Discovering Concepts in Structural Data

Diane J. Cook, Lawrence B. Holder, and Gehad Galal
Department of Computer Science Engineering
University of Texas at Arlington

{cook, holder, galal}@cse.uta.edu

Abstract

The explosive growth of databases in scientific, industrial, and commercial fields has not
been accompanied by a similar growth in our ability to analyze and digest this data. The
increasing amount and complexity of data creates an urgent need for automatic database analysis
tools. This trend is evident in molecular biology data which continues to grow in both size and
complexity.

This research outlines a general approach to automatically discover repetitive and func-
tional concepts in large structural databases. The SUBDUE system discovers substructures that
compress the database and represent structural concepts in the data. By replacing previously-
discovered substructures in the data, multiple passes of SUBDUE produce a hierarchical descrip-
tion of the structural regularities in the data. To increase the flexibility of the system, we
describe methods of incorporating domain-dependent information into the discovery process.
Because discovery systems such as SUBDUE are very computationally expensive, we also explore

ways of parallelizing the system to improve scalability.

Introduction

The large amount of data collected today is quickly overwhelming researchers’ abilities to interpret
the data and discover interesting patterns within the data. In response to this problem, a number of
researchers have developed techniques for discovering concepts in databases. These techniques work

well for data expressed in a non-structural, attribute-value representation, and address issues of

data relevance, missing data, noise and uncertainty, and utilization of domain knowledge [Cheesman
and Stutz, 1996; Fisher, 1987]. However, recent data acquisition projects are collecting structural
data describing the relationships among the data objects. Correspondingly, there exists a need for
techniques to analyze and discover concepts in structural databases [Fayyad et al., 1996].

One method for discovering knowledge in structural data is the identification of common sub-
structures within the data. The motivation for this process is to find substructures capable of
compressing the data and to identify conceptually interesting substructures that enhance the in-
terpretation of the data. Substructure discovery is the process of identifying concepts describing
interesting and repetitive substructures within structural data. Once discovered, the substructure
concept can be used to simplify the data by replacing instances of the substructure with a pointer to
the newly discovered concept. The discovered substructure concepts allow abstraction over detailed
structure in the original data and provide new, relevant attributes for interpreting the data. Itera-
tion of the substructure discovery and replacement process constructs a hierarchical description of
the structural data in terms of the discovered substructures. This hierarchy provides varying levels
of interpretation that can be accessed based on the goals of the data analysis.

We describe a system called SUBDUE that discovers interesting substructures in structural
data based on the minimum description length principle. The SUBDUE system discovers substruc-
tures that compress the original data and represent structural concepts in the data. By replacing
previously-discovered substructures in the data, multiple passes of SUBDUE produce a hierarchical
description of the structural regularities in the data. SUBDUE uses a computationally-bounded
inexact graph match that identifies similar, but not identical, instances of a substructure and finds
an approximate measure of closeness of two substructures when under computational constraints.
In addition to the minimum description length principle, other background knowledge can be used

by SUBDUE to guide the search towards more appropriate substructures.

Figure 1: Natural rubber atomic structure

Figure 2: Discovered substructure

Algorithmic Techniques

The substructure discovery system represents structured data as a labeled graph. Objects in the
data map to vertices or small subgraphs in the graph, and relationships between objects map
to directed or undirected edges in the graph. A substructure is a connected subgraph within
the graphical representation. This graphical representation serves as input to the substructure
discovery system.

Figure 1 show a sample graphical representation of an input file to SUBDUE which represents
the atomic structure of natural rubber. Given this input database, SUBDUE discovers the subgraph

shown in Figure 2 as the best subgraph to describe the input database.

single

single single single single

Figure 3: Compressed representation of the graph

Original Database Discovered Substructure

Figure 4: Cortisone atomic structure

An instance of a substructure in an input graph is a set of vertices and edges from the input
graph that match, isomorphically, to the graphical representation of the substructure. The input
graph contains five instances of this concept in the database. As shown in Figure 3, SUBDUE
replaces the instances with a pointer to the concept definition and thus redefines the database
in terms of this substructure. Figure 4 shows the substructure discovered by SUBDUE in another
chemical compound, cortisone.

The substructure discovery algorithm used by SUBDUE is a computationally-constrained beam

search. The algorithm begins with the substructure matching a single vertex in the graph. Each

\ —
DS -
/ S VS
0= P—oH | 3 Q
\ H
O\ HO— P=0 O\
AL - G - %
|I\,\ N\ / oH, ,
y; O—H—N CHg \O /
O=P—0H Y \ P
\O HO—({P:O
\
(@] / _ O@m
C'_{Z <N—// / @ S3 N\
/_\ P CH, O:@*CH
/O CHg O—H—Il\l \o N\
— p—
© \OOH H HO— P=0 02@704
o

Figure 5: Sample results of Subdue on a dna sequence

iteration through the algorithm selects the best substructure and expands the instances of the
substructure by one neighboring edge in all possible ways. The new unique generated substructures
(duplicate substructures are removed from the list) become candidates for further expansion. The
algorithm searches for the best substructure until all possible substructures have been considered
or the total amount of computation exceeds a given limit. The evaluation of each substructure is
guided by the MDL principle and other background knowledge provided by the user.

Typically, once the description length afforded by an expanding substructure begins to increase,
further expansion of the substructure will not yield a smaller description length. As a result,
SUBDUE makes use of an optional pruning mechanism that eliminates substructure expansions
from consideration when the description lengths for these expansions increases.

Figure 5 shows a sample input database containing a portion of a DNA sequence. In this case,

atoms and small molecules in the sequence are represented with labeled vertices in the graph,
and the single and double bonds between atoms are represented with labeled edges in the graph.
SUBDUE discovers substructure Sy from the input database. After compressing the original database
using S, SUBDUE finds substructure So, which when used to compress the database further allows
SUBDUE to find substructure S3. Such repeated application of SUBDUE generates a hierarchical

description of the structures in the database.

Substructure discovery using the MDL principle

The minimum description length (MDL) principle introduced by Rissanen [Rissanen, 1989
states that the best theory to describe a set of data is a theory which minimizes the description
length of the entire data set. The MDL principle has been used for decision tree induction [Quinlan
and Rivest, 1989], image processing [Pednault, 1989; Pentland, 1989; Leclerc, 1989], concept learn-
ing from relational data [Derthick, 1991], and learning models of non-homogeneous engineering
domains [Rao and Lu, 1992].

We demonstrate how the minimum description length principle can be used to discover substruc-
tures in complex data. In particular, a substructure is evaluated based on how well it can compress
the entire data set. We define the minimum description length of a graph to be the minimum
number of bits necessary to completely describe the graph. SUBDUE searches for a substructure
that minimizes I(S)+ I(G|S), where S is the discovered substructure, G is the input graph, I(S) is
the number of bits (description length) required to encode the discovered substructure, and I(G|S)
is the number of bits required to encode the input graph G with respect to S.

The graph connectivity can be represented by an adjacency matrix. Assume that the decoder
has a table of the unique labels in the original graph G, the encoding of the graph consists of the

following steps.

1. Determine the number of bits vbits needed to encode the vertex labels of the graph.

2. Determine the number of bits rbits needed to encode the rows of the adjacency matrix A.

3. Determine the number of bits ebits needed to encode the edges represented by the entries

Ali, j] = 1 of the adjacency matrix A.

The total encoding of the graph takes (vbits + rbits + ebits) bits.

Inexact Graph Match

Although exact structure match can be used to find many interesting substructures, many of the
most interesting substructures show up in a slightly different form throughout the data. These
differences may be due to noise and distortion, or may just illustrate slight differences between
instances of the same general class of structures.

Given an input graph and a set of defined substructures, we want to find those subgraphs of the
input graph that most closely resemble the given substructures. Furthermore, we want to associate
a distance measure between a pair of graphs consisting of a given substructure and a subgraph of
the input graph. We adopt the approach to inexact graph match given by Bunke and Allermann
[Bunke and Allermann, 1983].

In this inexact match approach, each distortion of a graph is assigned a cost. A distortion is
described in terms of basic transformations such as deletion, insertion, and substitution of vertices
and edges. The distortion costs can be determined by the user to bias the match for or against
particular types of distortions.

An inexact graph match between two graphs ¢g; and g, maps g; to g2 such that g is interpreted
as a distorted version of ¢g;. Formally, an inexact graph match is a mapping f : Ny — Ny U {]A},

where N7 and N» are the sets of vertices of g; and go, respectively. A vertex v € N; that is mapped

R T B/bﬁ*é

Figure 6: Two similar graphs g; and go.

to A (i.e., f(v) = A) is deleted. That is, it has no corresponding vertex in gs.

Given a set of particular distortion costs as discussed above, we define the cost of an inexact
graph match cost(f), as the sum of the cost of the individual transformations resulting from f, and
we define matchcost(gi, g2) as the value of the least-cost function that maps graph ¢g; onto graph
go. If go is isomorphic to g1, the cost of the match will be 0. The cost of this match increases as
the number of dissimilarities between the graphs increases.

Given g1, g2, and a set of distortion costs, the actual computation of matchcost(gi,g2) can
be determined using a tree search procedure. A state in the search tree corresponds to a partial
match that maps a subset of the vertices of g; to a subset of the vertices in go. Initially, we start
with an empty mapping at the root of the search tree. Expanding a state corresponds to adding
a pair of vertices, one from g; and one from go, to the partial mapping constructed so far. A final
state in the search tree is a match that maps all vertices of g; to g2 or to A such that for any edge
between vertices in g1, there is an edge between the corresponding vertices in go. The complete
search tree of the example in Figure 6 is shown in Figure 7. For this example we assign a value
of 1 to each distortion cost. The numbers in circles in this figure represent the cost of a state. As

we are eventually interested in the mapping with minimum cost, each state in the search tree gets

/\\
APANAN/AN

(2,4) (2,5) (2,N) (2,3) (2,5) (2,N\) (2,3) (2,4) (2,N\) (2,3) (2,4) (2,5 (2,N

© ® @ 6 ® 0 0 © © v © O

Figure 7: Search tree for computing matchcost(gy,g2) from Figure 4.

assigned the cost of the partial mapping that it represents. Thus the goal state to be found by our
tree search procedure is the final state with minimum cost among all final states. From Figure 7
we conclude that the minimum cost inexact graph match of g; and g is given by the mapping
f(1) =4, f(2) = 3. The cost of this mapping is 4.

Given graphs ¢g; with n vertices and go with m vertices, m > n, the complexity of the full
inexact graph match is O(n™*!). Because this routine is used heavily throughout the discovery
and evaluation process, the complexity of the algorithm can significantly degrade the performance
of the system.

To improve the performance of the inexact graph match algorithm, we extend Bunke’s approach
by applying a branch-and-bound search to the tree. The cost from the root of the tree to a given
node is computed as described above. Nodes are considered for pairings in order from the most
heavily connected vertex to the least connected, as this constrains the remaining match. Because
branch-and-bound search guarantees an optimal solution, the search ends as soon as the first
complete mapping is found.

In addition, the user can place a limit on the number of search nodes considered by the branch-
and-bound procedure (defined as a function of the size of the input graphs). Once the number

of nodes expanded in the search tree reaches the defined limit, the search resorts to hill climbing

using the cost of the mapping so far as the measure for choosing the best node at a given level.
By defining such a limit, significant speedup can be realized at the expense of accuracy for the

computed match cost.

Adding domain knowledge to the SUBDUE system

The SUBDUE discovery system was initially developed using only domain independent heuristics
to evaluate potential substructures. As a result, some of the discovered substructures may not
be useful and relevant to specific domains of interest. For instance, in a programming domain,
the BEGIN and END statements may appear repetitively within a program; however, they do not
perform any meaningful function on their own; hence they exhibit limited usefulness. Similarly,
in a biochemical domain, some compounds or substructures may appear repetitively within the
data; however, they may not represent meaningful or functional units for this domain. To make
SUBDUE’s discovered substructures more interesting and useful across a wide variety of domains,
domain knowledge is added to guide the discovery process. Furthermore, compressing the graph
using the domain knowledge can increase the chance of realizing greater compression than without
using the domain knowledge.

In this section we present two types of domain knowledge that are used in the discovery process

and explain how they bias discovery toward certain types of substructures.

Model knowledge

Model knowledge provides the discovery system with specific types of structures that are likely to
exist in a database and that are of particular interest to a scientist using the system. The model
knowledge is organized in a hierarchy of primitive and combinations of primitive well-recognized

structures. This hierarchy is supplied by a domain expert.

Although the minimum description length principle still drives the discovery process, domain
knowledge is used to input a bias toward certain types of substructures. First, the modified version
of SUBDUE can be biased to look specifically for structures of the type specified in the model
hierarchy. The discovery process begins with matching a single vertex in the input graph to primitive
nodes of the model knowledge hierarchy. If the primitive nodes do not match the input vertices,
the higher level nodes of the hierarchy are pursued. The models in the hierarchy pointed to by the
matched model nodes in the input graph are selected as candidate models to be matched with the
input substructure. Each iteration through the process, SUBDUE selects a substructure from the
input graph which has the best match to one of the selected models and can be used to compress
the input graph.

The match can either be a subgraph match or a whole graph match. If the match is a subgraph
match, SUBDUE expands the instances of the best substructure by one neighboring edge in all
possible ways. The newly generated substructure becomes a candidate for the next iteration.
However, if the match is a whole graph match, the process has found the desired substructure, and
the chosen substructure is used to compress the entire input graph. The process continues until
either a substructure has been found or all possible substructures have been considered.

To represent an input graph using a discovered substructure from the model hierarchy, the
representation involves additional overhead to replace the substructure’s instances with a pointer
to the model hierarchy. In some cases, a model definition includes parameters which must also
be represented. After a substructure is discovered, each instance of the discovered substructure
in the input graph is replaced by a pointer to a concept in the model hierarchy representing the

substructure.

Graph match rules

At the heart of the SUBDUE system lies an inexact graph match algorithm that finds instances of
a substructure definition. Since many of substructure instances can show up in a slightly different
form throughout the data, and each of these differences is described in terms of basic transformations
performed by the graph match, we can use graph match rules to assign each transformation a cost
based on the domain of usage. This type of domain-specific information is represented using if-then

rules such as the following;:

IF (domain = BIOCHEMICAL) and ((Vertex] = HO and Vertex2 = OH) or
(Vertexl = OH and Vertex2 = HO))

THEN (graph match cost = z)

The graph match rules allow a specification of the amount of acceptable generality between a
substructure definition and its instances, or between a model definition and its instances in the
input graph. Given g1, g2, and a set of distortion costs, the actual calculation of similarity can
be performed using the search procedure described earlier. As long as the similarity is within the
user-defined threshold, the two graphs gl and g2 are considered to be isomorphic.

We have tested the performance of SUBDUE with model knowledge, with graph match rules, and
with no background knowledge. Performance is measured in terms of the amount of compression
afforded by the highest-valued discovered substructure and by amount of substructure functionality.
Functionality measures were provided by a team of eight scientists familiar with the application
domain — functionality is measured on a scale of 1 to 5. When both types of background knowledge
are used, the highest functionality ratings and compression result. The amount of compression

resulting from the use of graph match rules alone is lower than using no background knowledge, and

both of these cases result in lower human ratings than when both types of background knowledge
are used. A more detailed description of these experiments can be found in the literature [Djoko

et al., 1996).

Scalability

A goal of knowledge discovery in database (KDD) systems is to discover knowledge in large
databases that cannot be effectively processed by humans. For this reason KDD systems are
required to handle very large databases. Unfortunately, most KDD systems are computationally
expensive, and in most cases the resource requirements of a KDD system grow as the database
becomes larger. For these reasons, researchers’ attentions are shifting from developing new KDD
systems to improving the scalability of existing KDD systems.

A goal of our research is to demonstrate that KDD systems in general, and SUBDUE in particular,
can be made scalable by making efficient use of parallel and distributed hardware. One way to
improve the scalability of a system is to make use of system resources to allow larger inputs and/or
reduce run time. Clearly increasing the resources of a single machine will not benefit us in the limit
as the input is usually large enough to exhaust the resources of a single machine. Thus, we have to
make use of parallel algorithms. Porting a complicated system to a parallel environment involves
consideration of the architecture as well as the nature of the problem itself.

A variety of approaches can be taken to dividing the computational effort among individual
processors. However, in many of these approaches the entire database must be stored on each
contributing machine. Because we want SUBDUE to provide scalability in storage as well as com-
putation, we introduce a data partitioning approach to SUBDUE, called Static-Partitioning Subdue
(SP-SUBDUE).

Using SP-SUBDUE we partition the input graph into n partitions for n processors. Each pro-

cessor executs the sequential SUBDUE algorithm on its local graph partition and broadcasts its best
substructures to the other processors. Each processor then evaluates the communicated substruc-
tures on its own local partition. Once all evaluations are complete, a master processor gathers the
results and determines the global best discoveries.

The graph partitioning step is the most important step of the algorithm. The speedup achieved
as well as the quality of discovered substructures depends on this step. In partitioning the graph
we want to balance the work load equally between processors while retaining as much information
as possible (edges along which the graph is partitioned may represent important information). SP-
SUBDUE utilizes the Metis graph partitioning package [Karypis and Kumar, 1995]. Metis accepts a
graph with weights assigned to edges and vertices, and tries to partition the graph so that the sum of
the weights of the cut edges is minimized and the sum of vertex weights in each partition is roughly
equal. We assign weights only to edges to ensure that each partition will contain roughly the same
number of vertices. Edge weights are assigned so that the higher the frequency of occurrence of
an edge’s label, the higher the weight assigned to it. The idea behind this weight assignment is
that the frequently occurring edge labels are more likely to represent useful knowledge. The run
time of Metis to partition our test databases is very small (ten seconds on average) and is thus not
included in the parallel run time.

Figures 8, 9, and 10 graph the run time of SP-SUBDUE as the number of processors increases
on a sample graphs of two types. The first type of database is a CAD circuit description of an
A-to-D converter provided by National Semiconductor. The initial graph contains 8,441 vertices
and 19,206 edges. In addition, we also test an artificial graph in which an arbitrary number of
instances of a predefined substructure are imbedded in the database surrounded by vertices and
edges with random labels and connectivity. The tested artificial graph contains 1,000 vertices and

2,500 edges. To create larger databases with the same characteristics as the sample databases, we

3000 T T T T T T 800 T T T T T T
\ 1CAD — 200 b 2ART — |
2500 2CAD ---- A 4 ART ----
3CAD - 600 I 8ART -~ |
~ k 4 CAD """ ~ .
o 2000] $
8 . 5CAD § oy 1
9} Ly i 0 Lo i
g asor 2 wof
S om0 5 00 |
000, -
500 ol |
0] 0 St S Rl Bl SR
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
processors # processors
Figure 8: CAD database evaluation time Figure 9: ART database evaluation time

generate multiple copies of these graphs and merge the copies together by artificially connecting
the individual graphs, yielding a new larger graph. The term “n CAD” thus refers to a database
consisting of n copies of the original CAD database with joining edges added, and “n ART” refers
to a database consisting of n copies of the artificial database with additional joining edges.

The speedup achieved with the ART database is always superlinear. This is because the run
time of sequential SUBDUE is greater than linear with respect to the size of the database. Each
processor essentially executes a serial version of SUBDUE on a small portion of the overall database,
so the combined run time is less than that of serial SUBDUE. The speedup achieved with the CAD
database is usually close to linear and sometimes superlinear. Increasing the number of partitions
always results in a better speedup.

Now we turn our attention to the quality of the substructures discovered by SP-SUBDUE.
Tables 1 and 2 show the compression achieved for the CAD and ART databases when processed
by a different number of processors. Regarding the ART database results, it is clear that the
best compression achieved is the sequential version compression. This is expected because of the
high regularity of the database. The ART database has one substructure embedded into it, thus

partitioning the database can only cause some instances of this substructure to be lost because of

run time (sec)

2 4 6 8 10 12 14 16
processors

Figure 10: 16 and 32 ART database evaluation time

the edge cuts. As a result, we will generally not get better compression by partitioning, though
some compression results improve due to the increased beam width provided by multiple processors.
The compression achieved with a small number of partitions is very close to that of the sequential
version.

Regarding the CAD database compression results, we find that a small number of partitions
almost always results in a superior compression to that of the sequential version. The reason can be
found in the nature of the CAD database. As with many real-world databases, the CAD database
contains many diverse substructures. Treating the entire database as a single partition will result
in throwing away good substructures because of the limited search beam. When the database
is partitioned among several processors, each processor will have a greater chance to deepen the

search into the database because the number of embedded substructures is reduced, resulting in

higher-valued global substructures.

Database 1 2 4 8 16
1 CAD | .0746 | 0.156095 | 0.112458 | 0.028686 | 0.019010
2 CAD | .0746 | 0.082348 | 0.123302 | 0.034331 | 0.017073
3 CAD | .0746 | 0.060023 | 0.050129 | 0.033402 | 0.033586
4 CAD | .0746 | 0.101977 | 0.042417 | 0.048962 | 0.026821
5 CAD | .0746 | 0.079247 | 0.065364 | 0.032131 | 0.017944

Table 1: CAD database compression results by number of processors

Database 1 2 4 8 16
2 ART | .5639 | 0.543554 | 0.545256 | 0.564162 | 0.626758
4 ART || .5415 | 0.519963 | 0.321946 | 0.296317 | 0.225197
8 ART | .5418 | 0.518611 | 0.501251 | 0.310067 | 0.257190
16 ART || .5407 | 0.514947 | 0.504967 | 0.497538 | 0.303339
32 ART | .5187 | 0.507182 | 0.495180 | 0.492651 | 0.490307

Table 2: ART database compression results by number of processors

Database 2 4 8 14

1 CAD 1.48 | 3.37 | 7.99 | 18.73

2 CAD 1.88 | 3.52 | 13.64 | 28.69

3 CAD 1.98 | 5.54 | 14.76 | 33.79

4 CAD 2.58 | 8.81 | 15.81 | 47.18

5 CAD 2.13 | 6.25 | 23.27 | 52.58

Table 3: CAD databases distributed version speedups

Database 2 4 8 14

2 ART 4.34 | 12.76 | 31.42 | 63.8

4 ART 2.08 | 15.69 | 56.56 | 139.33

8 ART | 2.57 | 6.09 | 48.45 | 162.38

16 ART || 2.87 | 9.96 | 20.53 | 171.09

32 ART | 3.16 | 10.31 | 34.12 | 82.99

Table 4: ART databases distributed version speedups

Because the data is partitioned among the processors, SP-SUBDUE can also utilize the increased
memory resources of a network of workstations using communication software such as the Parallel
Virtual Machine (PVM) system [Geist et al., 1994]. We implemented SP-SUBDUE on a network of
14 Pentium PCs using PVM. The speedup results are given in Tables 3 and 4.

By partitioning the database effectively, SP-SUBDUE proves to be a highly scalable system.
SP-SUBDUE can handle huge databases provided with the same amount of resources (processing

power and memory) that would have been required by the sequential version to handle the same

database while discovering substructures of equal or better quality. One of our databases contains
2 million vertices and 5 million edges, yet SP-SUBDUE is able to process the database in less than
three hours. The easy availability of SP-SUBDUE is greatly improved by porting the system to
distributed systems. The minimal amount of communication and synchronization that is required
makes SP-SUBDUE ideal for distributed environments. Using the portable message passing interface

provided by PVM allows the system to run on heterogeneous networks.

Future Work and (Generalizations

The increasing structural component of today’s biological databases requires data mining algorithms
capable of handling structural information. The SUBDUE system is specifically designed to discover
knowledge in structural databases.

We describe a method for integrating domain independent and domain dependent substructure
discovery based on the minimum description length principle. The method is generally applicable to
many structural databases, such as chemical compound data, computer-aided design data, computer
programs, and protein data. This integration improves SUBDUE’s ability to both compress an
input graph and discover substructures relevant to the domain of study. In addition, we show that
making efficient use of parallel and distributed resources can significantly improve the run-time
performance of data-intensive and compute-intensive discovery program such as SUBDUE. We are
currently evaluating linear discovery algorithms for inclusion in our system and are adapting our

distributed algorithms for application to additional discovery systems.

Defining Terms

graph isomorphism. Graph (1, defined by vertices Vi and edges FE1, is isomorphic to graph Go,

defined by vertices V5 and edges Fs, if there is a one-to-one function mapping vertices of G; onto
vertices of Go, f : V1 — V5 satisfying the property that {u,v} € Ej if and only if {f(u), f(v)} € Es.
minimum description length principle. The minimum description length principle states that
the best theory to describe a set of data is a theory which minimizes the description length of the
entire data set.

substructure. A connected graph embedded within another graph.

substructure instance. A subgraph that is isomorphic to the graphical representation of a

substructure definition.

References

[Bunke and Allermann, 1983] H. Bunke and G. Allermann. Inexact graph matching for structural

pattern recognition. Pattern Recognition Letters, 1(4):245-253, 1983.

[Cheesman and Stutz, 1996] P. Cheesman and J. Stutz. Bayesian classification (AutoClass): The-
ory and results. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,

Advances in Knowledge Discovery and Data Mining, chapter 6, pages 153—-180. MIT Press, 1996.

[Derthick, 1991] M. Derthick. A minimal encoding approach to feature discovery. In Proceedings

of the Ninth National Conference on Artificial Intelligence, pages 565-571, 1991.

[Djoko et al., 1996] S. Djoko, D. J. Cook, and L. B. Holder. Discovering informative structural

concepts using domain knowledge. IEEE Ezxpert, 10:59-68, 1996.

[Fayyad et al., 1996] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery: An overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and

R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, chapter 1, pages

1-34. MIT Press, 1996.

[Fisher, 1987] Doug Fisher. Knowledge acquisition via incremental conceptual clustering. Machine

Learning, 2:139-172, 1987.

[Geist et al., 1994] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine, A User’s guide and Tutorial for Networked Parallel Computing.

MIT Press, Cambridge, MA, 1994.

[Karypis and Kumar, 1995] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for
irregular graphs. Technical Report TR-95-XXX, Department of Computer Sience, University of

Minnesota, 1995.

[Leclerc, 1989] Y. G. Leclerc. Constructing simple stable descriptions for image partitioning. In-

ternational Journal of Computer Vision, 3(1):73-102, 1989.

[Pednault, 1989] E. P. D. Pednault. Some experiments in applying inductive inference principles
to surface reconstruction. In Proceedings of the International Joint Conference on Artificial

Intelligence, pages 1603-1609, 1989.

[Pentland, 1989] A. Pentland. Part segmentation for object recognition. Neural Computation,

1:82-91, 1989.

[Quinlan and Rivest, 1989] J. R. Quinlan and R. L. Rivest. Inferring decision trees using the

minimum description length principle. Information and Computation, 80:227-248, 1989.

[Rao and Lu, 1992] R. B. Rao and S. C. Lu. Learning engineering models with the minimum
description length principle. In Proceedings of the Tenth National Conference on Artificial In-

telligence, pages 717-722, 1992.

[Rissanen, 1989] J. Rissanen. Stochastic Complezity in Statistical Inquiry. World Scientific Pub-

lishing Company, 1989.

CH

CH

3

N
/

2

H CH

/ N/
AN

C"'z_d"\cz/o"z_ oy \O"z_c'*z\C:/CHz_
043/ N H CHg/ N H

Figure 1: Natural rubber atomic structure

Figure 2: Discovered substructure

single single single single

Figure 3: Compressed representation of the graph

Original Database Discovered Substructure

-

Figure 4: Cortisone atomic structure

\Cl—{z (o) /O GY o
M 4 G ©
O=P—OH |H Q
\o\ HO— P=0 o\
CF{Z N—H—% S = >C —
|I\| N\ —H— / 2
; W N & % / y
O=P— | < P
\ : N
o HO ({P:O
\ =<:)
CH\z N_//O S = o ¥ OH
Se— T
2
© CHé—\O—H—Il\I \o \
O=P—CH
N H HO— P=0 O@OH

Figure 5: Sample results of Subdue on a dna sequence

) a i B/b—*(j)

Figure 6: Two similar graphs g; and gs.

/\\

(1 9@

AN/

(2,4) (2,5) (2,\) (2,3) (2,5 (2,N\) (2,3) (2, 4) (2,N) (2,3) (2,4) (2,5) (2, N

© ® @ 6 ©® 00 © O o © O

Figure 7: Search tree for computing matchcost(g;,92) from Figure 6.

3000 T T T T T T

\ 1CAD —
2500 f 2CAD -
3CAD

4CAD -
200 5CAD —— |
1500 | :

1000 |

run time (sec)

500

2 4 6 8 10 12 14 16
processors

Figure 8: CAD database evaluation time

800 T T T T T T

L 2ART — |
700 4 ART ---
600 |- 8ART ---- |
6\ ‘v‘\
ig/ 500 [8
[L i
£ 400 ,‘
c 30 ¢ -
2 N
000, :
100 } \\\ 4
0 N e Rttt ST

2 4 6 8 10 12 14 16
processors

Figure 9: ART database evaluation time

run time (sec)

2 4 6 8 10 12 14 16
processors

Figure 10: 16 and 32 ART database evaluation time

Database 1 2 4 8 16

1 CAD .0746 | 0.156095 | 0.112458 | 0.028686 | 0.019010

2 CAD 0746 | 0.082348 | 0.123302 | 0.034331 | 0.017073

3 CAD 0746 | 0.060023 | 0.050129 | 0.033402 | 0.033586

4 CAD 0746 | 0.101977 | 0.042417 | 0.048962 | 0.026821

5 CAD 0746 | 0.079247 | 0.065364 | 0.032131 | 0.017944

Table 1: CAD database compression results by number of processors

Database 1 2 4 8 16

2 ART 5639 | 0.543554 | 0.545256 | 0.564162 | 0.626758

4 ART 5415 | 0.519963 | 0.321946 | 0.296317 | 0.225197

8 ART .5418 | 0.518611 | 0.501251 | 0.310067 | 0.257190

16 ART | .5407 | 0.514947 | 0.504967 | 0.497538 | 0.303339

32 ART || .5187 | 0.507182 | 0.495180 | 0.492651 | 0.490307

Table 2: ART database compression results by number of processors

Database 2 4 8 14

1 CAD 1.48 | 3.37 | 7.99 | 18.73

2 CAD 1.88 | 3.52 | 13.64 | 28.69

3 CAD 1.98 | 5.54 | 14.76 | 33.79

4 CAD 2.58 | 8.81 | 15.81 | 47.18

5 CAD 2.13 | 6.25 | 23.27 | 52.58

Table 3: CAD databases distributed version speedups

Database 2 4 8 14

2 ART 4.34 | 12.76 | 31.42 | 63.8

4 ART 2.08 | 15.69 | 56.56 | 139.33

8 ART 2.57 | 6.09 | 48.45 | 162.38

16 ART | 2.87 | 9.96 | 20.53 | 171.09

32 ART || 3.16 | 10.31 | 34.12 | 82.99

Table 4: ART databases distributed version speedups

