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ABSTRACT 

The number and sophistication of cyberattacks on industries and 

governments have dramatically grown in recent years. To counter 

this movement, new advanced tools and techniques are needed to 

detect cyberattacks in their early stages such that defensive actions 

may be taken to avert or mitigate potential damage. From a 

cybersecurity analysis perspective, detecting cyberattacks may be 

cast as a problem of identifying patterns in computer network 

traffic. Logically and intuitively, these patterns may take on the 

form of a directed graph that conveys how an attack or intrusion 

propagates through the computers of a network. 

We are researching and developing graph-centric approaches and 

algorithms for dynamic cyberattack detection and packaging them 

into a streaming network analysis framework we call 

StreamWorks. With StreamWorks, a scientist or analyst may 

detect and identify precursor events and patterns as they emerge in 

complex networks. This analysis framework is intended to be used 

in a dynamic environment where network data is streamed in and 

is appended to a large-scale dynamic graph. Specific graphical 

query patterns are decomposed and collected into a graph query 

library. The individual decomposed subpatterns in the library are 

continuously and efficiently matched against the dynamic graph as 

it evolves to identify and detect early, partial subgraph patterns.  

Categories and Subject Descriptors 

G.2.2 [Discrete Mathematics]: Graph Theory – graph 

algorithms, network problems, trees. 

I.2.8 [Computing Methodologies]: Problem Solving, Control 

Methods, and Search – graph and tree search strategies. 

General Terms 

Algorithms 

Keywords 

Cyberattack detection, subgraph pattern matching, emerging 

subgraph patterns, dynamic networks, subgraph join tree. 

1. INTRODUCTION 
Challenges exist in employing graphs for cyberattack detection, 

which have severely limited their practical use in cybersecurity 

applications. First and foremost, identifying cyberattack graph 

patterns from within a larger graph of a computer network is a 

classic subgraph isomorphism problem which is known to be 

computationally expensive and NP-complete. Another complexity 

is the requirement to conduct partial matching of the cyberattack 

graph pattern, such that one can detect the pattern before it is fully 

instantiated. In addition, the larger computer network graph would 

be dynamic or ever-changing with message patterns and host 

machines statuses constantly transitioning over time.  

To address these challenges, we have been researching and 

developing graph-centric approaches and algorithms for dynamic 

cyberattack detection and packaging them into a streaming graph 

analysis framework we call StreamWorks. StreamWorks is used to 

identify emerging cyberattacks and cyberthreats in streaming 

computer network traffic. Computer network data may be 

modeled as a dynamic graph with nodes representing host 

machines and edges representing messages between host 

machines. The set of edges in the graph convey all the 

communications among host machines within a specific time 

window. With a time window, the size of the dynamic graph will 

continually grow and shrink as new nodes and edges are feed into 

the graph, while older nodes and edges are aged out. 

2. DYNAMIC SUBGRAPH MATCHING 

AND CYBERATTACK DETECTION 
Investigation of subgraph isomorphism for dynamic graphs 

introduces new algorithmic challenges because one cannot afford 

to index a dynamic graph frequently enough for applications with 

real-time constraints. In fact this is a problem with searches on 

large static graphs as well. There are two alternatives in that 

direction. One can search for a pattern repeatedly or one can adopt 

an incremental approach. The work by Fan et al. [1] presents 

incremental algorithms for graph pattern matching. However, their 

solution to subgraph isomorphism is based on a repeated search 

strategy. Chen et al. [2] proposes a feature structure called the 

node-neighbor tree to search multiple graph streams using a 

vector space approach. They relax the exact match requirement 

but require significant pre-processing on the graph stream. 

In the cybersecurity context, some limited research has been 

conducted on using directed graphs to model cyberattack patterns 

[3, 4]. Regarding dealing with dynamic computer network data, 

our research is aligned with streaming algorithms for anomaly 

detection or intrusion detection. Distributed event monitoring and 

minimizing the amount of false positives are the major challenges 
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Figure 1. Cyberattack graph queries for a) Witty worm, b) Smurf DDoS, c) 

Fraggle DDoS, and d) DNS Amplifications DDoS cyberattack. 

 

for these systems. As an example, a DDoS attack is often hard to 

separate from a flash crowd event. Ganguly et al. [5] present a 

streaming algorithm to monitor the distinct source frequencies to 

distinguish between benign and malicious activities. Venkatraman 

et al. [6] present an algorithm to detect sources that connect to a 

large number of distinct connections in a streaming setting with 

specified accuracy and memory requirements. 

3. CYBERATTACK GRAPH PATTERNS 
To enable subgraph pattern matching, various types of 

cyberattacks may be depicted as temporal, multi-dimensional, 

directed multi-graphs. In most cases, the graphical patterns of 

cyberattacks have repeating internal structures. In Fig. 1, we show 

a few illustrative cyberattack graph queries as described below. 

Witty worm – The Witty worm is an Internet worm that targets a 

buffer overflow vulnerability in Internet Security Systems 

products. It is known to attack port 4000 of Windows machines 

with packets of sizes between 796 and 1,307 bytes. As shown in 

Fig. 1a, the associated query graph looks to detect infected 

machines that are sending out packets with Witty worm 

characteristics to at least five other machines and a path of at least 

three machines that have been infected in chronological order. In 

the diagram, the chronological order of the messages is indicated 

by edge color transitioning from light to dark blue. 

Smurf distributed denial-of-service (DDoS) – DDoS attacks 

typically involve a hacker sending messages to intermediate host 

machines with the spoofed source address of the victim machine. 

In the case of the Smurf DDoS attack of Fig. 1b, the hacker sends 

an “ICMP Echo Request” message to a broadcast IP address that 

appears to come from the victim. A router will pick up the 

message and broadcast it to intermediate host machines. In 

response, the intermediate host machines then floods the victim 

machine with “ICMP Echo Reply” messages.  

Fraggle DDoS – As shown in Fig. 1c, a Fraggle DDoS attack is 

the UDP version of a Smurf DDoS attack and has a similar 

graphical structure. In the Fraggle attack, a “UDP Echo Request” 

message is broadcast to port 19 of intermediate host machines, 

which in turn, sends the “UDP Echo Response” message to port 7 

of the victim machine. The UDP version may be devastating 

because it may initiate a repetitive echo request-response loop 

between the intermediate host machines and the victim. 

Domain Name System (DNS) amplification DDoS – In a DNS 

amplification DDoS attack, zombies or agents generate a large 

number of DNS queries with a spoofed source address and send 

these queries to various DNS servers. As shown in Fig. 1d, the 

DNS requests appear to come from the victim machine. The DNS 

servers respond with three different possible types of messages 

back to the victim machine, which are the “DNS Standard Query 

Response,” “ICMP Destination Unreachable,” and “Fragmented 

IP Address” messages. Such attacks are particularly effective 

because DNS response packets may be significantly larger in size 

in comparison to the initiating DNS request packets. 

4. SUBGRAPH JOIN TREE 
To manage and track a set of precursor subpatterns associated 

with a query graph, we introduce the concept of a subgraph join 

tree (SJT), which decomposes a query graph into smaller search 

subgraph patterns. These smaller subpatterns signify precursor 

events that emerge early before the full query pattern is complete. 

As precursor events are detected in data streams, they are matched 

to the nodes of a SJT and join to other partial matches that have 

previously occurred to signify larger matches. Matching that 

occurs higher within the internal nodes of the SJT indicates a 

higher probability that an attack is occurring. A query graph 

matching score may be computed based on where the matching is 

occurring in the SJT through different formulas including using 

the proportion of edges in the search subgraph pattern to those in 

the complete query graph pattern as shown in Fig. 2a 

The SJT is a binary tree that successively divides a graph into two 

children subgraphs with specific vertices as join points. A SJT for 

a simple query graph pattern is shown in Fig. 2a. The query graph 

pattern illustrates host machines attacking a DNS server and a 

Web server. The root node of the SJT represents the full query 

graph pattern, while each descending level decomposes a section 

of the query graph. Decomposition continues until a primitive 

search subgraph pattern is reached, which should be small and 

discriminative enough to be efficiently found in the dynamic 

graph as an exact subgraph match. By limiting 

exact subgraph matching to only small search 

patterns and using the SJT to incrementally 

enlarge matches, we are able contain the 

computational cost of subgraph matching. 

Fig. 2b-d illustrates how dynamic subgraph 

matching occurs with a query graph decomposed 

into a SJT. Subgraph matching occurs in the 

context of a dynamic graph that is continually 

updated as data batches are fed in through data 

streams. As new nodes and edges are inserted into 

the dynamic graph from the batch updates, the 

SJT is matched against the dynamic graph to 

initiate new partial matches and extend previous 

ones. In Fig. 2b, the first primitive subgraph 

pattern is found in the dynamic graph, which is 

matched to the subgraph leaf at the bottom-left of 

the SJT. This partial match is saved and tracked. 

As data continues to arrive, the dynamic graph 

evolves and additional partial patterns are found. 

Fig. 2c illustrates the case when a newly-found 

partial pattern is a sibling to a previously-found 
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Figure 2. a) An example SJT for a simple cyberattack query graph, and b-d) the 

subgraph matching and joining process in a dynamic graph. 

 

 
 

Figure 3. a) Depth-first SJT for Smurf DDoS query, b) optimized depth-first SJT 

for Smurf DDoS query, and c) breadth-first SJT for Smurf DDoS query. 

 

partial pattern in the SJT. In order for the two sibling patterns to 

combine to form a larger partial match and move up the join tree, 

however, the sibling patterns must have matching “DNS Server” 

and “Web Server” nodes, which are their join points. If these 

dependencies are satisfied, the two sibling partial patterns connect 

at their join points to construct the larger partial match (see Fig. 

2d), which is stored and tracked as a new partial match. The initial 

sibling patterns also continue to be stored and tracked since they 

along with the larger partial match are all subject to additional 

joining. Over time, the joining of partial matches up the join tree 

may lead to the detection of the full query pattern. 

5. JOIN TREE GENERATION 
We are developing an interactive graph query construction tool 

that will allow an analyst to build a query graph similar to those 

depicted in Fig. 1. With this construction tool, an analyst builds a 

query graph by drawing nodes that represent machines and edges 

that represent message flow. The query attributes of the nodes and 

edges are also defined using this tool.  For nodes, query attributes 

include the label, hostname, machine or address type, IP address, 

and port number. For edges, query attributes include protocol, 

message type, packet length, timestamp, and order. 

Once a query graph is constructed, the conversion to a SJT would 

be mostly automatic. A join tree generation tool would use the 

graph diagram, node and edge attribute specifications, and the 

ordering details to generate a temporal layout of the query graph. 

The generation tool would then traverse the temporal layout in 

either a depth-first or breadth-first fashion based on user 

preference to extract graph partitions and identify join points 

across partitions. Figure 4 shows both a depth-first and breadth-

first SJT for the Smurf DDoS attack pattern. 

In Fig. 3a, the depth-first SJT is organized along individual 

circular paths from the victim to the router to the host machine 

and back to the victim as seen in the network traffic. Each path 

has temporal constraints which fixes the 

message order that must take place for the 

pattern to match. As shown, every relative edge 

in a join tree partition has a unique id (R1, R2, 

R3, …), which is used in specifying temporal 

constraints. For each path, the router is 

distinguished from other types of machines by 

having the attribute of being able to multiplex 

messages that have been sent to a broadcast 

address. Since all the primitive search subgraph 

patterns of the depth-first SJT is of the same 

exact structure, the SJT may be collapsed into a 

more efficient equivalent form as shown in Fig. 

3b, which has the same join flow as the 

corresponding binary tree of Fig. 3a, but should simplify the 

storage and tracking of partial matches. 

The breadth-first SJT of Fig. 3c is organized along the expected 

temporal ordering of messages through the query graph pattern. 

For the Smurf DDoS attack, the spoofed message from the victim 

to the router occurs first, followed by “ICMP Echo Request” 

messages to different host machines, and then completed by 

“ICMP Echo Reply” messages to the victim. In a breadth-first 

SJT, these temporal stages would be used to partition the query 

graph into subgraph patterns for partial matching. With the Smurf 

DDoS query pattern, however, the very first temporal primitive 

subgraph pattern would be a single edge representing the initial 

spoofed “ICMP Echo Request” message, which is likely to find an 

enormous number of matches in the dynamic graph. 

We are developing capabilities that will allow analysts to test a 

SJT against a data stream or dataset and that can automatically 

optimize a SJT based on subgraph matching characteristics and 

frequencies. The speed of subgraph pattern matching may be 

accelerated by collecting and utilizing node and edge frequency 

information to optimize search paths through a massive dynamic 

network. In the case of the Smurf DDoS breadth-first SJT, the 

joint tree generation tool would move the high-frequency single-

edge primitive subgraph pattern up the SJT, to be searched for 

only in the case when a larger, more discriminative match has 

already been found. This specific logic and dependency is denoted 

by the red arrow in the SJT of Fig. 3c. 

In the breadth-first SJT, the edges of the primitive subgraphs will 

generally occur within the same timeframe. Thus, any temporal 

constraints among query graph edges are likely to occur across 

sibling subgraphs of the SJT. In the case of Fig. 3b, many partial 

matches of the two primitive subgraph patterns lowest in the SJT 

(partitions 4 and 5) may occur, but a pair of primitive partial 

matches will only be joined when the temporal dependencies of 

the parent partition (partition 2) are satisfied. The 

temporal dependencies specified at the root node of 

the SJT (partition 1) are handled similarly. In 

joining across partitions, we reference edge ids (E1, 

E2, E3, …) in the context of the full query graph 

rather than relative to just the subgraph partition. 

For the Smurf DDoS, the breadth-first SJT should 

provide faster detection of precursor subpatterns 

since it specifically looks for subpatterns that will 

occur early in time, while the depth-first SJT will 

require one full cycle of interactions, infections, or 

intrusions to occur before any breadth-first SJT 

subpatterns are detected. The breadth-first SJT is 

most effective when specific subgraph patterns in 
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Figure 4. Emerging Smurf DDoS subgraph patterns in a dynamic computer 

network graph using a) depth-first SJT, and b) breadth-first SJT. 

 

 

the query graph occur very early on such as in DDoS 

attacks, or when the node degrees of the query graph are 

relatively high such as in virus and worm attacks. The 

depth-first SJT is most useful when the attacker is 

predestined to follow specific attack vectors in hopes of 

reaching particular critical resources. It is also better 

suited to detect surgical, human-in-the-loop cyberattacks 

where actions are more planned and deliberate. 

6. VISUALIZING PATTERNS 
We programmed the Gephi graph visualization software 

[7] to read in and display a dynamic computer network 

graph and partial subgraph matches that are emerging in 

the graph. Fig. 4 shows snapshots of emerging subgraph 

patterns in a computer network graph that are identified 

and tracked using both the depth-first and breadth-first 

SJTs. The colors of the subgraph patterns in the snapshots 

correspond to partitions in the associated SJT, which 

indicate the degree of partial matching to the full query 

graph. Matching percentages are shown for each SJT. 

In examining the partial matches stemming from the depth-first 

SJT of Fig. 4a, we see the first primitive subgraph patterns (blue 

subgraphs) emerging at 53.41 seconds into the data stream. Later, 

at 55.89 seconds, two primitive subgraph patterns join to signify a 

larger partial match (magenta subgraph) as we move up the SJT. 

Finally, at 58.76 seconds, the larger subgraph pattern joins with 

another primitive subgraph pattern to form an instance of the full 

query graph (green subgraph). 

When using the breadth-first SJT of Fig. 4b, we see that the first 

primitive subgraph patterns (blue subgraphs) are found earlier at 

48.06 seconds. A larger subgraph pattern, however, is not found 

until 51.39 seconds into the data stream. The full query graph is 

found at 53.11 seconds. As previously discussed, the breadth-first 

SJT may provide faster detection of precursor subgraph patterns 

than the depth-first SJT for certain types of cyberattacks because 

the subgraph partitions are temporally ordered and do not require 

a path traversal through a strand of the attack. 

As shown in Fig. 4, the full Smurf DDoS attack query graph 

pattern only takes a few seconds to emerge from its initial 

subpatterns. For this cyberattack, the amount of time available to 

take preventive or defensive actions would be very limited. 

StreamWorks capabilities would be most useful in cases where the 

cyberattack proceeds over a longer period of time or when there 

are other network activities apart from the actual attack that can 

foreshadow the impending attack. In the case of the Smurf DDoS 

attack, for instance, the precursor pattern of the attacker scanning 

for misconfigured routers to identify usable broadcast addresses 

could have been added as part of the query graph pattern. 

7. CONCLUSION 
The theses of our research are that graph-based representations of 

cyberattack patterns may serve as powerful and effective 

conceptual models for interactive cybersecurity analysis, and a 

graph-based approach and framework may be developed to detect 

cyberattack graph patterns in a dynamic computer network graph 

before those patterns are fully realized. Towards these goals, we 

have developed a SJT-based subgraph pattern matching approach, 

which partitions a query graph into smaller subgraphs that may be 

used to identify precursor or emerging patterns or events. 

Beyond computer networks, we have also applied StreamWorks to 

other forms of networks including citation and social networks. A 

concerted effort is currently underway to validate StreamWorks 

with cybersecurity analysts on authentic streaming large-scale 

network flow data such that we may better evaluate and tune its 

effectiveness, accuracy, and performance. 
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