
Predicting and Detecting Emerging Cyberattack Patterns

Using StreamWorks
George Chin Jr., Sutanay Choudhury, John Feo

Pacific Northwest National Laboratory
P.O. Box 999

Richland, WA 99352

{George.Chin, Sutanay.Choudhury,
John.Feo}@pnnl.gov

Lawrence Holder
School of Electrical Engineering & Computer Science

Washington State University
Pullman, WA 99164

holder@wsu.edu

ABSTRACT

The number and sophistication of cyberattacks on industries and

governments have dramatically grown in recent years. To counter

this movement, new advanced tools and techniques are needed to

detect cyberattacks in their early stages such that defensive actions

may be taken to avert or mitigate potential damage. From a

cybersecurity analysis perspective, detecting cyberattacks may be

cast as a problem of identifying patterns in computer network

traffic. Logically and intuitively, these patterns may take on the

form of a directed graph that conveys how an attack or intrusion

propagates through the computers of a network.

We are researching and developing graph-centric approaches and

algorithms for dynamic cyberattack detection and packaging them

into a streaming network analysis framework we call

StreamWorks. With StreamWorks, a scientist or analyst may

detect and identify precursor events and patterns as they emerge in

complex networks. This analysis framework is intended to be used

in a dynamic environment where network data is streamed in and

is appended to a large-scale dynamic graph. Specific graphical

query patterns are decomposed and collected into a graph query

library. The individual decomposed subpatterns in the library are

continuously and efficiently matched against the dynamic graph as

it evolves to identify and detect early, partial subgraph patterns.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory – graph

algorithms, network problems, trees.

I.2.8 [Computing Methodologies]: Problem Solving, Control

Methods, and Search – graph and tree search strategies.

General Terms

Algorithms

Keywords

Cyberattack detection, subgraph pattern matching, emerging

subgraph patterns, dynamic networks, subgraph join tree.

1. INTRODUCTION
Challenges exist in employing graphs for cyberattack detection,

which have severely limited their practical use in cybersecurity

applications. First and foremost, identifying cyberattack graph

patterns from within a larger graph of a computer network is a

classic subgraph isomorphism problem which is known to be

computationally expensive and NP-complete. Another complexity

is the requirement to conduct partial matching of the cyberattack

graph pattern, such that one can detect the pattern before it is fully

instantiated. In addition, the larger computer network graph would

be dynamic or ever-changing with message patterns and host

machines statuses constantly transitioning over time.

To address these challenges, we have been researching and

developing graph-centric approaches and algorithms for dynamic

cyberattack detection and packaging them into a streaming graph

analysis framework we call StreamWorks. StreamWorks is used to

identify emerging cyberattacks and cyberthreats in streaming

computer network traffic. Computer network data may be

modeled as a dynamic graph with nodes representing host

machines and edges representing messages between host

machines. The set of edges in the graph convey all the

communications among host machines within a specific time

window. With a time window, the size of the dynamic graph will

continually grow and shrink as new nodes and edges are feed into

the graph, while older nodes and edges are aged out.

2. DYNAMIC SUBGRAPH MATCHING

AND CYBERATTACK DETECTION
Investigation of subgraph isomorphism for dynamic graphs

introduces new algorithmic challenges because one cannot afford

to index a dynamic graph frequently enough for applications with

real-time constraints. In fact this is a problem with searches on

large static graphs as well. There are two alternatives in that

direction. One can search for a pattern repeatedly or one can adopt

an incremental approach. The work by Fan et al. [1] presents

incremental algorithms for graph pattern matching. However, their

solution to subgraph isomorphism is based on a repeated search

strategy. Chen et al. [2] proposes a feature structure called the

node-neighbor tree to search multiple graph streams using a

vector space approach. They relax the exact match requirement

but require significant pre-processing on the graph stream.

In the cybersecurity context, some limited research has been

conducted on using directed graphs to model cyberattack patterns

[3, 4]. Regarding dealing with dynamic computer network data,

our research is aligned with streaming algorithms for anomaly

detection or intrusion detection. Distributed event monitoring and

minimizing the amount of false positives are the major challenges

Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page.

Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

CISR '14, Apr 08-10 2014, Oak Ridge, TN, USA

ACM 978-1-4503-2812-8/14/04.

http://dx.doi.org/10.1145/2602087.2602111

2014 9th Cyber and Information Security Research Conference

93

http://dx.doi.org/10.1145/2602087.2602111

Figure 1. Cyberattack graph queries for a) Witty worm, b) Smurf DDoS, c)

Fraggle DDoS, and d) DNS Amplifications DDoS cyberattack.

for these systems. As an example, a DDoS attack is often hard to

separate from a flash crowd event. Ganguly et al. [5] present a

streaming algorithm to monitor the distinct source frequencies to

distinguish between benign and malicious activities. Venkatraman

et al. [6] present an algorithm to detect sources that connect to a

large number of distinct connections in a streaming setting with

specified accuracy and memory requirements.

3. CYBERATTACK GRAPH PATTERNS
To enable subgraph pattern matching, various types of

cyberattacks may be depicted as temporal, multi-dimensional,

directed multi-graphs. In most cases, the graphical patterns of

cyberattacks have repeating internal structures. In Fig. 1, we show

a few illustrative cyberattack graph queries as described below.

Witty worm – The Witty worm is an Internet worm that targets a

buffer overflow vulnerability in Internet Security Systems

products. It is known to attack port 4000 of Windows machines

with packets of sizes between 796 and 1,307 bytes. As shown in

Fig. 1a, the associated query graph looks to detect infected

machines that are sending out packets with Witty worm

characteristics to at least five other machines and a path of at least

three machines that have been infected in chronological order. In

the diagram, the chronological order of the messages is indicated

by edge color transitioning from light to dark blue.

Smurf distributed denial-of-service (DDoS) – DDoS attacks

typically involve a hacker sending messages to intermediate host

machines with the spoofed source address of the victim machine.

In the case of the Smurf DDoS attack of Fig. 1b, the hacker sends

an “ICMP Echo Request” message to a broadcast IP address that

appears to come from the victim. A router will pick up the

message and broadcast it to intermediate host machines. In

response, the intermediate host machines then floods the victim

machine with “ICMP Echo Reply” messages.

Fraggle DDoS – As shown in Fig. 1c, a Fraggle DDoS attack is

the UDP version of a Smurf DDoS attack and has a similar

graphical structure. In the Fraggle attack, a “UDP Echo Request”

message is broadcast to port 19 of intermediate host machines,

which in turn, sends the “UDP Echo Response” message to port 7

of the victim machine. The UDP version may be devastating

because it may initiate a repetitive echo request-response loop

between the intermediate host machines and the victim.

Domain Name System (DNS) amplification DDoS – In a DNS

amplification DDoS attack, zombies or agents generate a large

number of DNS queries with a spoofed source address and send

these queries to various DNS servers. As shown in Fig. 1d, the

DNS requests appear to come from the victim machine. The DNS

servers respond with three different possible types of messages

back to the victim machine, which are the “DNS Standard Query

Response,” “ICMP Destination Unreachable,” and “Fragmented

IP Address” messages. Such attacks are particularly effective

because DNS response packets may be significantly larger in size

in comparison to the initiating DNS request packets.

4. SUBGRAPH JOIN TREE
To manage and track a set of precursor subpatterns associated

with a query graph, we introduce the concept of a subgraph join

tree (SJT), which decomposes a query graph into smaller search

subgraph patterns. These smaller subpatterns signify precursor

events that emerge early before the full query pattern is complete.

As precursor events are detected in data streams, they are matched

to the nodes of a SJT and join to other partial matches that have

previously occurred to signify larger matches. Matching that

occurs higher within the internal nodes of the SJT indicates a

higher probability that an attack is occurring. A query graph

matching score may be computed based on where the matching is

occurring in the SJT through different formulas including using

the proportion of edges in the search subgraph pattern to those in

the complete query graph pattern as shown in Fig. 2a

The SJT is a binary tree that successively divides a graph into two

children subgraphs with specific vertices as join points. A SJT for

a simple query graph pattern is shown in Fig. 2a. The query graph

pattern illustrates host machines attacking a DNS server and a

Web server. The root node of the SJT represents the full query

graph pattern, while each descending level decomposes a section

of the query graph. Decomposition continues until a primitive

search subgraph pattern is reached, which should be small and

discriminative enough to be efficiently found in the dynamic

graph as an exact subgraph match. By limiting

exact subgraph matching to only small search

patterns and using the SJT to incrementally

enlarge matches, we are able contain the

computational cost of subgraph matching.

Fig. 2b-d illustrates how dynamic subgraph

matching occurs with a query graph decomposed

into a SJT. Subgraph matching occurs in the

context of a dynamic graph that is continually

updated as data batches are fed in through data

streams. As new nodes and edges are inserted into

the dynamic graph from the batch updates, the

SJT is matched against the dynamic graph to

initiate new partial matches and extend previous

ones. In Fig. 2b, the first primitive subgraph

pattern is found in the dynamic graph, which is

matched to the subgraph leaf at the bottom-left of

the SJT. This partial match is saved and tracked.

As data continues to arrive, the dynamic graph

evolves and additional partial patterns are found.

Fig. 2c illustrates the case when a newly-found

partial pattern is a sibling to a previously-found

94

Figure 2. a) An example SJT for a simple cyberattack query graph, and b-d) the

subgraph matching and joining process in a dynamic graph.

Figure 3. a) Depth-first SJT for Smurf DDoS query, b) optimized depth-first SJT

for Smurf DDoS query, and c) breadth-first SJT for Smurf DDoS query.

partial pattern in the SJT. In order for the two sibling patterns to

combine to form a larger partial match and move up the join tree,

however, the sibling patterns must have matching “DNS Server”

and “Web Server” nodes, which are their join points. If these

dependencies are satisfied, the two sibling partial patterns connect

at their join points to construct the larger partial match (see Fig.

2d), which is stored and tracked as a new partial match. The initial

sibling patterns also continue to be stored and tracked since they

along with the larger partial match are all subject to additional

joining. Over time, the joining of partial matches up the join tree

may lead to the detection of the full query pattern.

5. JOIN TREE GENERATION
We are developing an interactive graph query construction tool

that will allow an analyst to build a query graph similar to those

depicted in Fig. 1. With this construction tool, an analyst builds a

query graph by drawing nodes that represent machines and edges

that represent message flow. The query attributes of the nodes and

edges are also defined using this tool. For nodes, query attributes

include the label, hostname, machine or address type, IP address,

and port number. For edges, query attributes include protocol,

message type, packet length, timestamp, and order.

Once a query graph is constructed, the conversion to a SJT would

be mostly automatic. A join tree generation tool would use the

graph diagram, node and edge attribute specifications, and the

ordering details to generate a temporal layout of the query graph.

The generation tool would then traverse the temporal layout in

either a depth-first or breadth-first fashion based on user

preference to extract graph partitions and identify join points

across partitions. Figure 4 shows both a depth-first and breadth-

first SJT for the Smurf DDoS attack pattern.

In Fig. 3a, the depth-first SJT is organized along individual

circular paths from the victim to the router to the host machine

and back to the victim as seen in the network traffic. Each path

has temporal constraints which fixes the

message order that must take place for the

pattern to match. As shown, every relative edge

in a join tree partition has a unique id (R1, R2,

R3, …), which is used in specifying temporal

constraints. For each path, the router is

distinguished from other types of machines by

having the attribute of being able to multiplex

messages that have been sent to a broadcast

address. Since all the primitive search subgraph

patterns of the depth-first SJT is of the same

exact structure, the SJT may be collapsed into a

more efficient equivalent form as shown in Fig.

3b, which has the same join flow as the

corresponding binary tree of Fig. 3a, but should simplify the

storage and tracking of partial matches.

The breadth-first SJT of Fig. 3c is organized along the expected

temporal ordering of messages through the query graph pattern.

For the Smurf DDoS attack, the spoofed message from the victim

to the router occurs first, followed by “ICMP Echo Request”

messages to different host machines, and then completed by

“ICMP Echo Reply” messages to the victim. In a breadth-first

SJT, these temporal stages would be used to partition the query

graph into subgraph patterns for partial matching. With the Smurf

DDoS query pattern, however, the very first temporal primitive

subgraph pattern would be a single edge representing the initial

spoofed “ICMP Echo Request” message, which is likely to find an

enormous number of matches in the dynamic graph.

We are developing capabilities that will allow analysts to test a

SJT against a data stream or dataset and that can automatically

optimize a SJT based on subgraph matching characteristics and

frequencies. The speed of subgraph pattern matching may be

accelerated by collecting and utilizing node and edge frequency

information to optimize search paths through a massive dynamic

network. In the case of the Smurf DDoS breadth-first SJT, the

joint tree generation tool would move the high-frequency single-

edge primitive subgraph pattern up the SJT, to be searched for

only in the case when a larger, more discriminative match has

already been found. This specific logic and dependency is denoted

by the red arrow in the SJT of Fig. 3c.

In the breadth-first SJT, the edges of the primitive subgraphs will

generally occur within the same timeframe. Thus, any temporal

constraints among query graph edges are likely to occur across

sibling subgraphs of the SJT. In the case of Fig. 3b, many partial

matches of the two primitive subgraph patterns lowest in the SJT

(partitions 4 and 5) may occur, but a pair of primitive partial

matches will only be joined when the temporal dependencies of

the parent partition (partition 2) are satisfied. The

temporal dependencies specified at the root node of

the SJT (partition 1) are handled similarly. In

joining across partitions, we reference edge ids (E1,

E2, E3, …) in the context of the full query graph

rather than relative to just the subgraph partition.

For the Smurf DDoS, the breadth-first SJT should

provide faster detection of precursor subpatterns

since it specifically looks for subpatterns that will

occur early in time, while the depth-first SJT will

require one full cycle of interactions, infections, or

intrusions to occur before any breadth-first SJT

subpatterns are detected. The breadth-first SJT is

most effective when specific subgraph patterns in

95

Figure 4. Emerging Smurf DDoS subgraph patterns in a dynamic computer

network graph using a) depth-first SJT, and b) breadth-first SJT.

the query graph occur very early on such as in DDoS

attacks, or when the node degrees of the query graph are

relatively high such as in virus and worm attacks. The

depth-first SJT is most useful when the attacker is

predestined to follow specific attack vectors in hopes of

reaching particular critical resources. It is also better

suited to detect surgical, human-in-the-loop cyberattacks

where actions are more planned and deliberate.

6. VISUALIZING PATTERNS
We programmed the Gephi graph visualization software

[7] to read in and display a dynamic computer network

graph and partial subgraph matches that are emerging in

the graph. Fig. 4 shows snapshots of emerging subgraph

patterns in a computer network graph that are identified

and tracked using both the depth-first and breadth-first

SJTs. The colors of the subgraph patterns in the snapshots

correspond to partitions in the associated SJT, which

indicate the degree of partial matching to the full query

graph. Matching percentages are shown for each SJT.

In examining the partial matches stemming from the depth-first

SJT of Fig. 4a, we see the first primitive subgraph patterns (blue

subgraphs) emerging at 53.41 seconds into the data stream. Later,

at 55.89 seconds, two primitive subgraph patterns join to signify a

larger partial match (magenta subgraph) as we move up the SJT.

Finally, at 58.76 seconds, the larger subgraph pattern joins with

another primitive subgraph pattern to form an instance of the full

query graph (green subgraph).

When using the breadth-first SJT of Fig. 4b, we see that the first

primitive subgraph patterns (blue subgraphs) are found earlier at

48.06 seconds. A larger subgraph pattern, however, is not found

until 51.39 seconds into the data stream. The full query graph is

found at 53.11 seconds. As previously discussed, the breadth-first

SJT may provide faster detection of precursor subgraph patterns

than the depth-first SJT for certain types of cyberattacks because

the subgraph partitions are temporally ordered and do not require

a path traversal through a strand of the attack.

As shown in Fig. 4, the full Smurf DDoS attack query graph

pattern only takes a few seconds to emerge from its initial

subpatterns. For this cyberattack, the amount of time available to

take preventive or defensive actions would be very limited.

StreamWorks capabilities would be most useful in cases where the

cyberattack proceeds over a longer period of time or when there

are other network activities apart from the actual attack that can

foreshadow the impending attack. In the case of the Smurf DDoS

attack, for instance, the precursor pattern of the attacker scanning

for misconfigured routers to identify usable broadcast addresses

could have been added as part of the query graph pattern.

7. CONCLUSION
The theses of our research are that graph-based representations of

cyberattack patterns may serve as powerful and effective

conceptual models for interactive cybersecurity analysis, and a

graph-based approach and framework may be developed to detect

cyberattack graph patterns in a dynamic computer network graph

before those patterns are fully realized. Towards these goals, we

have developed a SJT-based subgraph pattern matching approach,

which partitions a query graph into smaller subgraphs that may be

used to identify precursor or emerging patterns or events.

Beyond computer networks, we have also applied StreamWorks to

other forms of networks including citation and social networks. A

concerted effort is currently underway to validate StreamWorks

with cybersecurity analysts on authentic streaming large-scale

network flow data such that we may better evaluate and tune its

effectiveness, accuracy, and performance.

8. ACKNOWLEDGMENTS
This work was funded by the Center for Adaptive

Supercomputing Software (CASS) at the U.S. Department of

Energy’s Pacific Northwest National Laboratory, which is

operated by Battelle Memorial Institute under Contract DE-

ACO6-76RL01830.

9. REFERENCES
[1] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu,

“Incremental Graph Pattern Matching,” Proc. 2011 ACM

SIGMOD International Conference on Management of Data,

ACM Press, 2011, pp. 925-936.

[2] L.Chen and C. Wang, “Continuous Subgraph Pattern Search

Over Certain and Uncertain Graph Streams,” IEEE Trans. on

Know. and Data Eng., vol. 22, no. 8, 2010, pp. 1093–1109.

[3] A. Godiyal, M. Garland, and J.C. Hart, “Enhancing Network

Traffic Visualization by Graph Pattern Analysis,” 2010,

https://agora.cs.illinois.edu/download/attachments/18744303

/netflowpatterngraphs.pdf.

[4] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J.

Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, and D.

Zerkle, “GrIDS a Graph Based Intrusion Detection System

for Large Networks,” Proc. 19th National Information

Systems Security Conference, 1996, pp. 1-10.

[5] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani,

“Streaming Algorithms for Robust, Real-Time Detection of

DDoS Attacks,” Proc. 27th International Conference on

Distributed Computing Systems, IEEE Press, 2007, pp. 1-4.

[6] S. Venkataraman, D. Song, Phillip B. Gibbons, and A. Blum,

“New Streaming Algorithms for Fast Detection of

Superspreaders,” Proc. 12th ISOC Symposium on Network

and Distributed System Security Symposium (SNDSS), IEEE

Press, 2005, pp. 21-30.

[7] Gephi, an Open Source Graph Visualization and

Manipulation Software, http://www.gephi.org/.

96

https://agora.cs.illinois.edu/download/attachments/18744303/netflowpatterngraphs.pdf
https://agora.cs.illinois.edu/download/attachments/18744303/netflowpatterngraphs.pdf
http://www.gephi.org/

