

S.M. Stevens and S. Saldamarco (Eds.) ICEC 2008, LNCS 5309, pp. 221–224, 2008.
© IFIP International Federation for Information Processing 2008

Game-Based Simulation for the Evaluation of Threat
Detection in a Seaport Environment

Allen Christiansen, Damian Johnson, and Lawrence Holder

School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164

allen.christiansen@gmail.com, atagar1@gmail.com, holder@wsu.edu

Abstract. The ability to simulate a seaport environment, including illicit cargo
and the sensors designed to detect such cargo, allows the evaluation of alterna-
tive detection methods in order to improve security at our nation’s seaports. We
describe our progress towards this goal. Specifically, we describe our modeling
of threats at a particle emission level, modeling of sensors as particle detectors,
modeling of the seaport dynamics (e.g, ships, cargo containers, cranes, trucks),
and how the particles interact with the various structures and materials in the
seaport environment as the cargo moves through the seaport. Ultimately, this
simulation will serve as a testbed for the evaluation of sensor network data col-
lection, fusion and decision making for threat detection in a seaport environ-
ment.

Keywords: Simulation, seaport, particle propagation, sensor modeling, secu-
rity, threat detection.

1 Introduction

Advanced approaches to threat detection for homeland security will involve much
more non-human intervention via networked sensors and autonomous platforms.
Modeling and simulation of these integrated components is necessary for making
decisions about deployment and evaluating the intelligence derived from their surveil-
lance. Individual models and simulations of these components exist, but the modeling
and simulation of the network of components, considering the physics of the sensors,
the physics of the threats to be sensed, and the low-level interaction of the stimulus
with the environment, has yet to be addressed.

For example, suppose we suspect a nuclear weapon of mass destruction (WMD) is
hidden in cargo container destined for a U.S. seaport. What sensors should be de-
ployed, and where, based on the likely signature of the threat (e.g., gamma emis-
sions), the available sensors (e.g., gamma detectors) and sensor locations (e.g., indoor
vs. outdoor), and details of the environment (e.g., intervening metal, stone, wood, soil
or water)? Modeling the components of this scenario and simulating their interactions
will help determine the proper course of action to maximize the ability to detect and
locate the threat. Related approaches to simulating the seaport environment exist
[5,7], but they focus on a one-shot computation of detection rates and wait times
based on higher-level mathematical relationships among the relevant factors, and they

222 A. Christiansen, D. Johnson, and L. Holder

do not realistically visualize the real-time 3D aspects of the environment, which can
be instructive in understanding the evaluation of detection methods.

The purpose of this simulation is to accurately model the information flow from
the environment to enable the development and evaluation of large-scale, information
fusion and data mining techniques to support decision making. Here we describe the
modeling and simulation of the threats, sensors and seaport equipment in order to
support the goal of evaluation and the automation of the decision-making process.

2 Threat and Sensor Modeling

We are developing a model of threat devices at the particle-emission level using parti-
cle tracking within the Torque Game Engine [8] and the Ageia PhysX processor [1] to
track particles emitted from a point in all directions (as depicted in Fig. 1). We track
particles and model their interactions with various materials in the environment at the
particle level (e.g., refractions and absorptions, as well as reflections). Sensors are
also modeled at a low-level, and the collision of particles with sensors simulates the
level of activation of the sensor. These sensors readings (simulated or real) contribute
to the flow of information from the seaport environment.

Fig. 1. Threats (left) are simulated as omni-directional particle emitters (middle), and sensors
are simulated as particle detectors (right)

The main challenge with modeling these types of threats and sensors is for the par-
ticles in the environment to act in a realistic way, despite the computational chal-
lenges of tracking vast numbers of particles at relativistic speeds. One approach is to
use Monte Carlo simulation tools (e.g., MCNP [3]) which exist to accurately handle
radiation particle interactions with given materials. Using data generated by such
tools will allow us to better represent realistic behavior.

We are using several tactics to address the computational challenges. First, it is un-
realistic to model millions of particles in the environment, so we are using a more
modest number of larger objects to represent a group of particles. Rather than trying
to keep track of lots of little particles traveling and colliding all over our scene we are
instead launching much larger (anywhere from 20 to 100 times the original size) ob-
jects. A similar approach has been taken to real-time sound propagation in games [6].
This has the benefit of drastically decreasing the computational load, as well as allow-
ing us to simulate a much larger number of particles active in our environment. Sec-
ond we are trying several “delivery systems” (using built-in particle emitters,

 Game-Based Simulation for the Evaluation of Threat Detection 223

projectiles, third party physics engines, etc.) to determine which will be the most
system-resource efficient. One of these methods is the Torque Game Engine’s (TGE)
[8] built-in particle emitter. This required changes to the engine code to allow custom
collisions between the particles and the objects in the environment (e.g., reflection,
refraction, and absorption depending on particle energy and object material). How-
ever, not having enough control over how the particles were being emitted (one at a
time vs. waves like we wanted) caused us to look into a different direction.

The second approach we looked at was just launching the particles with the en-
gine’s projectile system. This allowed us to control exactly how many objects we
were launching and how they were launched. So we used this to launch our particles
in a sphere from the desired launch point and set the velocity as high as we could
while still being able to collide with everything we desired. In an attempt to decrease
some of the computations required of the main processor, we looked at importing a
3rd party physics engine, Aegia’s PhysX engine [1], into the TGE. Eventually we
were able to have the PhysX card handle all of the collisions, and just update the TGE
of their locations. Since we had a separate processor handing collisions, this allowed
us to have many more objects active in the environment at once and use the same
functionality as in TGE’s projectile system, easily creating and launching particles in
any direction. Custom collisions were handled using call backs that allow us to define
pairs of objects or groups of objects as collision pairs, which prompts the PhysX en-
gine to make these function calls when objects of pairs collide. This allowed us to
perform custom collisions between the objects that we desired, but having these call-
backs fired for all of the primary objects in our environment might be too much of an
overhead to handle. We are still working to clear up some of these issues.

3 Seaport Modeling

For our simulation we have decided to focus on operations performed by ships,
cranes, yard hustlers (trucks), pickers, and trains in their movement of cargo. Cargo
and modes of transportation were modeled in the Blender open-source 3D modeling
tool [2]. All models were based after photos of seaport machinery (mostly high reso-
lution images from seaports and the Navy). This has allowed us to determine some
semblance of scale and proportions between the models. Renderings, models, and
sources for the various finished components can be found via the project’s web site at
http://www.eecs.wsu.edu/sgl (the WSU Simulation and Gaming Lab). Fig. 2 illus-
trates these models in Blender and as viewed in the Torque Game Engine.

After models are finished their basic operations within the game engine are imple-
mented via Torque Script, a proprietary scripting language that takes advantage of
hooks within the engine, such as collision events, timed triggers, and basic physical
properties (such as mass and elasticity). Implemented functionality includes methods
for lifting, transferring, and carrying cargo for all modes of transportation.

The real time aspect is not strictly necessary for experimental results. However, in-
cluding it provides a blend of simulation and data visualization that opens additional
uses of interest to a wider audience of users. For instance an accurate real time simu-
lation could possibly be useful to seaport workers in determining security holes intro-
duced after sensors are disabled in an accidental collision or during adverse weather
conditions.

224 A. Christiansen, D. Johnson, and L. Holder

Another project with similar aims is the L3DGEWorld data visualization tool for
network analysis [4]. This project utilizes OpenArena (a derivative of the Quake III
Arena game engine) to reflect network activity, and players actions as network com-
mands (such as blocking IP ranges). While the environments differ considerably, both
have a similar goal of allowing users to sift through sizable amounts of real-world
data via a player. One lesson we take from this project is to abandon realism at times
in favor of usability (such as providing a HUD or aerial view upon request).

Fig. 2. Models of the ship, cargo containers and crane in Blender [2] (top three). Seaport mod-
els viewed in the Torque Game Engine [8] (bottom two).

References

1. Ageia Physx Processor, http://www.ageia.com/physx
2. Blender, http://www.blender.org
3. Brown, F., Barnett, N.: A Tutorial on Using MCNP for 1-Group Transport Calculations,

Los Alamos National Laboratory (July 2007)
4. Harrop, W., Armitage, G.: Real-Time Collaborative Network Monitoring and Control Using

3D Game Engines for Representation and Interaction. In: VizSEC 2006 Workshop on Visu-
alization for Computer Security, Virginia, USA (October/November 2006)

5. Koch, D.: PortSim: A Port Security Simulation and Visualization Tool. In: Proc. of the 41st
Annual IEEE Intern. Conf. on Security Technology (October 2007)

6. Raghuvanshi, N., Lauterbach, C., Chandak, A., Manocha, D., Lin, M.: Real-Time Sound
Synthesis and Propagation for Games. Communications of the ACM 50(7) (2007)

7. Sekine, J., Campos-Nannez, E., Harrald, J., Abeldo, H.: A Simulation-based Approach to
Trade-off Analysis of Port Security. In: Proc. of the 38th Conf. on Simulation (Winter, 2006)

8. Torque Game Engine, http://www.garagegames.com

	Game-Based Simulation for the Evaluation of Threat Detection in a Seaport Environment
	Introduction
	Threat and Sensor Modeling
	Seaport Modeling
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

