
Department of Computer Science and Engineering
University of Texas at Arlington

Arlington, TX 76019

The MavHome Architecture

G. Michael Youngblood, Diane J. Cook,
and Lawrence B. Holder

{youngbld, cook, holder}@cse.uta.edu

Technical Report CSE-2004-18

The MavHome Architecture

G. Michael Youngblood, Lawrence B. Holder, and Diane J. Cook
Department of Computer Science & Engineering

The University of Texas at Arlington
Arlington, Texas 76019-0015

{youngbld, holder, cook}@cse.uta.edu

Abstract

The goal of the MavHome project is to develop tech-
nologies toManageAdaptiveVersatile environments.
In this paper, we present a complete agent architecture
for a single inhabitant intelligent environment and dis-
cuss the development, deployment, and techniques uti-
lized in our working intelligent environments.

Introduction
The MavHome Project (Managing and Adaptive Versatile
Home) is focused on conducting research in smart home
technologies from the aspect of treating an environment as
an intelligent agent (Daset al. 2002). We seek to develop
and integrate components that will enable the intelligent en-
vironments of the future. The goals of these environments
are to maximize the comfort of the inhabitants, minimize the
consumption of resources, and maintain safety and security.

The MavHome Project goes beyond just a home envi-
ronment and encompasses all environments in which sen-
sors can perceive observations, the system can reason about
those observations, and actions can be taken to automate fea-
tures of that environment. We currently conduct research in
the MavLab which provides an office type setting and con-
tains the MavDen as shown in Figure 1 and the MavKitchen.
We also are establishing a multiple-month experiment with
single and multiple inhabitants under observation in an on-
campus apartment called the MavPad.

There are many intelligent environment projects produc-
ing valuable research with similar goals to our own. The
Georgia Tech Aware Home is working on aspects of in-
habitant localization, context-aware computing, and many
HCI applications (AHRI 2003; Salber, Dey, & Abowd 1999;
Abowd, Battestini, & O’Connell 2002). The AIRE group
at the MIT AI Lab is engaged in research involving perva-
sive computing designs and people-centic applications and
have constructed “AIRE spaces” in the forms of an intelli-
gent conference room, intelligent workspaces, kiosks, and
“oxgenated” offices (AIRE Group 2004). At Stanford Uni-
versity, the Interactive Workspaces Project is exploring work
collaboration technologies in technology-rich environments
with a focus on task-oriented work such as design reviews or
brainstorming sessions. Their experimental facility is called
“iRoom” where they are investigating integration issues with

Figure 1: MavDen in the UTA MavLab.

multiple-device, multiple user applications, interaction tech-
nologies, deployment software, and component integration
(Stanford Interactivity Lab 2003). The Adaptive Home at
UC-Boulder utilizes a neural network to control the lighting,
HVAC, and water temperature in a manner that minimizes
operating cost (Mozer 1999). The field of intelligent envi-
ronment research has many niches. The MavHome Project
is unique in that it focuses on the entire environment man-
agement and not just a single area of control, it utilizes ad-
vanced AI techniques in novel ways (e.g., seeding HHMMs
with Data Mining techniques), and is designed for long term
usage and growth with the inhabitants.

Work in intelligent environments is an important step in
the forward progress of technology. As computing becomes
more pervasive and people’s lives become busier, advances
in intelligent environments can aid by automating the simple
things, work to actively conserve resources (reducing cost),
and improve safety and security. Environments that sense
their own well-being and can request repair or notify inhab-
itants of emergencies can save property and lives. Homes
that can increase their own self-sufficiency over time can
augment busy or aging inhabitants allowing people to live in
their homes longer (potentially alleviating some health care
system burdens) and free time to allow people to focus on
other aspects of their lives.

The goal of this paper is to present one possible en-
gineered approach to developing intelligent environments.
We present the MavHome architecture, some of the lessons
learned, some of our initial experimental results, and dis-
cuss our preparations for case studies. Section 2 starts by
describing the MavHome architecture in an abstract form
and then discusses the concrete layers that make the system
work. Section 3 describes the specifics of our implementa-
tion and current deployment. Section 4 presents our evalu-
ation criteria, and section 5 reveals some of our preliminary
results.

Architecture
The MavHome architecture is designed of modular compo-
nents and open source software. Modularity is chosen over
a monolithic system to promote ease of maintenance and re-
placement. The architecture is designed to allow compo-
nents to be swappable, potentially even hot-swappable, in
order to create a robust and adaptive system. We present the
architecture first in a functional abstract view and then in a
detailed concrete form.

Abstract Layers
The MavHome architecture shown in Figure 2 consists of
four cooperating layers. Starting at the bottom, thePhysical
layer contains the hardware within the environment. This
includes all physical components such as sensors, actuators,
network equipment, and computers. TheCommunication
layer lies available to all layers to facilitate communica-
tion, process mobility, and service discovery between com-
ponents from the other layers. The communication layer in-
cludes the operating system, device drivers, low-level com-
ponent interfaces, device proxies, and middleware. TheIn-
formation layer gathers, stores, and generates knowledge
useful for decision making. The information layer con-
tains prediction components, databases, user interfaces, data
mining components, voice synthesis and recognition com-
ponents, and high-level aggregators of low-level interfaces
(e.g., combined sensor or actuator interfaces). TheDecision
layer takes in information, learns from stored information,
makes decisions on actions to automate in the environment,
and develops policies while checking for safety and security.

Perception is a bottom-up process. Sensors monitor the
environment and make information available through the
communication layer to information layer components. The
database stores this information while other information
components process the raw information into more useful
knowledge (e.g., predictions). New information is presented
to the decision layer components upon request or arrange-
ment. The decision layer uses learned experience, observa-
tions, and derived knowledge to select an action (which may
be vacuous). The decision is checked for safety and security
concerns and, if allowed, signals the beginning of action ex-
ecution. Action execution flows top-down. The decision ac-
tion is communicated to the information layer which records
the action and communicates it to the physical layer. The
physical layer performs the action, thus changing the state

Figure 2: MavHome Abstract Architecture.

of the world and triggering a new perception. The process
repeatsad infinitumwith periodic retraining of the decision
layer components, policy development, database archiving,
and component maintenance.

Concrete Layers
The abstract layers of the MavHome architecture are real-
ized through a set of concrete functional layers. These con-
crete layers are shown with some example components in
Figure 3. The base layer is thePhysical Componentslayer
which consists of all real devices utilized in the system.
These devices include powerline control interface hardware,
touch screens, gesture input devices, cameras, and so forth,
with the exception of the computer with which equipment is
interfaced. The physical computer(s) this system resides on
is considered the host of all layers above the physical. The
Computer Interfacelayer contains the hardware interfaces to
physical devices (e.g., PCI card interfaces, USB, firewire),
device drivers to utilize the hardware, the operating system
of the computer, and all software interfaces that provide ser-
vices or APIs for hardware access. It should be noted that
since all components of above layers reside and utilize op-
erating services, these services are shown to extend to all
layers. In theLogical Interfacelayer, the hardware device
services and APIs are utilized to create simple, light-weight
programs that create a series of atomic services around each
sensor and effector in the system. Theselogical proxiespro-
vide information and control via socket and shared memory

based interfaces in a modular design. All of the lower lay-
ers are based on simple single application components, but
in higher layers the components will become more complex.
The Middleware layer inserts valuable services to the up-
per layers of the architecture to facilitate communication,
process mobility, and service discovery. The MavHome ar-
chitecture specifies middleware that provides both point-to-
point and publish-subscribe types of communication, nam-
ing/service discovery provisions, and a mechanism to move
system components between physical computing hardware
devices. TheServiceslayer utilizes the middleware layer to
gather information from lower layers and provide informa-
tion to system applications above. Services either store in-
formation, generate knowledge, aggregate lower level com-
ponents, or provide some value-added non-decision making
computational function or feature (e.g., user interfaces). The
Applicationslayer is where learning and decision-making
components operate.

Figure 3: MavHome Concrete Architecture.

Implementation and Deployment

Pieces of the MavHome architecture have been developed
and deployed over the last 2 years in the MavLab. We cur-
rently have all of the components in the MavHome archi-
tecture in some form and are working to fully integrate and
improve all of the components to improve the system.

Physical Components
Lighting control is the largest effector in most intelligent en-
vironments. We currently use X10-based (X10 Corporation
2004) devices in the form of lamp and appliance modules
to control all lights and appliances. The CM-11A interface
is used to connect computers to the power system to control
the devices. Radio-frequency based transmitters (in remote
control form factor) and receivers are also used for device
interaction. The MavLab is partitioned into 10 sections{A-
J} each containing approximately 6 lamps and a controlling
computer. X10 was chosen because of its availability and
low price. Many home users also utilize X10 technology, so
immediate benefits to the current home user are possible.

Figure 4: MavLab Sensors.

Perception through light, humidity, temperature, smoke,
gas, motion, and switches is performed through a sensor
network we developed. The Argus network system is a
PIC16F877-based system comprised of a master board that
interfaces to the computer via a serial interface and connects
up to 99 slave boards that host up to 64 sensors each, ganged
in groups of 4 on a sensor dongle. Special masters have
also been developed for high speed digital and mixed digi-
tal/analog sensing applications. A stepper-motor master has
also been developed to control up to 4 mini-blinds. Figure 4
shows the MavLab sensor layout.

A key element in perception is inhabitant localization.
The Argus Motion Master is used in conjunction with pas-
sive infrared (PIR) sensors placed on the ceiling in traffic
areas to detect motion. Figure 5 shows part of the motion

sensor network in the MavDen–each detector is shaded and
the closeup is on a single sensor. The sensors have a 60°
field of view and are placed 10 feet from the ground. In or-
der to reduce the sensing area, tubes were placed over the
sensors to reduce the floor footprint to a 4 foot sensing cir-
cle. Tests in the MavDen show a single inhabitant location
detection rate of 95% accuracy. Multiple inhabitant studies
will require augmenting technology.

Figure 5: Passive Infrared Motion Network.

Computer Interface
All MavHome components interface through either serial,
USB, or firewire interfaces. New PCs rarely come with more
than a single 9-pin serial port, so many of our systems have
been outfitted with additional serial interface cards. The
MavHome architecture and components have been devel-
oped on Intel based PCs (Pentium 4) and use Red Hat Linux
9.0 with the stock 2.4.20-8 kernel.

Logical Interface
The logical interfaces for all X10 and Argus based compo-
nents have been written as light-weight configurable mod-
ules with both shared memory and UDP socket-based in-
terfaces. Shared memory is used for local components and
the socket interface for remote components. The proxies are
written in C++. The proxies maintain the current state of
each device and provide a mechanism for reading and, if ap-
plicable, control. The communication protocols for X10 de-
vices and Argus components are well defined and interface
availability is advertised through zero configuration tech-
nology (Cheshire 2004) using a multi-cast DNS responder
(a.k.a., Rendezvous-enabled).

Components desiring to find X10 or Argus components
merely need to perform a link-local query for devices that
follow the defined MavHome X10 and Argus protocols and
a list of available devices will be presented to the requester.
Contact information is returned to the requester to allow
connection to the logical proxy. Through this mechanism
no configuration is required and the system is very adaptive
and dynamic. New proxies advertise their availability and
older ones remove theirs’ before they shutdown.

Middleware
MavHome uses three main middleware packages. Commu-
nication between high level components is performed using
the Common Object Request Broker Architecture (CORBA)
(Object Management Group 2004) due to the clarity of in-
terface design provided by the Interface Description Lan-
guage (IDL), ease of integration, maturity and stability of
the technology, and object-oriented design compatible with
our C++ and Java implemented components. OmniORB is
used for point-to-point communication and OmniEvents for
publish-subscribe (Grisby 2004). Zero configuration tech-
nologies for replacing the CORBA naming service and uti-
lizing service discovery are provided by the Howl (Porchdog
Software 2004) multi-cast DNS responder and adherence to
the ZEROCONF standard (Cheshire 2004). Component mo-
bility is provided by an in-house developed daemon system
called Boot Strap. Boot Strap provides a password secure
RPC mechanism for starting and stopping processes on re-
mote machines. In conjunction with the requirement that all
services and applications have the ability to checkpoint and
restore their data and state, a shared NFS system, and the
Boot Strap daemon, component mobility is easily achieved.

Services
Implemented services include a PostgreSQL (PostgreSQL
Global Development Group 2004) database that stores infor-
mation, user interfaces, prediction components, data mining
components, and logical proxy aggregators (e.g., the pro-
jector screen aggregator that takes simple “up” or “down”
commands to coordinate the efforts of a timed control of
three switches to place the screen in the proper position).
Other services such as speech recognition/synthesis are also
currently being developed.

Figure 6: Mavigator Interface.

Interfaces There are a number of interaction mechanisms
utilized in our work. Inhabitants can interact with devices
through RF remotes, their own motion and actions (e.g.,
opening doors, sitting on a chair), or through more advanced
interfaces. Figure 6 shows our PDA-based interface to the
MavLab, called the Mavigator. Mavigator is Macromedia

Flash-based and is displayed on a mobile web browser. A
back-end XML-based service handles the interface and in-
teracts with logical proxies to control devices and query
information. Another advanced interface is shown in Fig-
ure 7. The MavKitchen interface uses a gesture pad and
down-projecting image to interact with kitchen inhabitants.
The MavKitchen interface is also Flash-based with an XML
back-end service.

Figure 7: MavKitchen Interface.

Prediction An intelligent environment must be able to ac-
quire and apply knowledge about its inhabitants in order
to adapt to the inhabitants and meet the goals of comfort
and efficiency. These capabilities rely upon effective predic-
tion algorithms. Given a prediction of inhabitant activities,
MavHome can decide whether or not to automate the activ-
ity or even find a way to improve the activity to meet the
system goals.

Specifically, the MavHome system needs to predict the in-
habitant’s next action in order to automate selected repetitive
tasks for the inhabitant. The system will need to make this
prediction based only on previously-seen inhabitant interac-
tion with various devices. It is essential that the number of
prediction errors be kept to a minimum–not only would it be
annoying for the inhabitant to reverse system decisions, but
prediction errors can lead to excessive resource consump-
tion. Another desirable characteristic of a prediction algo-
rithm is that predictions be delivered in real time without
resorting to an offline prediction scheme.

Based upon our past investigations, MavHome uses the
Active-LeZialgorithm (Gopalratnam & Cook 2003) to meet
our prediction requirements. By characterizing inhabitant-
device interaction as a Markov chain of events, we utilize a
sequential prediction scheme that has been shown to be op-
timal in terms of predictive accuracy. Active-LeZi is also
inherently an online algorithm, since it is based on the in-
cremental LZ78 data compression algorithm.

In our evaluation and usage of Active-LeZi in the
MavLab, we have achieved 100% predictive accuracy on 30
days of real data for single scenarios. The MavHome sys-
tems first train the algorithm and then use the predictions

in real time. When predictive accuracy drops below a de-
fined threshold, the predictor is retrained over data from a
configurable sliding window to adapt for concept drift in the
changing patterns of inhabitants.

Data Mining The MavHome approach to state space re-
duction from the large number of potential environment ob-
servations is to abstract inhabitant activity to episodes that
represent the current task of involvement. Given the inhab-
itant task episode, observations not related to the task can
be pruned. A difficult problem is how to discover these
episodes. After discovering the episodes, it is also desir-
able to be able to classify streamed observations to episodes
in real time with the same service.

MavHome uses theEpisode Discovery(ED) algorithm
(Heierman & Cook 2003) for finding inhabitant episodes in
the collected data and for episode classification of streamed
observations. ED is an input, not transaction, based algo-
rithm that mines device activity streams trying to discover
clusters of interactions that are closely related in time. Sig-
nificance testing is performed on discovered clusters to gen-
erate sets of significant episodes based on the frequency of
occurrence, length, and regularity. Further processing using
the Minimum Description Length (MDL) principle (Rissa-
nen 1989) and greedy selection produces sets of significant
episodes. These are labeled and directly correspond to an
inhabitant task.

When an inhabitant is first introduced to an intelligent en-
vironment no automation should occur for an initial obser-
vation period. This allows the building of a database of po-
tential episodes of normal task activity. This is inhabitant
centric and the observation period duration is a matter of
continued study. Currently, we use a period of 30 days.

Episode discovery, classification, and identification are
utilized to reduce the state space of an intelligent envi-
ronment to a set of inhabitant-centric tasks. Thus, the
MavHome architecture is inhabitant-centric.

Applications

The application layer components learn, make the deci-
sions, and follow set policies on safety and security. The
world representation at this level is the Hierarchical Hid-
den Markov Model (HHMM) (Fine, Singer, & Tishby 1998)
based upon a hierarchy of episodes of activity mined from
stored observations. Learning is performed by extending the
HHMM to a hierarchical Partially Observable Markov De-
cision Process (POMDP) and applying a hierarchical Baum-
Welch algorithm (Theocharous, Rohanimanesh, & Mahade-
van 2001). Action decisions are made by using the stream-
ing episode membership features of ED to provide input into
the current belief state in the HHMM and the Active-LeZi
prediction of the next event to chose the appropriate transi-
tional action in the HHMM. Before the action is executed it
is checked against the policies in the policy engine. These
policies contain designed safety and security knowledge and
inhabitant standing rules. Through the policy engine the sys-
tem is prevented from engaging in erroneous actions that
may perform actions such as turning the heater to 120° F or
from violating the inhabitant’s stated wishes (e.g., a standing

order to never turn off the inhabitant’s night light).

Evaluation
MavHome systems have the goal of maximizing the comfort
of the inhabitants, minimizing the consumption of resources,
and maintaining safety and security. We have established
metrics to measure the accomplishment of these goals. In-
habitant comfort is measured by the number of inhabitant
interactions performed with devices that can be automated.
The system should continually strive to reduce the number
of inhabitant initiated interactions. Resource consumption
is measured by the utility metering of the environment. The
utility consumption should decrease if the system is prop-
erly minimizing resource consumption. Safety and security
are measured by the number of safety interventions from the
policy engine. The system should minimize the number of
policy engine interventions.

Experimentation and Preliminary Results
Recently, we conducted some initial trials in the MavDen
using the MavHome architecture to determine if the system
could learn to automate devices. Data containing three pat-
terns (watching TV, listening to the CD player, and reading)
was generated in the MavDen environment and extrapolated
to 30 days, patterns occurring at random times during the
day. Figure 8 shows the monitor display of the MavDen
with a motion sensor localization block showing the inhab-
itant’s location. Each pattern was unique and included an
opportunity for the system to automate one or more devices.
After setup and training the system was randomly tested
in real time with a single inhabitant for the three patterns
four times each (12 cases) over a two hour period. The sys-
tem successfully automated devices in 10 out of 12 episodes
(83.3%). Failures occurred due to some minor sensor noise
causing the patterns to appear different than the system train-
ing data. Additional trials and better training data should fix
the errors. This initial trial shows promise for the design of
the MavHome architecture. Plans are in progress to fully
implement our sensor networks and start more advanced,
fully implemented, and integrated system case studies in the
MavLab, MavDen, MavPad, and MavKitchen.

Acknowledgements
This work was supported by National Science Foundation
grants IIS-0121297 and EIA-9820440. Thank you to Ryan
Duryea (TCU) for his work on the initial Mavigator.

References
Abowd, G. D.; Battestini, A.; and O’Connell, T. 2002.
The Location Service: A Framework for Handling Multiple
Location Sensing Technologies.

AHRI. 2003. [AHRI] - Aware Home Research Initiative.

AIRE Group. 2004. MIT Project AIRE – About Us.

Cheshire, S. 2004. Zero Configuration Networking (Zero-
conf).

Figure 8: Sensor Interaction Test Display.

Das, S. K.; Cook, D. J.; Bhattacharya, A.; III, E. O. H.;
and Lin, T.-Y. 2002. The Role of Prediction Algorithms in
the MavHome Smart Home Architecture.IEEE Wireless
Communications Special Issue on Smart Homes9(6):77–
84.
Fine, S.; Singer, Y.; and Tishby, N. 1998.
The Hierarchical Hidden Markov Model: Analysis
and Applications. Machine Learning 32(1):41–62.
http://citeseer.nj.nec.com/fine98hierarchical.html.
Gopalratnam, K., and Cook, D. J. 2003. Active LeZi: An
Incremental Parsing Algorithm for Device Usage Predic-
tion in the Smart Home. InProceedings of the Florida
Artificial Intelligence Research Symposium, 38–42.
Grisby, D. 2004. omniORB.
Heierman, E., and Cook, D. J. 2003. Improving Home Au-
tomation by Discovering Regularly Occurring Device Us-
age Patterns. InProceedings of the International Confer-
ence on Data Mining.
Mozer, M. 1999. An Intelligent Environment must be
Adaptive. IEEE Intelligent Systems14(2):11–13.
Object Management Group. 2004. Object Managemnt
Group.
Porchdog Software. 2004. Howl.
http://www.porchdogsoft.com/products/index.html.
PostgreSQL Global Development Group. 2004. Post-
greSQL. http://www.postgresql.org/.
Rissanen, J. 1989.Stochastic Complexity in Statistical
inquiry. World Scientific Publishing Company.
Salber, D.; Dey, A. K.; and Abowd, G. D. 1999. The
context toolkit: Aiding the development of context-enabled
applications. InCHI, 434–441.
Stanford Interactivity Lab. 2003. Interactive Workspaces.
Theocharous, G.; Rohanimanesh, K.; and Mahadevan,
S. 2001. Learning Hierarchical Partially Observ-
able Markov Decision Processes for Robot Navigation.
http://citeseer.nj.nec.com/theocharous01learning.html.
X10 Corporation. 2004. X10.com. http://www.x10.com.

