deviation σ on each, similar to the EVT and used them in the
Gaussian CDF:

Φ(x; µ, σ) =
1√
2π

∫ x

−∞
e
−(t−µ)2

2σ2 dt. (3)

We could compute probability of an outlier for each dimension as PG1(x) = 0.5−Φ(x; µ, σ)
and then could use either L1-norm or L∞-norm, i.e., sum or max, to combine the dimensions.
Unfortunately, both resulted in 100% of the test trials having false positives. Since trials
have 200 episodes, with 20–40 episodes before novelty is introduced, noise makes an outlier
too likely to occur randomly. To reduce the impact of the accumulation of many small- to
medium-sized outliers, we modified the approach to use

PG(x) =

{
0.5−Φ(x; µ, σ) |x− µ| ≥ 3σ

0 Otherwise
(4)

which truncates the Gaussian outlier probability when the input is within 3σ of the mean.
If the data was Gaussian, this would be an effective threshold of about 0.3% of the data. We
fed these probabilities into the KL-divergence detection algorithm described next with its
expected mean/variance for overall change detection.

3.5. Characterization of Per-Instance Novelty

Using the per-dimension EVT-based probabilities, we can characterize the novelty
into subtypes. We can combine the static variables to form our agent-dissimilarity measure
while combining the “velocity” dimensions into a motion-dissimilarity measure. We use
the remaining dynamic variables for relation dissimilarity, which we expected to be largely
driven by prediction error. Hence, we should capture changes in relationships such as
sloping of the cart, adding wind or friction, etc. The control agent outputs a string when it
reports the world has changed to be novel. It summarizes the detected deviations along the
lines of “Initial world off and Dominated by Balls with 18 Velocity Violations 18; 18 Agent
Velocity Violations; 30 Total Agent Violations; 0 Cart Total Violations; 0 Pole Total Violations
...” which would be overall a motion violation (agent velocities).

4. Experimental Results

In our experiment, we use a sequestered evaluation methodology so that the CartPole
agent subteam does not know the actual novelties. The paper’s authors represent two
non-overlapping groups at different organizations. The evaluation subgroup designed/im-
plemented the novelties and evaluated the systems, while the control agent subgroup
developed the CartPole3D novelty detection agent. Our long-term goal is an automated
evaluation system and baseline agent for comparison.

The experiments had 360 runs with four subtypes of novelty; with average perfor-
mance plots for both the baseline DQN-agent and the WOW (EVT) agent shows each of
the four subtypes of novelty are shows in Figure 4. Each plot averages. In addition the
EvalTeam defined three difficulty levels per subtype, by varying the world dissimilarity
of the novelties they introduce, with smaller dissimilarity being harder to detect. Over-
all, there were 30 random sample runs per “subtype/difficulty” setting. Each run had
200 trials for 360*200 total trials. Each trial consisted of 200 CartPole episodes where a
random K (unknown to control agent) number of normal episodes was followed by 200-K
novel episodes. For each episode t, the performance scores St(A) was the fraction of the
200 timesteps where agent A kept the pole within the required range, the run terminated
with performance =1 if the agent successfully reached 200 steps.

Algorithms 2022, 15, 381 11 of 17

Figure 4. Performance plots showing average performance for different subtypes of novelty. The
plots show a vertical line at the expected value of where novelty was introduced. Still, because trials
have actual random locations, there is a spread of where novelty was introduced, producing the
quasi-linear impact region. The plots show the control agent in black and the baseline DQN agent in
yellow. Visually, both relation and interaction novelties were nuisance novelties to both agents as their
performance does not change after novelty is introduced. In three of the four types of novelties, the
lookahead collision avoiding control performed better than the baseline DQN agent. However, one
can observe that in action novelties, the two agents’ performance is similar after novelty is introduced,
likely because neither can handle agents that target the cart.

To evaluate the system, we consider the following metrics, computed over the 30*200
trials per the subtype/difficulty:

FP Rate: Fraction of trials where a false positive (or early detection) was reported.
It was always zero for EVT experiments but not for Gaussian and so reported for
completeness.
Detection rate: Mean ± stdev fraction of correctly detected trials. Note that a trial is
considered a false positive and not a correct detection if the agent declared novelty
before novelty was introduced.
Detection Delay: Mean ± stdev number of episodes after novelty was introduced
before it was declared detected.
Performance: Mean ± stdev of Performance Score St(C)
OPTI: (Overall Performance Task Improvement) Mean± stdev of relative post-novelty
performance to a baseline DQN WOW-agent:

OPTI =
∑t∈novel St(C)

∑t∈novel St(C) + ∑t∈novel St(B)
,

where C is the CartPole control agent being tested (EVT or Gaussian) and B is the
baseline DQN agent.
Robust% which is the percentage of trials that were not statistically different from
normal, using agent performance in a normal world.

The scoring of characterization was done by the evaluation team by matching the
reported strings with the ground-truth novelty introduced for that trial. Human interpreters
scored the accuracy of the objects involved (e.g., balls, cart, etc.), the property or relationship

Algorithms 2022, 15, 381 12 of 17

changed (e.g., movement), and the change type (e.g., increased speed or direction change).
In the performance table, we list the characterization of object accuracy and characterization
of property accuracy. The control agent did not attempt to report change type, so it scored
zero on that dimension; we leave that dimension for future work as it allows even finer
subtype detection.

5. Discussion

We report the detection, characterization, and control performance of the 1&2 step
lookahead with EVT-based detection in Table 1 for four different novelty subtypes, each
with three levels of difficulty. We also report the DQN performance in that table. The
DQN agent was pure control and did not report novelty. We performed a Wilcoxon signed-
rank test for significance (used for all comparisons in this paper), and the difference in
performance was statistically significant with p < 0.01.

Table 1. Performance of EVT-based detection with 1&2 step lookahead WOW-agent. FP rate was 0
for all EVT-based tests. The detection performance was perfect for agents and actions and near zero
for relations and interaction—the latter were, however, nuisance novelties as robustness was near
100%. The performance of the DQN WOW-agent on the same trials is shown at the far right of table.
The difference is statistically significant.

D
et

ec
ti

on
R

at
e

D
et

ec
ti

on
D

el
ay

O
PT

I

O
bj

ec
t

Pr
op

er
ty

R
ob

us
t

Pe
rc

en
t

EV
T

A
ge

nt
Pe

rf
or

m
an

ce

B
as

el
in

e
D

Q
N

Pe
rf

or
m

an
ce

A
ge

nt

easy 1.0 3.77 0.56 ± 0.03 1.0 1.0 0.98 ± 0.13 0.83 ± 0.02 0.67 ± 0.08

medium 1.0 3.73 0.56 ± 0.03 1.0 1.0 0.92 ± 0.28 0.75 ± 0.03 0.60 ± 0.07

hard 1.0 3.77 0.54 ± 0.06 1.0 1.0 0.88 ± 0.32 0.64 ± 0.06 0.53 ± 0.05

Subtotal 1.0 3.76 0.55 ± 0.05 1.0 1.0 0.93 ± 0.26 0.74 ± 0.09 0.60 ± 0.09

A
ct

io
n

easy 1.0 15.27 0.51 ± 0.03 1.0 1.0 0.80 ± 0.40 0.63 ± 0.03 0.60 ± 0.07

medium 1.0 6.40 0.48 ± 0.05 1.0 1.0 0.42 ± 0.49 0.44 ± 0.05 0.47 ± 0.05

hard 1.0 4.03 0.47 ± 0.04 1.0 1.0 0.17 ± 0.37 0.32 ± 0.03 0.37 ± 0.04

Subtotal 1.0 8.57 0.49 ± 0.05 1.0 1.0 0.46 ± 0.50 0.47 ± 0.13 0.48 ± 0.11

R
el

at
io

n

easy 0.0 0.0 0.54 ± 0.04 0.0 0.0 0.98 ± 0.13 0.89 ± 0.02 0.75 ± 0.09

medium 0.0 0.0 0.55 ± 0.03 0.0 0.0 1.0 ± 0.0 0.88 ± 0.02 0.72 ± 0.09

hard 0.10 7.43 0.55 ± 0.03 0.0 0.0 1.0 ± 0.0 0.85 ± 0.02 0.70 ± 0.08

Subtotal 0.03 2.48 0.55 ± 0.03 0.0 0.0 0.99 ± 0.07 0.87 ± 0.03 0.72 ± 0.09

In
te

ra
ct

io
n easy 0.0 0.0 0.53 ± 0.03 0.0 0.0 0.98 ± 0.13 0.89 ± 0.02 0.79 ± 0.09

medium 0.03 5.10 0.54 ± 0.04 0.0 0.0 0.98 ± 0.13 0.90 ± 0.02 0.78 ± 0.10

hard 0.0 0.0 0.54 ± 0.03 0.0 0.0 0.98 ± 0.13 0.90 ± 0.02 0.78 ± 0.10

Subtotal 0.01 1.70 0.54 ± 0.03 0.0 0.0 0.98 ± 0.13 0.90 ± 0.02 0.78 ± 0.09

For relation and interaction subtypes, both baseline and control agents were robust,
making detection more difficult. When the control agent was designed, the designers
expected the semantics of “relations” to include things such as spatial positioning, and
variations in world geometry (e.g., floor tilt, friction) would be detected in cart/pole
dynamics. We failed to detect them until they were in the “hard” category; the impact
of these may be below the noise inherent in the system from random collisions and the
inability to exactly model the cart/pole. When the control agent was designed, the designers
thought the semantics of “interaction” would be interactions between the agents and our
cart. Thus, we expected our collision/failure measures would capture dissimilarity in
that subtype. The experimental results show that interactions were all nuisance novelties.
Collision/failure are more likely appropriate measures of action (e.g., attacking agents). We
now hypothesize that interactions would be agent-to-agent measures that are not captured

Algorithms 2022, 15, 381 13 of 17

because we accumulated all agent data into one set of values. Future work will separate
them out and look for patterns.

In Table 2, we report the detection performance for the GOWN Gaussian-based novelty
detector on the agent and action subtypes of novelty. The GOWN detection peformance
for relation and interaction were zero and also not shown. The Gaussian-based detector
is significantly worse than the EVT detector (p < 0.01) in both FP rate and detection rate.
We did not score the Gaussian detector for characterization, but given the much worse
detection, we expect characterization will also be much worse. The control algorithm is the
same, so not surprisingly, the robustness and performance were not statistically different
and are not shown.

Table 2. Detection performance of Gaussian-based detection in 1&2 step lookahead WOW-agent.
With the Gaussian-based novelty detection we see a significant fraction of false positives, and lower
correct detection rate compared to the EVT-based detection, both of which are significant. They use
the same WOW-agent and so robustness and control performance were not statistically significantly
different and are not shown.

FP
R

at
e

D
et

ec
ti

on
R

at
e

D
et

ct
io

n
D

el
ay

A
ge

nt

easy 0.30 0.70 2.53
medium 0.33 0.67 2.40

hard 0.20 0.80 3.07
Subtotal 0.28 0.72 2.67

A
ct

io
n

easy 0.33 0.67 4.43
medium 0.17 0.83 5.27

hard 0.20 0.80 5.03
Subtotal 0.23 0.77 4.91

We attribute the significant improvement with EVT-based detection to the fact that the
underlying data, such as position or velocity profiles, are not well modeled by a Gaussian.
Sometimes a dimension has a much thicker tail distribution—leading to false positives
when data exceeds the three sigma threshold frequently. Other times the data is bounded
or very tightly defined, leading to missed detections. For example, positions cannot go
beyond the walls, but smaller agents can be detected as they can get closer to the wall
than agents seen in training, while larger agents never get as close. The more flexible EVT
Weibull distribution naturally fits these types of uncertain data allowing better modeling
and detection.

6. Related Work

A recent unifying formalization for defining novelty was introduced in [4]. In that
paper, they briefly considered 2D CartPole, but with either a simple Euclidean distance
of state features or a very complex dissimilarity measure computed as expectations over
the normal world. Their definition used a pairwise comparison of each new state with all
training states, which was computationally impractical; in addition, that paper lacked any
suggestions for defining when the dissimilarity was abnormal. The dissimilarity measures
considered herein are more straightforward and support multiple subtypes of novelty.
Importantly, we introduce using Extreme Value Theory as the core algorithm for deciding
when dissimilarity departs from normal, which, as distributional models, are efficient while
still modeling uncertainty in the decision.

Another general framework for defining novel worlds based on a generative frame-
work is presented in [15], which defines novelty in terms of the construction or generation
of defined worlds and states. While we consider it a formally closed world model, the
framework can be used in our expanded model. Other frameworks measure novelty

Algorithms 2022, 15, 381 14 of 17

based on the complexity of agents able to recover some level of task performance in novel
worlds [16,17] or based on agent-independent representations of the world [18]. The major
distinction is that our approach does not have to reason about how the changes happen, just
about what observations change, and how that can be used to classify subtypes of novelty.

Novelty detection has many variations among signal processing, computer vision, and
machine learning [19–25]. Still, almost all of these view novelty detection as a one-class
problem—detecting things different from training. Recent work continues this one-class
view but looks at how one can improve the process with learned features [26] or by using
GANs [27]. Out-of-Distribution (OOD), similar to novelty detection, detects inputs that
have not been seen before, but this body of work also treats the OOD as a single group
somehow different from training [28,29], with substantial aspects of the work focusing on
uncertainty modeling. These all differ from our work, as we focus on how to define/detect
multiple subtypes of novelty.

Open-set and open-world recognition [8] are also related problems and the most
related algorithms. While that family or work has many known classes, they initially
treat all “unknowns” as a single group. In open-world recognition, they detect unknowns
and then get human-supplied labels and learn the new classes. In contrast, our model
attempts to define a subclass of novelty based on anticipated properties of the novel, not
human-supplied labels after detection. And while those papers also use EVT-based models,
they convert all of the high-dimensional representations to a single dimension, while the
approach in this paper uses EVT-based models per dimension, and combines probabilities
over dimensions to define subtypes of novelty. For example, using agent speed dimensions
for one type of novelty while using the difference between a predicted and observed
position for other types of novelty detection.

The family n-step lookahead algorithm is classic AI in simulation environments, runs
through different actions, and returns the one producing the most reward [30]. It has been
implemented in many CartPole models before, such as [31] where they extract optimal cost
values from optimizations, and approximate the cost-to-go for a simple one-step model
predictive WOW-agent in a regular CartPole2D environment with walls. Our work uses a
one- and two-step lookahead process in a 3D environment with walls and balls, which adds
a new level of complexity as moving balls increase the chance for collisions and require the
agent to consider them. We generally use a one-step lookahead, but when collisions are
likely, or the world is novel, we use the more expensive two-step lookahead.

Novelty in the open-world has been addressed only to a very limited extent in agent-
based reinforcement learning domains like CartPole. Sekar et al. [32] approach novelty
from an exploration perspective; that is, they use the world model learned so far to identify
states with high uncertainty and devise plans for visiting those states. The agent performs
this exploration offline, which they call “imagination.” They evaluate their approach on the
DeepMind Control Suite [33] of 20 RL domains, including 2D CartPole, to demonstrate their
agent’s ability to achieve superior zero-shot performance on novel domains. Ref. [34] takes
a similar exploratory approach, but use a population of agents guided by evolutionary
strategies to seek out novel states in the OpenAI Gym’s [1] Humanoid-v1 and Atari games
domains. However, the domains were presented visually to the agent, and the novelty was
not characterized.

Peng et al. [35] learn the rules and states of a game domain and store these in a rules
knowledge graph (KG) and a state KG. Changes that result in changes in these KGs indicate
the presence of novelty and trigger further learning by the agent. This learning can proceed
offline, again as a form of “imagination”-based simulation to accelerate adaptation to the
novelty. They evaluate their approach in Monopoly with novelties such as increasing the
price of some properties. Results show that their approach allows an agent to adapt more
quickly to novelty than a standard RL agent trained from scratch on the novel scenario. In
this case, the changes to the KGs can constitute a characterization of the novelty.

Muhammad et al. [36] describes a framework for handling novelty in agent-based
domains. Their approach maintains a knowledge base of actions and beliefs, which are

Algorithms 2022, 15, 381 15 of 17

used to invoke a planner to achieve goals in agent-based domains and detect discrepancies
between predicted and actual states. Their approach can detect, characterize, and accom-
modate novelty. They evaluate their approach in two agent-based environments: their
NovelGridworlds environment [37] and a variant of Minecraft called Polycraft [38]. Their
approach can handle novelties that reduce performance, but additional capabilities are
needed to handle novelties that prevent task achievement.

Klenk et al. [39] uses a model-based approach for adapting to novelty in agent-based
domains. Their Hypothesis-Guided Model Revision over Multiple Aligned Representations
(HYDRA) approach combines a domain-independent planner and model-based diagnosis
to diagnose and repair the model when novelty is detected. HYDRA has been applied to
the Angry Birds-based novelty generator [40,41]. Results show that the performance of the
domain-independent HYDRA approach is comparable to systems designed specifically for
the Angry Birds domain [42].

7. Conclusions and Future Work

This paper introduced the idea of multiple subtypes of novelty with different dissimi-
larity measures computed over EVT-based distributional models of static, dynamic, and
prediction errors. This is a very general concept and could be applied in other domains to
help refine novelty detection. The paper also showed that the EVT-based approach to the
subtype of novelty can be effective even for nuisance novelties—if the right variables/di-
mensions are anticipated and computed, but can fail to detect nuisance novelties when
only critical control-related variables are used. When the world can present novelty, it can
pay to look at things that do not seem to matter to the task at hand.

Open-world learning, which includes both the problem of detecting and learning
to manage multiple types of novelty, is of growing practical interest. While this paper
addressed them in a simulated and simple world, where it was easy to control/introduce
novelty hidden from Control-Team, who designed the controllers, future work should
address these in more realistic problems/settings. This paper results from an ongoing
multi-team effort addressing learning in open worlds. Future work will continue to advance
the art and also show how the extended framework used herein can be applied to other
types of novelty and domains. As future work, the Eval-Team will define even more
types of novelty, and Control-Team will enhance controllers to address them and improve
detection—the main branch of the public code will provide those advances.

Author Contributions: Conceptualization/Methodology, T.E.B. and L.B.H.; software, T.E.B., N.M.W.,
S.Z., C.P. and L.B.H.; formal analysis, T.E.B., C.P. and L.B.H.; investigation, N.M.W., S.Z. and C.P.;
resources, T.E.B. and L.B.H.; writing—original draft preparation, T.E.B.; writing—review and editing,
T.E.B., N.M.W., S.Z. and L.B.H.; visualization, S.Z.; supervision/funding acquisition, T.E.B. and L.B.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by DARPA SAIL-ON Contracts # HR001120C0055 and #
W911NF2020004.

Data Availability Statement: Code available from git@github.com:Vastlab/SAILON-CartPole3D.git
(accessed on 9 August 2022) and https://github.com/holderlb/WSU-SAILON-NG (accessed on 9
August 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,

arXiv:1606.01540.
2. Xiao, T.; Jang, E.; Kalashnikov, D.; Levine, S.; Ibarz, J.; Hausman, K.; Herzog, A. Thinking while moving: Deep reinforcement

learning with concurrent control. arXiv 2020, arXiv:2004.06089.
3. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.

git@github.com:Vastlab/SAILON-CartPole3D.git
https://github.com/holderlb/WSU-SAILON-NG

Algorithms 2022, 15, 381 16 of 17

4. Boult, T.; Grabowicz, P.; Prijatelj, D.; Stern, R.; Holder, L.; Alspector, J.; Jafarzadeh, M.; Ahmad, T.; Dhamija, A.; Li, C.; et al.
Towards a Unifying Framework for Formal Theories of Novelty. In Proceedings of the AAAI Conference on Artificial Intelligence,
Virtually, 2–9 February 2021; Volume 35, pp. 15047–15052.

5. Coumans, E.; Bai, Y. PyBullet, a Python Module for Physics Simulation for Games, Robotics and Machine Learning. 2016–2021.
Available online: http://pybullet.org (accessed on 8 January 2021).

6. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

7. Kumar, S. Balancing a CartPole System with Reinforcement Learning–A Tutorial. arXiv 2020, arXiv:2006.04938.
8. Jafarzadeh, M.; Ahmad, T.; Dhamija, A.R.; Li, C.; Cruz, S.; Boult, T.E. Automatic Open-World Reliability Assessment. In

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January
2021; pp. 1984–1993.

9. Kotz, S.; Nadarajah, S. Extreme Value Distributions: Theory and Applications; World Scientific Publishing Co.: Singapore, 2001.
10. Carpentier, A.; Valko, M. Extreme bandits. In Proceedings of the NIPS, Montreal, QC, Canada, 8–13 December 2014;

pp. 1089–1097.
11. Scheirer, W.J. Extreme value theory-based methods for visual recognition. Synth. Lect. Comput. Vis. 2017, 7, 1–131.
12. Gibert, X.; Patel, V.M.; Chellappa, R. Sequential score adaptation with extreme value theory for robust railway track inspection.

In Proceedings of the IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 7–13 December 2015;
pp. 42–49.

13. Leadbetter, M.R. On a basis for Peaks over Threshold modeling. Stat. & Probab. Lett. 1991, 12, 357–362.
14. Smith, R.L. Threshold methods for sample extremes. In Statistical Extremes and Applications; Springer: Berlin/Heidelberg,

Germany, 1984; pp. 621–638.
15. Langley, P. Open-World Learning for Radically Autonomous Agents. In Proceedings of the AAAI Conference on Artificial

Intelligence, New York, NY, USA, 7–12 February 2020; pp. 13539–13543.
16. Alspector, J. Representation Edit Distance as a Measure of Novelty. In Proceedings of the AAAI Spring Symposium on Designing

Artificial Intelligence for Open Worlds, Palo Alto, CA, USA, 21–23 March 2022.
17. Pereyda, C.; Holder, L. Measuring the Complexity of Domains Used to Evaluate AI Systems. In Proceedings of the AAAI Spring

Symposium on Designing Artificial Intelligence for Open Worlds, Palo Alto, CA, USA, 21–23 March 2022.
18. Doctor, K.; Task, C.; Kildebeck, E.; Kejriwal, M.; Holder, L.; Leong, R. Toward Defining Domain Complexity Measure Across

Domains. In Proceedings of the AAAI Spring Symposium on Designing Artificial Intelligence for Open Worlds, Palo Alto, CA,
USA, 21–23 March 2022.

19. Schölkopf, B.; Williamson, R.C.; Smola, A.; Shawe-Taylor, J.; Platt, J. Support vector method for novelty detection. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1999; Volume 12.

20. Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249.
[CrossRef]

21. Ding, X.; Li, Y.; Belatreche, A.; Maguire, L.P. An experimental evaluation of novelty detection methods. Neurocomputing 2014,
135, 313–327. [CrossRef]

22. Dasgupta, S.; Sheehan, T.C.; Stevens, C.F.; Navlakha, S. A neural data structure for novelty detection. Proc. Natl. Acad. Sci. USA
2018, 115, 13093–13098. [CrossRef] [PubMed]

23. Abati, D.; Porrello, A.; Calderara, S.; Cucchiara, R. Latent space autoregression for novelty detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 481–490.

24. Perera, P.; Patel, V.M. Deep transfer learning for multiple class novelty detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11544–11552.

25. Rausch, A.; Sedeh, A.M.; Zhang, M. Autoencoder-Based Semantic Novelty Detection: Towards Dependable AI-Based Systems.
Appl. Sci. 2021, 11, 9881. [CrossRef]

26. Tack, J.; Mo, S.; Jeong, J.; Shin, J. Csi: Novelty detection via contrastive learning on distributionally shifted instances. Adv. Neural
Inf. Process. Syst. 2020, 33, 11839–11852.

27. Perera, P.; Nallapati, R.; Xiang, B. Ocgan: One-class novelty detection using gans with constrained latent representations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 2898–2906.

28. Maddox, W.; Garipov, T.; Izmailov, P.; Vetrov, D.; Wilson, A.G. Fast uncertainty estimates and bayesian model averaging of dnns.
In Proceedings of the Uncertainty in Deep Learning Workshop at UAI, Monterey, CA, USA, 7–9 August 2018; Volume 8.

29. Zisselman, E.; Tamar, A. Deep residual flow for out of distribution detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13994–14003.

30. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
31. Deits, R.; Koolen, T.; Tedrake, R. LVIS: Learning from value function intervals for contact-aware robot controllers. In Proceedings

of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7762–7768.
32. Sekar, R.; Rybkin, O.; Daniilidis, K.; Abbeel, P.; Hafner, D.; Pathak, D. Planning to Explore via Self-Supervised World Models. In

Proceedings of the International Conference on Machine Learning (ICML), Virtual, 13–18 July 2020.

http://pybullet.org
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://dx.doi.org/10.1016/j.neucom.2013.12.002
http://dx.doi.org/10.1073/pnas.1814448115
http://www.ncbi.nlm.nih.gov/pubmed/30509984
http://dx.doi.org/10.3390/app11219881

Algorithms 2022, 15, 381 17 of 17

33. Tassa, Y.; Doron, Y.; Muldal, A.; Erez, T.; Li, Y.; de Las Casas, D.; Budden, D.; Abdolmaleki, A.; Merel, J.; Lefrancq, A.; et al.
DeepMind Control Suite. arXiv 2018, arXiv:1801.00690.

34. Conti, E.; Madhavan, V.; Such, F.P.; Lehman, J.; Stanley, K.O.; Clune, J. Improving Exploration in Evolution Strategies for Deep
Reinforcement Learning via a Population of Novelty-Seeking Agents. arXiv 2018, arXiv:1712.06560.

35. Peng, X.; Balloch, J.C.; Riedl, M.O. Detecting and Adapting to Novelty in Games. In Proceedings of the AAAI Workshop on
Reinforcement Learning in Games, Virtual, 9 February 2021.

36. Muhammad, F.; Sarathy, V.; Tatiya, G.; Goel, S.; Gyawali, S.; Guaman, M.; Sinapov, J.; Scheutz, M. A Novelty-Centric Agent
Architecture for Changing Worlds. In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’21, Virtual, 3–7 May 2021; pp. 925–933.

37. Tatiya, G. Novel Gridworlds Environment for OpenAI Gym. 2020. Available online: https://github.com/gtatiya/gym-novel-
gridworlds (accessed on 9 August 2022).

38. Voit, W.; Kildebeck, E. Polycraft World. 2022. Available online: https://www.polycraftworld.com (accessed on 23 February 2022).
39. Klenk, M.; Piotrowski, W.; Stern, R.; Mohan, S.; de Kleer, J. Model-Based Novelty Adaptation for Open-World AI. In Proceedings

of the 31st International Workshop on Principles of Diagnosis, Virtual, 26–28 September 2020.
40. Gamage, C.; Pinto, V.; Xue, C.; Stephenson, M.; Zhang, P.; Renz, J. Novelty Generation Framework for AI Agents in Angry

Birds Style Physics Games. In Proceedings of the 2021 IEEE Conference on Games (CoG), Virtual, 17–20 August 2021; pp. 1–8.
[CrossRef]

41. Xue, C.; Pinto, V.; Zhang, P.; Gamage, C.; Nikonova, E.; Renz, J. Science Birds Novelty: An Open-world Learning Test-bed for
Physics Domains. In Proceedings of the AAAI Spring Symposium on Designing AI for Open-World Novelty, Palo Alto, CA, USA,
21–23 March 2022.

42. Piotrowski, W.; Stern, R.; Klenk, M.; Perez, A.; Mohan, S.; de Kleer, J.; Le, J. Playing Angry Birds with a Domain-Independent
PDDL+ Planner. In Proceedings of the 31st International Conference on Automated Planning Systems (Demo Track), Guangzhou,
China, 2–13 August 2021.

https://github.com/gtatiya/gym-novel-gridworlds
https://github.com/gtatiya/gym-novel-gridworlds
https://www.polycraftworld.com
http://dx.doi.org/10.1109/CoG52621.2021.9619160

	Introduction
	Problem Formalization
	CartPole3D with Environmental Agents
	Formal Models of Novelty

	Method
	Control
	EVT-Based Probability of Per-Instance Novelty and Overall Novelty Detection
	WOW Novelty Detection: EVT Per-Step Combined
	KL-Divergence over Per-Episode Novelty-Detection

	Overall World-Changed Novelty Detection
	GOWN Per-Instance Novelty
	Characterization of Per-Instance Novelty

	Experimental Results
	Discussion
	Related Work
	Conclusions and Future Work
	References

