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The large amount of data collected today is quickly overwhelming
researchers’ abilities to interpret the data and discover interesting patterns.
Knowledge discovery and data mining systems contain the potential to
automate the interpretation process, but these approaches frequently utilize
computationally expensive algorithms. In particular, scientific discovery
systems focus on the utilization of richer data representation, sometimes
without regard for scalability. This research investigates approaches for
scaling a particular knowledge discovery—data mining system, SUBDUE, using
parallel and distributed resources. SUBDUE has been used to discover interesting
and repetitive concepts in graph-based databases from a variety of domains,
but requires a substantial amount of processing time. Experiments that
demonstrate scalability of parallel versions of the SUBDUE system are performed
using CAD circuit databases, satellite images, and artificially-generated
databases, and potential achievements and obstacles are discussed.  © 2001

Academic Press

1. INTRODUCTION

One of the barriers to the integration of scientific discovery methods into practi-
cal data mining approaches is their lack of scalability. Many scientific discovery
systems are motivated from the desire to evaluate the correctness of a discovery
method without regard to the method’s scalability. As an example, our SUBDUE
system was developed to evaluate the effectiveness of the minimum description
length (MDL) principle at discovering regularities in a variety of scientific domains.
Description of the serial SUBDUE algorithm and its applications is provided in the
literature [ 6, 8].
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Another factor is that some scientific discovery systems deal with richer data
representations that only degrade scalability. A number of linear, attribute-value-
based approaches have been developed that discover concepts in databases and can
address issues of data relevance, missing data, noise, and utilization of domain
knowledge [ 3, 14, 15]. However, much of the data being collected is structural in
nature, requiring tools for the analysis and discovery of concepts in structural data
[13]. For example, the SUBDUE system uses a graph-based representation of the
input data that captures the structural information. Although the subgraph
isomorphism procedure needed to deal with this data has been polynomially
constrained within SUBDUE, the system still spends a considerable amount of
computation performing this task.

The goal of this research is to demonstrate that knowledge discovery in databases
(KDD) systems can be made scalable through efficient use of parallel and
distributed hardware. To accomplish this goal, we investigate several basic
approaches that can be used to parallelize KDD systems and compare the results
of these approaches when applied to the SUBDUE discovery system.

Related approaches to scaling data mining and discovery systems have been
pursued. Parallel MIMD approaches to concept learning have included partitioning
the data set among processors [ 2, 23, 26] and partitioning the search space among
available processors [9, 10, 18, 21]. Data partitioning approaches have also been
effective for certain limited approaches to data mining [4,22] and knowledge
discovery [20] on SIMD architectures. Improving the scalability of scientific
discovery systems will help break down the barrier that currently excludes these
techniques from practical data mining approaches.

2. OVERVIEW OF SUBDUE

We have developed a method for discovering substructures in databases using the
MDL principle introduced by Rissanen [24] and embodied in the SUBDUE system.
Based on the MDL principle, SUBDUE discovers substructures that compress the
original data and represent structural concepts in the data. Once a substructure is
discovered, it is used to simplify the data by replacing instances of the substructure
with a pointer to the newly discovered substructure. The discovered substructures
allow abstraction over detailed structures in the original data. Iteration of the
substructure discovery and replacement process constructs a hierarchical description
of the structural data in terms of the discovered substructures. This hierarchy
provides varying levels of interpretation that can be accessed based on the specific
goals of the data analysis.

The substructure discovery system represents structural data as a labeled graph.
Objects in the data map to vertices or small subgraphs in the graph, and
relationships between objects map to directed or undirected edges in the graph. A
substructure is a connected subgraph within the graphical representation. This
graphical representation serves as input to the substructure discovery system. An
instance of a substructure in a graph is a set of vertices and edges from the input
graph that match, graph theoretically, to the graphical representation of the
substructure.
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FIG. 1. Natural rubber atomic structure.

Figure 1 shows a sample database that is input to SUBDUE, representing the
atomic structure of natural rubber. The input graph represents atoms as vertices
and single or double bonds as labeled undirected edges between the vertices. The
highlighted substructure, substructure S1, is selected as the best subgraph to
describe the input database. The five instances of the substructure are replaced by
a single vertex representing the discovered concept. The graph that results from
compressing the rubber database is shown in Fig. 2. This discovery and compression
helps the user understand the graphical database and exploit the knowledge content
of the data encoded in the graph vertices and edges.

Figure 3 shows a sample input database containing a portion of a DNA
sequence. In this case, atoms and small molecules in the sequence are represented
with labeled vertices in the graph, and the single and double bonds between atoms
are represented with labeled edges in the graph. SUBDUE discovers substructure S,
from the input database. After compressing the original database using .S,, SUBDUE
discovers substructure S,, which when used to compress the database further
allows SUBDUE to discover substructure S;. Such repeated application of SUBDUE
generates a hierarchical description of the structures in the database.

The substructure discovery algorithm used by SUBDUE is a computationally-
constrained beam search. SUBDUE’s discovery algorithm is shown in Fig. 4. The first
step of the algorithm is to initialize ParentList (containing substructures to be
expanded), ChildList (containing substructures that have been expanded), and
BestList (containing the highest-valued substructures SUBDUE has found so far) to
be empty and to set ProcessedSubs (the number of substructures that have been
expanded so far) to 0. Each of the lists is a linked list of substructures, sorted in
nonincreasing order by substructure value. For each unique vertex label, a
substructure is assembled whose definition is a vertex with that label and whose
instances are all of the vertices in G with that label. Each of these substructures is
inserted in ParentList.

The inner while loop is the core of the algorithm. Each substructure is removed
from the head of ParentList, and its instances are extended in all possible ways.
This is done by adding a new edge and vertex in G to the instance or by adding
a new edge between two vertices that are already part of the instance. The first
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FIG. 2. Rubber graph compressed using the discovered substructure.
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FIG. 3. Sample results of Subdue on a protein sequence.

instance of each unique expansion becomes a definition for a new child substructure,
and all of the child instances that were expanded in the same way become instances
of that child substructure. In addition, child instances that were generated by
different expansions, and that match the child substructure definition, also become
instances of the child substructure. Each child is then evaluated (based on its ability
to compress the database following the MDL principle) and inserted in the sorted
ChildList. The beam width of the search is enforced by controlling the length of
ChildList: after inserting a new child into ChildList, if the length of ChildList
exceeds the BeamWidth, the substructure at the end of the list is destroyed. The
parent substructure is inserted in BestList; the same pruning mechanism is used to
limit the length of BestList to be no greater than MaxBest. When ParentList has
been emptied, ParentList and ChildList are switched, so that ParentList now holds
the next generation of substructures to be expanded. SUBDUE’S running time is
constrained to be polynomial by the BeamWidth and Limit (a user-defined limit on
the number of substructures to process) parameters, as well as by computational
constraints placed on the inexact graph match algorithm.

Because instances of a substructure can appear in different forms throughout the
database, an inexact graph match is used to identify substructure instances. Sub-
graphs are considered to be instances of a substructure definition if the cost of
transforming the subgraph into a graph that is isomorphic with the substructure
definition does not exceed a user-defined threshold. Transformations between
graphs can include addition or deletion of vertices, addition or deletion of edges,
vertex label substitutions, and edge label substitutions. Performing an inexact
match allows the discovered substructures to abstract away minor variations in the
substructure instances. The varied instances may be compressed by replacing the
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SUBDUE( Graph, BeamWidth, MaxBest, MaxSubSize, Limit )
ParentList = {}
ChildList = {}
BestList = {}
ProcessedSubs = 0

Create a substructure from each unique vertex label and its single-vertex
instances; insert the resulting substructures in ParentList

while ProcessedSubs <= Limit and ParentList is not empty do
while ParentList is not empty do
Parent = RemoveHead( ParentList)
Extend each instance of Parent in all possible ways
Group the extended instances into Child substructures
foreach Child do
if SizeOf( Child ) <= MaxSubSize then
Evaluate the Child
Insert Child in ChildList in order by value
if Length( ChildList ) > BeamWidth then
Destroy the substructure at the end of ChildList
ProcessedSubs = ProcessedSubs + 1
Insert Parent in BestList in order by value
if Length( BestList ) > MaxBest then
Destroy the substructure at the end of BestList
Switch ParentList and ChildList
return BestList

FIG. 4. Subdue’s discovery algorithm.

instance with a single node representing the substructure (abstracting away instance
differences) or with a node and annotations describing the changes from the
substructure definition.

SUuBDUE discovers substructures that compress the amount of information
necessary to conceptually describe the database. To allow SUBDUE to discover
substructures of particular interest to a scientist in a specific domain, the user can
direct the search with expert-supplied background knowledge [8]. Background
knowledge can take the form of known substructure models that may potentially
appear in the database or graph match rules to adjust the cost of each inexact
graph match test. Unlike other existing approaches to graph-based discovery
[5,19, 25, 28, 28 ], SUBDUE is effective at finding interesting and repetitive substructures
in any structural database with or without domain-specific guidance.
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FIG. 5. CAD circuit results.

The results of the scalability study in Section 3 are demonstrated on databases in
two different domains. The first type of database is the CAD circuit description of
an A-to-D converter provided by National Semiconductor. The graph representation
of this database contains 8441 vertices and 19206 edges. The second type of
database is an artificially-constructed graph in which an arbitrary number of
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instances of a predefined substructure are embedded in the database surrounded by
vertices and edges with random labels and connectivity. The embedded substructure
covers almost half of the graph and exhibits significantly less variation in substructure
instances than in the CAD database. The tested artificial graph contains 1000
vertices and 2500 edges.

To test scalability on even larger databases while maintaining the characteristics
of these original two graphs, we generate multiple copies of the CAD and ART
graphs and merge the copies together by arbitrarily connecting the individual
graphs, yielding a new larger graph. The term n CAD thus refers to a graph consisting
of n copies of the original CAD database with joining edges added, and n ART
refers to a graph consisting of n copies of the artificial database with additional
joining edges. To ensure that the individual copies are linked tightly together, 20 %
of the number of edges in the original graph are randomly added to the merged
graph.

Figure 5 shows the substructures discovered from a CAD circuit with and
without background knowledge and evaluates the results based on compression
obtained with the substructure, time required to process the database (measured in
terms of number of graph match nodes generated), a human rating of the substructure
interestingness, and the number of substructure instances found in the database.
The interestingness of SUBDUE’s discovered substructures is rated by a group of
eight domain experts on a scale of 1 to 5, where 1 means the discovered substruc-
tures do not represent useful information in the domain and 5 means the discovered
substructures are very useful.

Figures 3 and 5 demonstrate two applications of SUBDUE. In addition to these
examples, SUBDUE has been successfully applied with and without domain
knowledge to databases in domains including image analysis, CAD circuit analysis,
Chinese character databases, program source code, chemical reaction chains,
Brookhaven protein databases, yeast genome databases, and artificially-generated
databases. Evaluation of these applications is described elsewhere [7, 11, 12, 277.

3. SCALING KDD SYSTEMS

Although reaching the maximum performance of a given knowledge discovery
system is specific to the system itself, making use of parallel and distributed resour-
ces can significantly affect the scalability of a KDD system. Parallelizing a
knowledge discovery system is not easy. The reason is that many KDD systems rely
upon heuristics and greedy algorithms to avoid the intractability inherent in an
exhaustive approach. Both heuristics and greedy algorithms share the potential of
finding a suboptimal solution and, on closer inspection, a sequentially oriented
solution. In many cases serial KDD algorithms can perform better if they are
provided with enough history of the problem being solved.

In addition, knowledge discovery systems share common parallelization
problems. A problem such as matrix multiplication (in its standard form) is easily
decomposable and thus parallelizable with minimal synchronization and
communication. In contrast, the knowledge discovered in each step by KDD
systems depends heavily on what has been discovered in previous steps. Thus, we
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cannot decompose the work without increasing the synchronization and
communication between the parallel processors which usually results in poor
performance.

Two main approaches to designing parallel algorithms are the functional parallel
approach and the data parallel approach. In the functional parallel approach the
algorithm steps are assigned to different processors, while in a data parallel
approach each processor applies the same algorithm to different parts of the input
data. In our discussion of parallelizing SUBDUE we concentrate on distributed
memory architectures because of the improved scalability of such architectures
compared to shared memory architectures.

3.1. Functional Parallel Approach—FP-SUBDUE

The main idea behind this algorithm is to divide SUBDUE’s search for candidate
substructures among processors. The search queue is maintained by one master
processor which keeps track of the best discovered substructures. The general
description of the algorithm follows.

Each processor starts by discovering initial substructures large enough to obtain
a compression greater than 1.0 and informing the master processor of the
discovered substructures. The master processor maintains a global search queue
containing the substructure definitions. When the master receives the results of an
expansion step from a processor, it decides whether to keep the expanded substructures
according to the following criteria:

e If that substructure is already discovered, then the new substructure
represents a duplication of work and is discarded.

o If the substructure value is not one of the best M so far, then this substructure
1s discarded.

o Otherwise the substructure is kept in the search queue.

Each slave processor keeps or deletes substructures as indicated by the master. If
a slave processor does not have any substructures in the global search queue then
the master asks another processor which has more than a threshold number of
substructures to transfer a substructure to the requesting processor. The algorithm
stops when the global search queue is empty or when a certain number of substructures
are globally evaluated.

Clearly the type of search employed in this parallel version differs from that of
the sequential version. In FP-Subdue any substructure waiting for expansion can be
expanded regardless of whether it is the best substructure so far or not. The
distribution of effort also allows many substructures to be evaluated that would be
discarded in serial SUBDUE due to the limited beam length.

To demonstrate the speedup of FP-SUBDUE we test the algorithm on an nCUBE
2 using 1, 4, 8, and 16 processors. Figures 6 through 9 show the resulting decrease
in run-time as the number of processors increases for different numbers of generated
substructures. A limit on performance improvement is reached in each case because
of the serial time required to generate and evaluate initial substructures before work
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FIG. 6. Discovery time of 60 substructures in 2, 4, 8, and 16 ART.

is distributed evenly among all processors. The amount of compression achieved
may also sometimes increase as the number of processors increases. For example,
after 30 substructure evaluations FP-SUBDUE discovered a substructure that is 21 %
better than any substructure discovered by serial SUBDUE while still yielding a
substantial speedup. This is due to the fact that the beam width combined over all
processors is greater than a single beam width on the serial machine, and thus a
greater number of substructures can be considered.

It may seem that the comparison between this parallel version and the sequential
version is not logical as each effectively uses a different type of search, but we
should note that if the sequential version were to follow the same kind of search
used by the parallel version (for example select the next substructure to expand
randomly from the search queue) then the parallel version is guaranteed to give us
a near linear speedup, discovering substructures which are as good as those which
would be discovered by the sequential version.

3.2. Dynamic Partitioning Approach—DP-SUBDUE

In the second functional parallel approach, Dynamic-Partitioning SUBDUE, each
processor starts evaluating a disjoint set of the input data. During discovery, each
processor enlarges its set as required by the discovered substructures. When
DP-SuBDUE is run on a graph with M vertex labels using P processors, processor
i begins processing a candidate substructure corresponding to the ith unique label
in the graph (i < M). Each processor receives a copy of the entire input graph and
begins processing its assigned candidate substructures. Each processor continues
expanding and processing a portion of the possible substructures until the
combined number of processed substructures exceeds a given limit or until all
processors are idle.

Note that there exists a danger of replicating work across multiple processors.
Consider the input graph shown in Fig. 10. If label V1 is assigned to processor 1
and V2 is assigned to processor 2, both processors will expand this single-vertex
substructure to the two-vertex substructure highlighted in the figure. If label '3 is
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assigned to processor 3, eventually all three processors will be working on the same
candidate substructures. To prevent this duplication of effort, DP-SUBDUE
constrains processors expanding a substructure to only include vertices with a label
index greater than the processor ID. In the example scenario, only processor 1 can
generate the highlighted substructure.

One hindrance to good performance from a parallel implementation is excessive
idling of processors. When a processor runs out of work, it requests work from a
neighboring processor. If the neighbor has a sufficient number of substructure
candidates left, the neighbor passes the highest-valued substructure and corre-
sponding instances to the requesting processor. If no work can be shared, the
requesting processor continues to ask for work until work can be shared or
DP-SuBDUE finishes computation.

When a substructure is transferred to a requesting processor, the requesting
processor assumes the identity of the original processor. This means that the
requesting processor can now expand the substructure in all the ways originally
permitted to the old processor. To ensure that both processors do not generate the
same substructures the original processor keeps a list of all transferred substruc-
tures and makes sure that no substructure subsuming a transferred substructure is
ever expanded.

Quality control is also imposed on the processors in the DP-SUBDUE system. One
processor is designated as the master processor, and this master regularly receives
status information on each processor. This information includes whether the
processor is active or idle, the number of processed substructures, and the average
value of candidate substructures. Using this information, at regular intervals the
master computes the overall average substructure value and sends this information
to all processors. Each individual processor then prunes from its list all substructure
candidates whose value is less than the global average. In this way no processor is
working on a poor substructure candidate that will not likely affect the results of
the system. The master processor also collects and sorts the final list of best
substructures found from each processor.

The partitions here are logical: the set of all instances of all the candidate
substructures discovered by a processor constitutes its partition. Thus, the
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FIG. 10. Sample input graph.
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partitions assigned to different processors grow dynamically as the discovered
substructures become more complex. Clearly, this kind of partitioning will not
cause any loss of information because the database itself is not split.

Results from the DP-SUBDUE system indicate that very limited speedup can be
achieved by distributing the substructure expansion and evaluation. The work done
to limit duplicate work and to load balance the system consumes considerable time
in processing and communication. Also as SUBDUE uses a greedy approach many
processors follow the same expansion path resulting in a tendency among
processors to generate duplicated work. In addition, the memory requirements of
this approach are excessive because the entire database is copied on each processor.
The speedup achieved is very limited and the results are not included in this paper.

3.3. Static Partitioning Approach—SP-SUBDUE

In this section we illustrate a data parallel approach to substructure discovery by
statically partitioning the data among the processors using SP-SUBDUE. This type of
parallelism is appealing in terms of memory usage and speedup. A similar form of
parallelism can be found in classifier systems that use bagging and boosting
methods to create independent classifiers from disjoint training sets and combining
a global concept from the individual classifiers [1].

In SP-SUBDUE we partition the input graph into n partitions for n processors.
Each processor performs sequential SUBDUE on its local graph partition and
broadcasts its best substructures to the other processors. The processors then
evaluate the communicated substructures on their local partitions. Once all evaluations
are complete, a master processor gathers the results and determines the global best
discoveries.

The speedup achieved by SP-SuBDUE as well as the quality of discovered
substructures depends on the graph partitioning step. When partitioning the graph,
we want to balance the work load equally between processors while retaining as
much information as possible (edges along which the graph is partitioned may
represent important information). SP-SUBDUE utilizes the Metis graph partitioning
package [17]. Metis accepts a graph with weights assigned to edges and vertices
and tries to partition the graph so that the sum of the weights of the cut edges is
minimized and the sum of vertex weights in each partition is roughly equal. We
assign weights only to edges to ensure that each partition will contain roughly the
same number of vertices. The weight of each edge is proportional to the frequency
with which it appears in the graph. The motivation for this weight assignment is
that the frequently-occurring edge labels are more likely to be found in frequently-
occurring substructures The run time of Metis to partition the CAD database is
very small (10 s on average for our databases).

Because the data are partitioned among the processors, SP-SUBDUE can also
utilize the increased memory resources of a network of workstations using com-
munication software such as the Parallel Virtual Machine (PVM) system [16]. We
implemented SP-SUBDUE on a network of 16 Pentium PCs using PVM.

Figures 11 and 12 graph the run-time of SP-SUBDUE on the CAD and artificial
databases as the number of processors increases. The speedup achieved with the
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FIG. 11. SP-Subdue run-time on CAD graphs.

ART database is frequently superlinear. This is because the run-time of sequential
SUBDUE is nonlinear with respect to the size of the database. Each processor essen-
tially executes a serial version of SUBDUE on a small portion of the overall database,
so the combined run-time is less than that of serial SUBDUE. The speedup achieved
with the CAD database is usually close to linear and sometimes superlinear.
Increasing the number of partitions results in a better speedup until the number of
partitions approaches the number of vertices in the graph.

To compare results of these databases with the results of databases not created
by merging together smaller components, we also graph the run-time of SP-SUBDUE
on artificial graphs ranging in size from 1000 to 4000 vertices (the number of edges
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FIG. 12. SP-Subdue run-time on ART graphs.
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FIG. 13. SP-Subdue run-time on nonmerged artificial graphs.

is double the number of vertices) without merging component graphs. The run-
times of SP-SUBDUE applied to these databases are shown in Fig. 13.

Now we turn our attention to the quality of the substructures discovered by
SP-SuBDUE. The quality of a substructure is measured in terms of the amount of
compression it affords in the original input graph. Let G, represent the graph G
compressed using substructure s. We report compression = size(G)/size(G,), thus a
greater compression value indicates a greater ability to compress the size of the
original database using the discovered substructure.

Tables 1 and 2 show the compression achieved for the CAD and ART databases
as well as the nonmerged artificial graphs when processed by a different number of
processors. Regarding the CAD database compression results, we find that a small
number of partitions almost always results in a superior compression to that of the
sequential version. The reason behind this is the nature of the CAD database. As

TABLE 1

CAD Database Compression Results by
Number of Processors

Processors

Database 1 2 4 8 16

1 CAD 1.081 1.280 1.383 1.538 1.436
2 CAD 1.081 1.261 1.294 1.249 1.238
3CAD 1.081 1.216 1.217 1.261 1.279
4 CAD 1.081 1.189 1.213 1257 1.297
5 CAD 1.081 1.164 1.188 1.211 1.220
6 CAD 1.081 1.130 1.137 1.149 1.184
7CAD 1.081 1.123 1.123 1.149 1.155
8 CAD 1.081 1.106 1.113 1.114 1.159
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TABLE 2

ART Database and Nonmerged Graph
Compression Results by Number
of Processors

Processors

Database 1 2 4 8 16

2 ART 2081 1979 2.111 2333 3.080
4 ART 1.969 1444 1.396 1.333 1.332
8 ART 1.970 1.254 1.147 1.284 1.203
16 ART 1.965 1.094 1.094 1.075 1.073
32 ART 1.866 1.037 1.026 1.025 1.016

1000 Vertices 1.947 2.670 2.920 3.191 3.578
2000 Vertices  2.126 2.709 3.006 3.263 3.348
4000 Vertices  2.131 2.696 2.944 3.140 3.335

with many real-world databases, the CAD databases contains many diverse
substructures. Treating the entire database as a single partition will result in
throwing away good substructures because of the limited search beam. When the
database is partitioned among several processors, each processor will have a greater
chance to deepen the search into the database, because the number of embedded
substructures is reduced, resulting in higher-valued global substructures.

The best compression achieved for the merged ART graphs is the compression
achieved using the sequential version. This is expected because of the high
regularity of this particular set of databases. As mentioned before the merged ART
databases have one substructure embedded into it, thus partitioning the database
can only cause some instances of this substructure to be lost because of the edge
cuts, so we cannot get better compression by partitioning.

Although static data partitioning results in substantial speedup and thus
scalability of the discovery system, eventually results will degrade because informa-
tion is lost along partition boundaries. We investigate two methods of recovering
some of this lost information. In the first approach, we allow enough overlap
between partitions that no edges are lost. In particular, everywhere an edge is cut
in the original partition, we add the edge to the partitions containing the edge
endpoint vertices, along with the neighboring vertex. In the second approach, we
run SP-SUBDUE twice with a different partitioning. No edge or vertex weights are
used in the second case, resulting in a different set of partition boundaries. Edges
cut in one case are likely to be preserved in the other. When both runs are finished,
the substructure yielding the greatest compression over both runs is saved. While
this approach increases the run-time, speedup is still achieved as a greater number
of processors is used.

Figures 14 and 15 show the run-times for the original and two modified
approaches. The results for the original times, Overlap times, and Dual times are
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FIG. 14. Average run-times for CAD databases.

averaged over multiple executions varying the number of processors. As the figures
demonstrate, both modified approaches require substantially longer run-time than
the original approach. The Overlap method requires a longer run-time because the
number of vertices and edges that must be added to prevent information loss is
large, and thus the partitioned graphs remain close to the original graph in size.
The Dual run-times are close to twice the time of the original approach.

Figures 16 and 17 show the compression achieved by each approach, averaged
over multiple executions varying the number of processors. These graphs show that
the Overlap method does not perform as well as the original approach. In these
particular graphs, the discovered substructures were fairly small and most instances
were found within a partition (not split across partition boundaries). As a result,
the inclusion of an overlap area increases the graph size without generally increasing
the number of substructure instances, so the resulting compression is less. The best
substructures are discovered using the Dual approach. Although the original
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FIG. 15. Average run-times for ART databases.
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FIG. 16. Average compression values for CAD databases.

partitions produce the highest-valued substructures in most cases, the second
partition does yield better substructures for some of the databases, thus
demonstrating that an alternative partition can recapture information lost when the
databases are split among processors.

3.4. Comparison

We have described implementations of one functional parallel and two data
parallel approaches for improving the scalability of SUBDUE with parallel and
distributed resources. When comparing the benefits of the three approaches,
DP-SuBDUE is discarded because of poor run-time and heavy memory requirements.
FP-SUBDUE can prove effective in discovering substructures in very large databases
with many embedded substructures due to its unique search algorithm. The reason
that the other versions will not discover some of the substructures discovered by
FP-SUBDUE is merely because of the limited search queue size (i.e., we can always
discover the same substructures by controlling the run-time parameters of serial
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FIG. 17. Average compression values for ART databases.
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SuBDUE and SP-SuUBDUE). The speedup of FP-SUBDUE is plotted along with the
speedup of SP-SuBDUE in Fig. 18. ART speedups are averaged over databases
2ART, 4ART, 8ART, and 16ART, and CAD speedups are averaged over databases
1CAD, 2CAD, 3CAD, and 4CAD. The speedups are similar for a smaller number
of processors, but show a better run-time performance for SP-SUBDUE as the
number of processors increases.

SP-SUBDUE is the most interesting approach of all. By partitioning the database
effectively, SP-SUBDUE proves to be a highly scalable system. SP-SUBDUE can handle
huge databases using fewer resources (processing power and memory) than would
have been required by the sequential version to handle the same database while
discovering substructures of equal or better quality. One of our tested databases
representing a satellite image contains 2 million vertices and 5 million edges, yet
SP-SUBDUE is able to process the database in less than three hours. The easy
availability of SP-SUBDUE is greatly improved by using a distributed network of
workstations, the minimal amount of communication and synchronization that is
required make SP-SUBDUE ideal for distributed environments. Using the portable
message passing interface provided by PVM allows the system to run on
heterogeneous networks.

4. CONCLUSIONS

The increasing structural component of today’s databases requires data mining
algorithms capable of handling structural information. The SUBDUE system is
specifically designed to discover knowledge in structural databases. SUBDUE offers a
method for integrating domain independent and domain dependent substructure
discovery based on the minimum description length principle. However, the
computational expense of a discovery system such as SUBDUE can deter widespread
application of the algorithms.
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In this paper, we analyze the ability of SUBDUE to scale to large databases. The
described parallel and distributed implementations of SUBDUE allow us to
investigate methods for improving the scalability of scientific discovery systems. In
particular, SP-SUBDUE shows promise as a method of scaling the substructure
discovery algorithm to large databases without the need for special-purpose
hardware. The distributed implementation is important for our current applications
in the biochemical, pharmaceutical, and geological domains where the databases
are too large to fit on a single machine. Future work will focus on means of
recovering information lost during graph partitioning.

The current version of SUBDUE, available for single processor or multiprocessor
environments, is available from the SUBDUE home page listed at the beginning of
this paper. Improvements are being made to SUBDUE to add concept learning
capabilities and apply the system to a greater variety of databases.

REFERENCES

1. L. Asker and R. Maclin, Ensembles as a sequence of classifiers, in “Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence,” 1997.

2. P. Chan and S. Stolfo, Toward parallel and distributed learning by meta-learning, in “Working
Notes of the AAAAI-93 Workshop on Knowledge Discovery in Databases,” pp. 227-240, 1993.

3. P. Cheeseman and J. Stutz, Bayesian classification (AutoClass): Theory and results, in “Advances in
Knowledge Discovery and Data Mining” (U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, Eds.), Chap. 6, pp. 153-180, MIT Press, Cambridge, MA, 1996.

4. S. Clearwater and F. Provost, A tool for knowledge-based introduction, in “Proceedings of the
Second International IEEE Conference on Tools for Artificial Intelligence,” pp. 24-30, 1990.

5. D. Conklin and J. Glasgow, Spatial analogy and subsumption, in “Proceedings of the Machine
Learning Conference,” pp. 111-116, 1992.

6. D. J. Cook and L. B. Holder, Substructure discovery using minimum description length and
background knowledge, J. Artificial Intelligent Res. 1 (1994), 231-255.

7. D. J. Cook and L. B. Holder, Graph-based data mining, IEEE Intelligent Systems, in press.

8. D. J. Cook, L. B. Holder, and S. Djoko, Scalable discovery of informative structural concepts using
domain knowledge, IEEE Expert 10, 5 (1996), 59-68.

9. D. J. Cook and R. C. Varnell, Maximizing the benefits of parallel search using machine learning,
in “Proceedings of the National Conference on Artificial Intelligence,” 1997.

10. D. J. Cook and R. C. Varnell, Adaptable incremental deepening search, J. Artificial Intelligence
Research (1998).

11. S. Djoko, “The Role of Domain Knowledge in Substructure Discovery,” Ph.D. thesis, Departement
of Computer Science and Engineering, University of Texas at Arlington, Aug. 1995.

12. S. Djoko, D. J. Cook, and L. B. Holder, Analyzing the benefits of domain knowledge in substructure
discovery, in “Proceedings of the First International Conference on Knowledge Discovery and Data
Mining,” pp.75-80, 1995.

13. U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From data mining to knowledge discovery:
An overview, in “Advances in Knowledge Discovery and Data Mining” (U. M. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds.), Chap. 1, pp. 1-34, MIT Press, Cambridge,
MA, 1996.

14. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, “Advances in Knowledge
Discovery and Data Mining,” AAAI Press, Menlo Park, CA, 1996.

15. D. Fishere, Knowledge acquisition via incremental conceptual clustering, Machine Learning 2
(1987), 139-172.



446 COOK ET AL.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, “PVM: Parallel
Virtual Machine, A User’s guide and Tutorial for Networked Parallel Computing,” MIT Press,
Cambridge, MA, 199%4.

G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, J. Parallel
Distrib. Comput. 48 (1998), 96-129.

V. Kumar and V. N. Rao, Scalable parallel formulations of depth-first search, in “Parallel
Algorithms for Machine Intelligence and Vision” (Kumar, Kanal, and Gopalakrishan, Eds.),
pp. 1-41, Springer-Verlag, Berlin/New York, 1990.

R. Levinson, A self-organizing retrieval system of graphs, in “Proceedings of the National
Conference on Artificial Intelligence,” pp. 203-206, 1984.

J. T. Potts, “Seeking Parallelism in Discovery Programs,” Technical Report, University of Texas at
Arlington, 1996.

C. Powley, C. Ferguson, and R. E. Korf, Parallel heuristic search: Two approaches, in “Parallel
Algorithms for Machine Intelligence and Vision” (Kumar, Kanal, and Gopalakrishan, Eds.),
pp. 42-65, Springer-Verlag, Berlin/New York, 1990.

F. J. Provost, B. G. Buchanan, S. H. Clearwater, and Y. Lee, “Machine Learing in the Service of
Exploratory Science and Engineering: A Case Study of the rl Induction Program,” Technical Report
ISL-93-6, Intillegent Systems Laboratory, University of Pittsburgh, 1993.

F. J. Provost and D. Hennessy, Scaling up: Distributed machine learning with cooperation,
in “Proceedings of the Thirteenth National Conference on Artificial Intelligence,” pp. 74-79, 1996.
J. Rissanen, “Stochastic Complexity in Statistical Inquiry,” World Scientific, Singapore, 1989.

J. Segen, Graph clustering and model learning by data compression, in “Proceedings of the Machine
Learning Conference,” pp. 93101, 1990.

M. J. Shaw and R. Sikora, “A Distributed Problem Solving Approach to Inductive Learning,”
Technical Report CMU-RI-TR-90-26, Robotics Institute, Carnegie Mellon University, 1990.

S. Su, D. J. Cook, and L. B. Holder, Application of knowledge discovery to molecular biology:
Identifying structural regularities in proteins, in “Proceedings of the Pacific Symposium on
Biocomputing,” pp. 190-201, 1999.

K. Thompson and P. Langley, Concept formation in structured domains, in “Concept Formation:
Knowledge and Experience in Unsupervised Learning” (D. H. Fisher and M. Pazzani, Eds.),
Chap. 5, Morgan Kaufmann, San Mateo, CA, 1991.

K. Yoshida, H. Motoda, and N. Indurkhya, Unifying learning methods by colored digraphs,
in “Proceedings of the Learning and Knowledge Acquisition Workshop at IJCAI-93,” 1993.



	1. INTRODUCTION 
	2. OVERVIEW OF SUBDUE 
	FIG. 1 
	FIG. 2 
	FIG. 3 
	FIG. 4 
	FIG. 54 

	3. SCALING KDD SYSTEMS 
	FIG. 6 
	FIG. 7 
	FIG. 8 
	FIG. 9 
	FIG. 10 
	FIG. 11 
	FIG. 12 
	FIG. 13 
	TABLE 1 
	TABLE 2 
	FIG. 14 
	FIG. 15 
	FIG. 16 
	FIG. 17 
	FIG. 18 

	4. CONCLUSIONS 
	REFERENCES 

