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ABSTRACT
Given a semantic graph data set, perhaps one lacking in
an explicit ontology, we wish to first identify its significant
semantic structures, and then measure the extent of their
significance. Casting a semantic graph dataset as an edge-
labeled, directed graph, this task can be built on the ability
to mine frequent labeled subgraphs in edge-labeled, directed
graphs. We begin by considering the enumerative combina-
torics of subgraph motif structures in edge-labeled directed
graphs. We identify frequent labeled, directed subgraph mo-
tif patterns, and measure the significance of the resulting
motifs by the information gain relative to the expected value
of the motif based on the empirical frequency distribution
of the link types which compose them, assuming indepen-
dence. We illustrate on a small test graph, and discuss re-
sults obtained for small linear motifs (link type bigrams and
trigrams) in the Billion Triple Challenge triplestore.

1. INTRODUCTION
As semantic graph databases (SGD) [10] grow, it is be-

coming increasingly important to be able to understand their
inherent semantic structure, whether codified in explicit on-
tologies or not. Our research group is developing methods
for descriptive semantic analysis of RDF triplestores, to
serve purposes of analysis, interpretation, visualization, and
optimization. We wish to identify the most prominent se-
mantic structures and semantic constraints present in SGDs,
first simply to understand them, but then to exploit them to
provide targeted inferential support, and to optimize search
and visualization methods to the specific ontology, connec-
tivity, and distributional statistics of datasets and queries.

RDF1 datasets are sets of triples 〈s, p, o〉, interpreted as
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both predicates p(s, o) over the “resource” subject s and
object o, and as graph links of type p from nodes s to
o. Some predicates indicate semantic meta-data about re-
sources, such as their classes C(s), C(o). We have explored
statistical representations of the structure of classes and
predicates in semantic graph datasets [1, 8, 9], defining an
extant ontology (EO) [8] as a class-predicate network over
an entire RDF dataset, edge-weighted by predicate frequency.
We also defined ontological scaling [1] as the ability to
“roll up” classes and predicates through an external ontol-
ogy to achieve coarser, more meaningful representations.

An EO is able to represent the individual link proper-
ties among node classes. However, the joint semantic con-
straints present amongst link types occurring in combina-
tion likely carries much more of the semantic information
in a dataset. So we additionally explored the identification
of significant path type structures as vectors of their con-
stituent link types, basically link type n-grams [8, 9].

We now extend this work to address broader questions in
graph data mining [4]. Methods in both network science
and graph mining are aimed almost exclusively at unlabeled
graphs, either directed or undirected [5, 11]. But seman-
tics are exactly carried by the label information in the link
types p and classes C(s) and C(o), in addition to the direc-
tionality of the links (triples are not generally symmetric).
It may be valuable to know that two entities are connected
by some path, but the exact nature of that path in terms
of the intervening link types is critical. Similarly, query in
graph databases is modeled as subgraph isomorphism down
to matching the node and edge types of the query.

We aim to identify significant semantic structures by min-
ing frequent typed, directed subgraphs as small motifs. We
cast the typed link structure of an RDF dataset as an edge-
labeled, directed graph, and define the combinatorial struc-
ture of its subgraph motifs. We use the SUBDUE program
from Washington State University [3]2 to enumerate and
count all such motifs. We then use an information gain mea-
sure, comparing the empirical frequency of (edge-labeled,
directed) motifs to their expected frequencies based on the
empirical distribution of their sub-motifs, assuming inde-
pendence, down to the distribution of the individual edge
labels. We illustrate on a small graph, and then show re-
sults for bigrams and trigrams of edge labels in paths of the

2http://ailab.wsu.edu/subdue
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Figure 1: (Top) A labeled, directed graph. (Middle Left) It’s undirected form, the symmetric closure. (Middle
Right) Its unlabeled form. (Bottom) Unlabeled and undirected.

Billion Triple Challenge 2010 (BTC10) data set.3

2. ORDERED SETSOFMOTIFS IN LABELED,
DIRECTED GRAPHS

We model an RDF triplestore as an edge-labeled, directed,
connected graph G = 〈V,E,ψ, L〉, where: V is a finite, non-
empty set of nodes, E ⊆ V 2 is a set of directed edges, L is
a set of labels and ψ : E → L is a label function mapping
each edge ε ∈ E to a label ψ(ε).4 We will say that a graph
has size N = |E| with η = |L| edge labels. An example is
shown on the top of Fig. 1, with nodes V = {a, b, c, d, e, r, s},
η = 3 labels L = {f, g, h}, and each of the N = |E| = 8
edges ε ∈ E identified in [[8]], where [[x]] = {1, 2, . . . , x}, in
addition to its label ψ(ε).

G is an edge-labeled, directed graph. If we ignore direc-
tion, each directed graph is a member of a class of directed
graphs all equivalent to their underlying undirected form
created by symmetric closure. This is shown on the center
left side of Fig. 1 for G. Alternatively, if we ignore labeling,
each labeled graph is a member of a class of labeled graphs
all equivalent to their underlying unlabeled form, as shown
in the center right side of Fig. 1. Finally, the unlabeled,
undirected form is shown on the bottom of Fig. 1.

We say that H ⊆ G is a subgraph of G if every edge in
H is also in G, so that EH ⊆ EG.5 We restrict ourselves
only to connected subgraphs H ⊆ G of the connected graph
G. A motif is then a collection of subgraphs which are
equivalent by some criteria, and a k-motif is a motif all of
whose subgraphs are of size k ≤ N . In this work, we consider
motifs which are equivalent by graph structure (directed or
undirected), by labeling, and by both labeling and structure.

3http://challenge.semanticweb.org
4Technically, graphs G used in this paper are also node-
labeled, but always with unique labels serving only as identi-
fiers. We also assume edges are singly-labeled. Extensions to
the case where nodes are (properly) labeled, and ψ : E → 2L,
so that G is an edge multigraph, can be considered.
5Note that this edge-based definition means that it could be
that VH = VG even if EH ⊂ EG.

Fig. 2 enumerates the unlabeled (directed and undirected)
motifs of size k = 2, 3, 4. For k = 2, 3, all directed motifs are
enumerated; for k = 4, only those directed motifs present in
G are shown. Each directed motif is identified by a motif
number m ∈ [[31]]. Each motif maps to a collection of sub-
graphs H ⊆ G; Fig. 2 also shows the number f(M) of those
for both the directed and undirected (unlabeled) forms.

But there are structural relationships between the motifs,
in that certain motifs of size k are contained within others
of size k + 1, etc. The unlabeled, undirected case for our
example is illustrated in Fig. 3. Each graph in the diagram
represents a motif M, in this case an unlabeled, undirected
subgraph of the unlabeled, undirected form of G. Here we
can now see more of the frequencies, ranging from just the
edge count N = 8 for the single 1-motif to 1 for the single
N -motif (the original graph).

The structure in Fig. 3 is a graded partially ordered set
(poset), ordered by edge inclusion, ranked by k, and weighted
by frequencies f . We recognize the unweighted form as
a simplicial complex of subgraphs [2, 6, 7], restricted to
the connected subgraphs. Simplicial complexes are familar
as the structure formed by enumerating the k-dimensional
hyper-faces of an N -dimensional polytope (multi-dimensional
polygon) for 1 ∈ [[N ]]. The sub-graphs H ∈ M within each
motif are thereby structurally (homotopically) equivalent.

Fig. 4 illustrates the unlabeled, directed case for k ∈ [[4]].
Note that each motif graph in Fig. 3 now expands to an
equivalence class of directed motifs, as identified in the fig-
ure. It can be verified that the frequencies in the blocks add
up to the frequencies for the motifs in Fig. 3, and indeed
Fig. 3 is a sub-poset of Fig. 4.

Consider the motif identified as M∗ at the top of Fig. 4
of size k = 3 and frequency f(M∗) = 3. This motif alone is
expanded to its full labeled, directed form in Fig. 5, along
with its ancestors and descendants for k ∈ [[4]] in the poset
of labeled, directed motifs. As before, each motif in Fig. 4
is now expanded to its equivalence class.

3. MOTIF FREQUENCIES



Figure 2: All motifs for k = 2, 3, 4, both the undirected and directed forms in its equivalence class. For each
motif (undirected or directed), the right column shows its count, and for directed motifs the left column
shows the motif # m. For k = 4, only those motifs are shown which are actually present in the graph in
Fig. 1.
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Figure 3: A portion of the unlabeled, undirected motif poset for our example.

Edge Label Count p(l)
l = ψ(ε)

f 4 0.500
g 3 0.375
h 1 0.125

Table 1: Edge label statistics for G.

Consider now the motifs of size k = 1 in Fig. 5. Of course,
these are just the individual edge labels f, g, and h with
frequencies 2, 2, and 1 respectively. Space does not allow
showing the full poset for the labeled, directed case, Fig. 5
is restricted to expand only the unlabeled, directed motif
M∗. Thus the frequencies for the motifs other than those
of size k = 3 do not necessarily correspond to those of the
classes shown in Fig. 4, since those also have contributions
from its siblings in Fig. 4. So the frequencies for size k = 1
in Fig. 5 are actually those for the labels of edges which
appear within the unlabeled, directed motif M∗.

Removing this restriction, Table 1 shows the frequency
distribution of the edge labels in the whole graph G, along
with their relative frequencies p : L → [0, 1], where for l ∈
L, p(l) = f(l)/N , so that p(f) = .5, p(g) = .375, p(h) = .125.

Any edge ε = 〈x, y〉 ∈ E individually maps to the k = 1
unlabeled, directed motif H = 〈{x, y}, {ε}〉 ⊆ G. So just as
each edge ε ∈ E has its label ψ(ε) ∈ L, we seek to extend
this concept to describe the motif label ψ(H) of a whole
subgraph H ⊆ G. For linear motifs, that is, motifs which
are just paths, it is sufficient to use the vector of edge labels
for ψ(H). For example, for the two motifs of type m = 1
in Fig. 5, we have the vectors ψ(M) = 〈f, g〉 and ψ(M) =
〈f, h〉 respectively. In their undirected form, these would be
sets ψ(M) = {f, g} and ψ(M) = {f, h}.

But for non-linear motifs, ψ(H) needs to be effectively the
whole motif graph, indicating both the set of edge labels and
their connections. Completion of this aspect awaits further
work, but modulo these considerations, we can extend our
notion of frequencies of edges p(l) = p(ψ(ε)) to frequencies
of motifs p(ψ(H)), or just p(H) when clear from context. In
particular, all of the directed and undirected motifs H ⊆ G
shown in Fig. 2 now break down into their labeled forms.
Table 2 shows the frequency distribution p(ψ(H)) of the
undirected motifs for k = 2, appropriately as sets of edge
labels of size k = 2. In contrast, Table 3 shows the frequency

Undirected motif label Count p(ψ(H))
ψ(H)
{f, f} 2 0.13
{f, g} 7 0.47
{f,h} 2 0.13
{g, g} 1 0.07
{g, h} 3 0.20
{h, h} 0 0.00

Table 2: Undirected motif label frequencies, k = 2.

distributions p(ψ(H)|m) of the three directed motif patterns
m = 1, 2, 3 for k = 2, appropriately as ordered pairs.

Note the differences in the columns in Table 3, as only
non-isomorphic pairs are listed. For motif m = 1, all η2 = 9
combinations of edge labels are viable. But for motifs m =
2, 3, the patterns 〈f, g〉 and 〈g, f〉 are isomorphic, so that
there are only η2 −

(η
2

)
= 6 possibilities.

4. INFORMATION GAIN OF MOTIFS
Now consider a labeled graph motif H ⊆ G, directed or

undirected. We can count the frequency p(H) as shown
above. But we can also estimate how likely H is to occur at
random given just the basic distribution p(l) over labels. Let
p̂(H) be this estimate of the expected frequency of H ⊆ G.
Then for a measure of the information gain of the motif
H, we use the standard the logarithmic form − log(p) to
measure the information content of a probability p *= 0.
Noting that p ≥ q → − log(p) ≤ − log(q), we posit

I(H) : = log(p(H)) − log(p̂(H)) = log
p(H)

p̂(H)
,

for both p(H), p̂(H) *= 0. I(H) measures the amount to
which p(H) occurs above its expectation p̂(H), so that then
I(H) > 0, and I(H) < 0 if it occurs less than expected.

To estimate p̂(H) from p(l) for a directed linear motif
H ⊆ G, it is sufficient to let p̂(H) =

∏
ε∈H p(ψ(ε)), where

we iterate over each of the edges ε which compose H. The
results for the first directed linear motif pattern m = 1 are
shown in Table 4. Note that Table 4 is restricted to only
those motifs which occur in the graph. These are all we’re
measuring, and this guarantees that p(H), p̂(H) > 0.

For undirected (linear) motifs, calculating p̂(H) is more
complicated. For k = 2 only, let H = {l1, l2} be the motif la-
bel, consisting of its two distinct edge labels l1 = ψ(ε1), l2 =



Figure 4: The unlabeled, directed motif poset set for our example for k ∈ [[4]].



Figure 5: A portion of the labeled, directed motif poset implied by the specific unlabeled, directed motif M∗.

Directed motif label m = 1 m = 2 m = 3

ψ(H) Count p(ψ(H)|m) Count p(ψ(H)|m) Count p(ψ(H)|m)
〈f, f〉 1 0.125 1 0.333 0 0.000
〈f, g〉 4 0.500 1 0.333 1 0.250
〈f,h〉 2 0.250 0 0.000 0 0.000
〈g, f〉 1 0.125
〈g, g〉 0 0.000 0 0.000 1 0.250
〈g, h〉 0 0.000 1 0.333 2 0.500
〈h, f〉 0 0.000
〈h, g〉 0 0.000
〈h, h〉 0 0.000 0 0.000 0 0.000

Table 3: Directed motif label frequencies for k = 2, motifs m = 1, 2, 3.



Directed linear Count p(ψ(H)) p̂(H) I(H)
motif label

〈f, f〉 1 0.125 0.250 -0.301
〈f, g〉 4 0.500 0.188 0.426
〈f,h〉 2 0.250 0.063 0.602
〈g, f〉 1 0.125 0.188 -0.176

Table 4: Gains for directed motifs, k = 2,m = 1.

Undirected linear Count p(H) p̂(H) I(H)
motif label

{f, f} 2 0.133 0.250 -0.273
{f, g} 7 0.467 0.375 0.095
{f,h} 2 0.133 0.125 0.028
{g, g} 1 0.067 0.141 -0.323
{g, h} 3 0.200 0.094 0.329

Table 5: Gains for undirected motifs, k = 2.

ψ(ε2). Then we have:

p̂(H) =

{
(p(l))2, l = l1 = l2
2 · p(l1) · p(l2), l1 *= l2

(1)

Table 5 shows the results for undirected motifs for k = 2.
The highest information gain is for the motif {g, h}, since
it would be expected to occur 9.4% of the time, when in
fact it occurs 20.0% of the time. Similarly, {f, f} is under-
represented at 13.3% compared to 25.0%. For k > 2, (1)
becomes substantially more complicated

Consider our target motifs M∗
1,M∗

2 again from Fig. 5, oc-
curring with empirical frequencies of p(H(M∗

1)) = 2/3 and
p(H(M∗

2)) = 1/3 respectively within their classes. Each is
of motif type m = 9, and is composed of types m = 1, 2. For
example, M∗

1 is the union of m = 2 with label ψ = 〈f, f〉
and m = 1 with label ψ = 〈f, g〉. Thus we can posit
the estimated expected frequencies p̂(H(M∗

1)), p̂(H(M∗
2))

as the product of those constituent frequencies, which are
shown on Table 3 as p̂(H(M∗

1)) = 1/2 · 1/3 = 1/6 and
p̂(H(M∗

2)) = 1/12. The corresponding information gains
are then I(M∗

1) = log 6 = 0.78, I(M∗
2) = log 4 = 0.60.

5. BILLION TRIPLE CHALLENGETRIGRAMS
We now show information gains for some linear motifs

from BTC10 [8, 9], an RDF graph with 1.4B unique 〈s, p, o〉
triples. Fig. 6 shows the top 16 of the 95.2K predicates,
comprising 35% of all 1.4B link instances, as shown by the
cumulative percentage line. Fig. 7 shows the EO for the top
30 edge labels in BTC10. For example we have about 70M
triples with the predicate foaf:knows connecting subject
and object of class foaf:Person, the highest count.

Table 6 shows the distribution of the top 20 bigrams of
the 1.3M consecutive link type pairs, comprising 53.0% of all
17.0B consecutive link pairs present; and Table 7 shows the
distribution of the top 20 trigrams of the 72.7M consecutive
predicate triples, comprising 7.54% of all 1.04T link triples.

Note that there is a subtle formal difference between the
EO in Fig. 7 and our example in Fig. 1. Both have node
labels which are unique identifiers, in the EO these are
the classes of resources. Edge labels in the EO are predi-
cates. But the EO is additionally weighted by the counts of
the edges, basically aggregating multiple edges of the form

x
f−→ y into one edge with the weight being its count. This

would be equivalent to our Fig. 1 being a multi-graph. In any

event, there is no difference once counts are made strictly on
link types (edge labels) in both structures, these are just two
different mechanisms to add up counts of link types.

Low-frequency predicates are prominent in both the bi-
grams and trigrams. For example, consider the most fre-
quent bigram 〈dgtwc:isPartOf, dgtwc:partial_data 〉, with
a frequency of 17.1%. The constituent predicates have fre-
quencies of 0.0038% and 0.027% respectively, far below the
top 16 shown in Fig. 6. If these were independent, the ex-
pected joint frequency would be minuscule. For information
gains, we have I = 7.22. This pattern of a vast inflation
of expected probability is a general phenomenon, indicating
the powerful role that these small sequence motifs play in
the semantics of BTC10.

Table 8 shows information gains for the top 7 link type tri-
grams. Note that the third and fourth rows are structurally
isomorphic (trigram motifs 〈f, g, f〉 and 〈g, f, g〉 have the
same decomposition into bigram motifs 〈f, g〉 and 〈g, f〉), so
their counts are combined into the third row of Table 8.

These initial results are insufficient to draw conclusions,
but we can see that there is a significant variation in I for
the different trigrams, and a lack of obvious dependence be-
tween I(H) values and base motif frequency p(H). This is
initial justification in the value of I(H) to indicate additional
information not present in the base frequencies.

6. FURTHER WORK
We have shown preliminary results on the use of infor-

mation theoretical measures to assess the significance of
edge-labeled motifs in semantic graph databases. A num-
ber of developments await immediate progress beyond this
first workshop paper:

• We recognize that our mathematical objects have been
explored in combinatorics and algebraic topology, and
we seek results from simplicial complexes which we can
bring to bear. We can see I as an objective function
in a combinatorial search problem over these posets.
In particular, we are interested in exploiting constraint
relationships which exist on the frequencies f, p of par-
ticular motifs in terms of the frequencies of their chil-
dren and parents in the posets.

• We also need to extend our understanding of the ex-
pressions for the expected frequencies p̂(H) for non-
linear motifs. Simply taking the product of constituents
does not completely reflect the structural overlap.

• Additional interaction between our EO approach and
this measurement method is also in order. In par-
ticular, in real RDF graphs nodes can have multiple
types. Possible approaches then include making our in-
put graph node-weighted, or multi-node-labeled. But
there could be edges between different nodes of the
same type participating in different motifs in the EO.
We may seek to expand the EO to accommodate this,
thus counting motifs at the instance level.

• Finally, we are straining SUBDUE by using it for new
purposes. Additional software development will be
very useful, and there is active work underway by our
team to scale SUBDUE to giga-scale levels.

7. ACKNOWLEDGEMENTS



Figure 6: Top 16 predicates in BTC10.

Figure 7: The extant Ontology for the Top 30 Link-node-types in BTC10.

l1 l2 Count (M) %
dgtwc:isPartOf dgtwc:partial data 2912.13 35.8%
foaf:interest purl:title 2036.23 25.0%
gs:isUnknownAboutIn gs:hasUnknownExpectationOf 516.19 6.3%
gs:isExpectedIn gs:hasExpectationOf 142.62 1.8%
gs:isUnknownAboutIn gs:hasLowExpectationOf 139.13 1.7%
gs:isUnexpectedIn gs:hasUnknownExpectationOf 139.13 1.7%
gs:isUnknownAboutIn gs:hasExpectationOf 132.04 1.6%
gs:isExpectedIn gs:hasUnknownExpectationOf 132.04 1.6%
gs:isUnexpectedIn gs:hasLowExpectationOf 124.14 1.5%
sioc:follows sioc:follows 116.87 1.4%
gs:isUnexpectedIn gs:hasExpectationOf 84.12 1.0%
gs:isExpectedIn gs:hasLowExpectationOf 84.12 1.0%
foaf:knows foaf:knows 81.69 1.0%
foaf:primaryTopic foaf:maker 77.68 1.0%
foaf:knows foaf:nick 68.93 0.8%
fao:hasScope fao:isScopeOf 60.16 0.7%
fao:hasType fao:isTypeOf 52.24 0.6%
foaf:accountServiceHomepage purl:title 41.69 0.5%
foaf:knows foaf:holdsAccount 39.26 0.5%
foaf:based near gs:hasUnknownExpectationOf 36.16 0.4%

Table 6: Top 20 link type bigrams in BTC10 (millions).



l1 l2 l3 Count (B) %
sioc:follows sioc:follows sioc:follows 10.85 10.6%
foaf:knows foaf:knows foaf:knows 2.19 2.1%
gs:hasUnknownExpectationOf gs:isUnknownAboutIn gs:hasUnknownExpectationOf 2.15 2.1%
gs:isUnknownAboutIn gs:hasUnknownExpectationOf gs:isUnknownAboutIn 2.15 2.1%
gs:isUnknownAboutIn gs:hasUnknownExpectationOf foaf:isPrimaryTopicOf 1.98 1.9%
gs:isUnknownAboutIn gs:hasUnknownExpectationOf skos:closeMatch 1.37 1.3%
rdf:predicate http://sw.nokia.com/VOC-1/partOf http://sw.nokia.com/VOC-1/term 1.32 1.3%
foaf:primaryTopic gs:isUnknownAboutIn gs:hasUnknownExpectationOf 1.08 1.1%
skos:closeMatch gs:isUnknownAboutIn gs:hasUnknownExpectationOf 0.78 0.8%
gs:hasUnknownExpectationOf gs:isUnknownAboutIn gs:hasExpectationOf 0.64 0.6%
gs:isExpectedIn gs:hasUnknownExpectationOf gs:isUnknownAboutIn 0.64 0.6%
gs:hasUnknownExpectationOf gs:isUnknownAboutIn gs:hasLowExpectationOf 0.64 0.6%
gs:isUnexpectedIn gs:hasUnknownExpectationOf gs:isUnknownAboutIn 0.64 0.6%
gs:isExpectedIn gs:hasExpectationOf foaf:isPrimaryTopicOf 0.62 0.6%
gs:isUnknownAboutIn gs:hasLowExpectationOf foaf:isPrimaryTopicOf 0.62 0.6%
gs:isUnknownAboutIn gs:hasExpectationOf foaf:isPrimaryTopicOf 0.61 0.6%
gs:isUnknownAboutIn gs:hasLowExpectationOf gs:isUnexpectedIn 0.56 0.5%
gs:hasLowExpectationOf gs:isUnexpectedIn gs:hasUnknownExpectationOf 0.56 0.5%
gs:isUnexpectedIn gs:hasLowExpectationOf foaf:isPrimaryTopicOf 0.53 0.5%
gs:isUnknownAboutIn gs:hasUnknownExpectationOf gs:isExpectedIn 0.52 0.5%

Table 7: Top 20 link type trigrams in BTC10 (billions).

l1 l2
l3 p(H) p(〈l1, l2〉) p(〈l2, l3〉) p̂(H) I(H)

sioc:follows sioc:follows
sioc:follows 10.60% 1.44% 1.44% 0.021% 2.71

foaf:knows foaf:knows
foaf:knows 2.13% 1.00% 1.00% 0.010% 2.33

gs:hasUnknownExpectationOf gs:isUnknownAboutIn
gs:hasUnknownExpectationOf 2.09% 0.00091% 6.35% 0.00012% 4.26

gs:isUnknownAboutIn gs:hasUnknownExpectationOf
foaf:isPrimaryTopicOf 1.93% 6.35% 0.00080% 0.000051% 4.58

gs:isUnknownAboutIn gs:hasUnknownExpectationOf
skos:closeMatch 1.33% 6.35% 0.00055% 0.000035% 4.58

rdf:predicate http://sw.nokia.com/VOC-1/partOf
http://sw.nokia.com/VOC-1/term 1.28% 0.0216% 0.00367% 0.00000079% 6.21

foaf:primaryTopic gs:isUnknownAboutIn
gs:hasUnknownExpectationOf 1.05% 0.00044% 6.35% 0.000028% 4.57

Table 8: Information gains for top 6 link type trigrams in BCT10, H = 〈l1, l2, l3〉.
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