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Abstract—The ability to transfer knowledge learned in one environment in order to improve performance in a different environment is

one of the hallmarks of human intelligence. Insights into human transfer learning help us to design computer-based agents that can

better adapt to new environments without the need for substantial reprogramming. In this paper, we study the transfer of knowledge by

humans playing various scenarios in a graphically realistic urban setting that are specifically designed to test various levels of transfer.

We determine the amount and type of transfer that is being performed based on the performance of trained and untrained human

players. In addition, we use a graph-based relational learning algorithm to extract patterns from player graphs. These analyses reveal

that indeed humans are transferring knowledge from one set of games to another and the amount and type of transfer varies according

to player experience and scenario complexity. The results of this analysis help us understand the nature of human transfer in such

environments and shed light on how we might endow computer-based agents with similar capabilities. The game simulator and human

data collection also represent a significant testbed in which other AI capabilities can be tested and compared to human performance.

Index Terms—Data mining, graph algorithms, transfer learning, games.
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1 INTRODUCTION

LEARNING capabilities in biological systems still greatly
exceed the capabilities of machine learning algorithms.

This is partly due to their ability to transfer knowledge
acquired over the course of their lives. Simon [28] defined
learning as the ability to leverage experience in previous
tasks into improved performance on new tasks from the same
population. This represents a very basic type of learning.
What sets humans apart is the ability to leverage experience
in previous tasks into improved performance on tasks from
different populations: tasks that superficially have little or
nothing in common with the previous ones but share some
deep structure or subtasks that make it possible to apply
previously acquired knowledge and skills.

The ability to identify these deeper, subtler connections,

what we term transfer learning, is the hallmark of human

intelligence. Byrnes [6] defines transfer learning as the

ability to extend what has been learned in one context to new

contexts. Thorndike and Woodworth [34] first coined this

term as they explored how individuals transfer learning in

one context to another context that shared common features.

The importance of transfer learning for educational methods

has been studied extensively [9], and evidence of transfer

learning for tasks such as learning how to use text editors is

provided in the literature [5]. Barnett and Ceci provide a

taxonomy of features that influence transfer learning in
humans [2].

Inspired by biological transfer learning, machine learning
researchers have studied methods for implementing transfer
learning in computational settings, including reinforcement
learning [1], [30], [32], cognitive architectures [13], Bayesian
networks [22], genetic algorithms [31], neural networks [35],
inductive logic programming [36], and logistic regression
[21]. Achieving transfer learning on a variety of tasks
remains an elusive goal for these researchers. Others have
demonstrated the use of transfer learning in humans for
cognitive rehabilitation [10] and to improve the health of
businesses [17].

In this paper, we analyze the ability of humans to
perform transfer learning. In particular, we hypothesize
that humans are able to perform transfer learning at several
levels of complexity. We analyze this ability using graph-
based relational learning (GBRL) applied to data collected
from humans playing a military-realistic game. We first
observe the amount of transfer that occurs by comparing
learning curves between trained and untrained human
players. Next, we take a closer look at the knowledge itself
that is transferred from source to target scenarios. Employ-
ing unsupervised discovery and supervised learning
techniques, we identify patterns in logged games that
indicate the amount and nature of the knowledge that is
transferred in a variety of game transfer scenarios. The
results of this analysis help us understand the nature of
human transfer and shed light on how we might endow
computer-based agents with similar capabilities.

2 URBAN COMBAT

To support our study, we have developed the Urban
Combat Testbed (UCT) [39]. UCT is a high-fidelity Military
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Operations in Urban Terrain (MOUT) simulation built on
top of the commercial open source Quake 3 Arena [26] first-
person shooter (FPS) game engine. UCT provides a high-
bandwidth interface for computer-based agents to perceive
the environment and execute actions in real time. UCT also
provides a standard FPS graphics interface for human
agents to play the various scenarios defined for UCT. In
either case, the perceptual and command execution in-
formation is logged in enough detail to replay the game.
This logged information provides valuable data for per-
forming behavioral analysis of human and, ultimately,
computer players.

We perform a series of experiments to determine what
types of knowledge humans transfer in these game
scenarios, which types of players transfer more or less
information, and how performance is affected by the
transfer of learned knowledge. Each of the experiments is
conducted in the context of UCT. Researchers argue that
transfer of learning occurs primarily when previous knowl-
edge is applied to solving a problem in a new situation [24].
This makes a gaming environment particularly appealing
for analyzing human transfer learning.

The player’s goal in a UCT scenario is to move through
the environment, moving past barriers when possible, in

order to find and diffuse an Improvised Explosive Device
(IED). We divide the environment into a set of polyhedrons.
Fig. 9 shows the regions for the environment depicted in
Fig. 2. These regions may contain a variety of other
elements such as buildings, vegetation, electrical hazards,
and barriers, some of which can be overcome (see Fig. 1).

For our data collection, we asked volunteers to play a set
of UCT scenarios. The volunteers represented a wide range
of previous gaming experience and job backgrounds. The
scenarios are grouped into eight levels, designed to
demonstrate different amounts and types of knowledge
transfer. Each of the eight levels contains five source
scenarios (with the exception of Level 6, which has 10 source
scenarios) and five target scenarios. The general methodol-
ogy is to compare the performance of two players on the
target scenarios, one player having been trained by first
playing the source scenarios, and one player having no
training. The difference between source and target scenarios
depends on the particular transfer learning level. Thorndike
[33] hypothesized that the degree of transfer in humans
depends upon the match between elements across the two
contexts. Although some effort has been spent on formaliz-
ing the notion of relatedness between contexts or tasks [3],
characterizing the amount of similarity and predicting the
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Fig. 1. UCT includes scenario elements such as (a) IEDs, (b) jumpable barriers, and (c) climbable barriers.

Fig. 2. In these level-1 scenarios, the player starts in region 29 (marked by a white oval). The goal of the (a) source and (b) target games is to find the

IED in region 42 (marked by a white diamond). The scenario components are the same except that the jumpable barrier surrounding the goal

location in the target scenario is longer than in the source scenario.



expected transfer largely remains an open question. These
levels were painstakingly defined by the DARPA Transfer
Learning program to include a spectrum of near and far
transfer elements [8]. Alternative approaches to character-
izing levels of transfer have also been considered [20].

2.1 Transfer Learning Level 1: Parameterization

This is the simplest transfer level. Target scenarios in level 1
use the same components in the same configurations as in
the source problems. The goal location (location of the IED)
is in the same region as the goal location in the source
problem but may be in a different location within the
region. Parameter values of scenario components may also
vary between the source and target. For example, Fig. 2
shows a source/target scenario pair from level 1. The goal
location is the same in both scenarios, but the jumpable
barrier has an extended length in the target scenario. This
type of change should reflect what is known as “near
transfer” in human players [25]. For our experiments,
16 volunteers played the source scenario followed by the
target scenario for each of five scenarios. An additional
17 volunteers played the five target scenarios without
having played the corresponding source scenarios. We thus
have data for ð16�2�5Þ þ ð17�5Þ ¼ 245 logged games.

2.2 Transfer Learning Level 2: Extrapolating

Like level 1, the components are the same in source and
target scenarios and the parameter values for the compo-
nents may change from source to target. Unlike level 1, the
parameter value changes may force qualitative changes in a
solution. For example, an insurmountable barrier may be
extended from source to target in such a way that a different
path to the goal must be considered. A total of 15 volunteers
played all five source and target scenarios, whereas an
additional 16 volunteers played just the target scenarios for
a total of 230 games. The volunteers who played the games
at level 2 were not the same individuals who played the
games at level 1—no volunteer played games at more than
one level.

2.3 Transfer Learning Level 3: Restructuring

Level 3 forces players to piece together solution subse-

quences in different orders. Solutions to target problems

reuse subsequences of actions found in solutions to source

problems but in a different order. For example, one of the

target scenarios specifies the same start and goal locations

as the source. The target contains the same types of barriers

as well, but the locations of the jumpable barrier and the

insurmountable barrier have switched. A total of 18 volun-

teers played all five source and target scenarios, and

19 volunteers played just the target scenarios, yielding a

total of 275 logged games.

2.4 Transfer Learning Level 4: Extending

In this level, solutions to target problems require repeated

application of elements found in solutions to source

problems. As an example, Fig. 3 shows a scenario in which

the start location, goal location, and barrier elements are the

same for source and target, but the coverage of the obstacles

doubles from source to target. A total of 16 volunteers

played all five source and target scenarios, and an

additional 16 volunteers played just the target scenarios

for a total of 240 logged games.

2.5 Transfer Learning Level 5: Restyling

In this level, source and target scenarios will contain the

same set and number of components, but they may be

formulated differently. These changes require recognition

of the commonalities by the player in order to transfer

learned knowledge. For example, one of the target solutions

is identical to the corresponding source solution except

instead of obtaining two keys to open a door, the player

must push two buttons to open the door. A total of

21 volunteers played all five source and target scenarios,

and 24 volunteers played just the target scenarios, yielding

a total of 330 logged games.
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Fig. 3. Example (a) level-4 source and (b) target scenarios. The start and goal locations are the same, but the source scenario has two layers of

obstacles (walls around the start and goal locations), whereas the target contains four layers of obstacles.



2.6 Transfer Learning Level 6: Composing

Unlike the other levels, players at this level will receive
training from two distinct source scenarios before playing
the target scenario. In this level, target scenarios will contain
all of the components found in the combination of the source
scenarios. For example, the route from the start to the goal
may be reused from one source to the target, whereas the
other source will train the individual on bypassing types of
barriers that are also found in the target. A total of
23 volunteers played two source games and one target for
five scenarios, whereas another 23 volunteers played just the
target scenarios, yielding a total of 460 logged games.

2.7 Transfer Learning Level 7: Abstracting

In this level, solutions to the target scenarios reuse the
structure of solutions found in the corresponding source
scenarios, but the details differ. In one source scenario, the
player must use a key to open the front (steel) door of a
building because bars over the window prevent entry there
and then must traverse through the first floor to reach the
back courtyard where the goal is located. In the correspond-
ing target scenario, players must first acquire ammunition
for a pistol in order to shoot open the front (wooden) door
of the same building (there are bars over the window) and
then must traverse the same first floor to reach the goal in
the back courtyard. This is an example of “far transfer” [5]
in which structural elements transfer between contexts, so
the human player must abstract learned information to
apply it to the new context. A total of 23 volunteers played
the source and target games for five scenarios, whereas
another 23 volunteers played just the target games, yielding
a total of 345 logged games.

2.8 Transfer Learning Level 8: Generalizing

At this level, solutions to target problems reuse actions
found in solutions to the source problems, but players must
apply them to different objects. In one scenario, the source
game contains the goal IED surrounded by breakable boxes,
whereas in the target game the IED is surrounded by
breakable trees. A total of 22 volunteers played all five
source and target games, whereas an additional 24 volun-
teers played just the target games, yielding a total of
340 games. We are thus analyzing captured data for a total of
2,465 games.

We evaluate player performance based on a time-score
metric [40]. Time is measured in seconds to completion of
the goal, but 2 seconds are added for hitting minor hazards
(for example, glass), 30 seconds are added for hitting major
hazards (for example, landmines), and 2 seconds are added
for each ammunition round that is used. The goal for the
player is thus to minimize the total score in number of
seconds. This player performance provides a method to
measure the amount of knowledge that is learned and
transferred from the training (source) scenarios to the test
(target) scenarios. While each individual is playing a game,
their status is continuously sampled and stored to a file. The
player location and status is recorded as

< x; y; z; yaw; pitch; roll; speed; timeðmsecÞ; timeðsecÞ;
health; shots; score; defuses > :

The game ends when the player defuses the IED ðdefuses ¼ 1Þ
or quits the game ðdefuses ¼ 0Þ. We are able to identify the
region for any < x; y; z > location, which provides more
abstract position information. The sequence of locations,
time, and score represent the data we use to perform our
analyses.

3 ANALYZING TRANSFER LEARNING CURVES

We are interested in analyzing the ability of humans to
transfer game-playing knowledge in the context of UCT
games. Singley and Anderson [29] measure the ability to
transfer knowledge by calculating performance improve-
ment on a new task and state that the number of shared
procedural elements between contexts is a predictor of the
amount of transfer. We note that although the transfer
levels are designed to test a particular type of transfer, the
human players we are analyzing may in actuality employ a
different type of transfer that also results in improved
performance on target problems. Because of this inherent
assessment difficulty, Greeno et al. [14] advocate scrutiniz-
ing the actual strategy used on a new task for indications of
influence from previous activities. We will apply both types
of assessment in our analysis.

Quantitatively, human transfer learning can be observed
through improved performance on a given task after the
human gains experience with a similar task. This improved
performance may be manifested in three ways, as shown in
Fig. 4 [8]: through improved initial performance on a new
task (Type 1), a rate of performance improvement (Type 2),
and an asymptotic/maximal achievable performance in-
crease (Type 3). These three measurements are consistent
with findings in education and cognitive psychology, where
researchers argue for the existence of each of these types of
transfer in humans [5]. In addition, some transfer influences
may be negative. For example, the initial effect of transfer
may be negative because previously learned routines must
be changed to deal with new settings. This is referred to as
the “J-curve effect” [5]. In our analysis, Type-1 performance
improvement (a jump start from having addressed a similar
problem in the past) is measured as the difference in the
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Fig. 4. Three performance measures are used to determine the amount

and type of observed transfer learning.



y-intercepts between a learning curve for a human that has

received training on a similar problem and that for a human

who has received no training. We measure Type-2 perfor-

mance by calculating the area between the learning curves

for trained and untrained humans. To measure Type-3

performance, we calculate the difference in y-values between

trained and untrained humans on the last instance of the

new task.
To measure the amount of Type-1, Type-2, and Type-3

transfer that occurs in human UCT players, we randomly

pair human players for each transfer learning level. For

each pairing, one of the humans receives training on a set of

source scenarios and the other does not. Although the target

scenarios are presented in random order between player

pairs, the trained and untrained human within a pair see

the target scenarios in the same order. We then calculate the

average of the differences in performance among all the

player pairs.
The results of this analysis are shown in Fig. 5, with

p-values highlighting the statistical significance between

trained and untrained player performance. There are a few

observations to make. First, the amount of jump start

transfer (Type 1), particularly in the lower levels, is some-

times negative. This is due to the fact that human players

were assigned to scenarios randomly. In many cases, a

player with no gaming experience received training on

source scenarios, whereas a player with extensive experi-

ence received none. Even though the player being trained

may witness a performance improvement from source to

target games, the difference in performance on target games

between the two humans may be negative. The expert has in

a sense already received training from many similar gaming

scenarios in the past. This behavior is only observed with

Type-1 transfer. The average difference in Type-2 perfor-

mance (area between the two curves) and Type-3 perfor-

mance is always positive, showing that trained human

players do learn strategies for each transfer learning level

faster, and by the time the last scenario is played, human

players benefit from training on similar problems.
In addition, note that the amount of transfer tends to

increase, particularly through level 6. This is because the

scenarios in these levels are increasing in complexity. As a

result, the players benefit even more from training on

similar problems. The Type-2 transfer difference P value for

five of the eight transfer learning levels is less than 0.05,

lending strength to the hypothesis that the human players

are indeed transferring expected components from source

to target games.
Fig. 6 plots the performance of trained and untrained

players for each level. Because the scenarios are presented in

random order, the trends reveal the amount of increasing

ability with each scenario that is played, rather than

indicating the difficulty of a particular scenario. Performance

is plotted as the negative of the time score, so a line higher on

the graph indicates favorable performance. The plots show

that although performance may vary with the first scenario,

trained players gain more in performance with each scenario

than untrained players, and the total performance for trained

players is better across all levels than for those who have not

received training and therefore cannot transfer learned

knowledge from source to target scenarios.
Now that we have ascertained transfer is in fact

occurring in human game playing, we will take a closer

look at the type of knowledge that is transferred from

source to target scenarios, according to the transfer learning

level, as well as player experience. This type of analysis is

consistent with the approach recommended by Singley and

Anderson [29] for ascertaining if humans have transferred

learned information to a new context. For our analysis, we

make use of a graph-based relational learner. We describe

the learning tool and analysis of player data in the next

sections.
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Fig. 5. Amount of human Type-1, Type-2, and Type-3 transfer for each UCT transfer learning level. Differences in performance between trained and

untrained players are averaged over all player pairs, and significance values are calculated for the set of differences.



4 SUBSTRUCTURE DISCOVERY

The goal of our analysis is to determine what types of

knowledge humans transfer in the context of UCT. This

analysis can provide insight on human learning and

reasoning. In addition, the findings may help guide the

creation and assessment of automated approaches to

learning and transferring knowledge in similar gaming

and military environments.
There are a number of data mining algorithms that could

be useful in analyzing this data. Because we want to
identify common patterns in the data, supervised learning

algorithms will not be sufficient for this task. In addition,

the data is inherently structural. Although individual player

locations may be interesting, it is the sequence of locations

and patterns formed by these sequences that we anticipate

will provide the greatest insights on player strategies and

transferred knowledge. Thus, we need a structural dis-
covery or GBRL approach.

Graph-based data mining is the task of finding novel,
useful, and understandable graph-theoretic patterns in a
graph representation of data. Several approaches to graph-
based data mining identify frequently occurring subgraphs
in graph transactions, that is, those subgraphs meeting a
minimum level of support [18], [19], [23], [37].

We distinguish GBRL from graph-based data mining in
that GBRL focuses on identifying novel but not necessarily
the most frequent patterns in a graph representation of data
[16]. Only a few GBRL approaches have been developed to
date. Two specific approaches, Subdue [7] and graph-based
induction (GBI) [38], take a greedy approach to finding
subgraphs maximizing an information-theoretic measure.
Subdue searches the space of subgraphs by extending
candidate subgraphs by one edge. Each candidate is
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Fig. 6. Plots of performance for trained (solid lines) and untrained (dashed lines) players for each transfer learning level. The negative time scores

are averaged over the player pairs and are plotted for the sequence of five scenario pairs that are presented.



evaluated using a minimum description length (MDL)
metric [27], which measures how well the subgraph
compresses the input graph if each instance of the subgraph
were replaced by a single vertex. GBI continually compresses
the input graph by identifying frequent triples of vertices,
some of which may represent previously compressed
portions of the input graph. Candidate triples are evaluated
using a measure similar to information gain. Kernel-based
methods have also been used for supervised GBRL [11].
Because we want to be able to perform unsupervised
discovery, as well as supervised learning, on our structural
data and because we want to be able to easily interpret the
results, we use the Subdue algorithm for this analysis.

The Subdue algorithm [7] encompasses several ap-

proaches to graph-based learning, including discovery,

clustering and supervised learning. Subdue uses a labeled

graph G ¼ ðV ;E; LÞ as both input and output, where V ¼
fv1; v2; . . . ; vng is a set of vertices, E ¼ fðvi; vjÞjvi; vj 2 V g is

a set of edges, and L is a set of labels that can appear on

vertices and edges. The graph G can contain directed edges,

undirected edges, self-edges (that is, ðvi; viÞ 2 E), and

multiedges (that is, more than one edge between vertices

vi and vj). The input graph G need not be connected, but the

learned patterns must be connected subgraphs (called

substructures) of G.

4.1 Unsupervised Discovery

Inputs to Subdue’s discovery algorithm include the input
graph (or a set of graphs), the beam length, and a limit on
the total number of substructures considered by the
algorithm. Subdue searches for a substructure that best
compresses the input graph. A substructure in Subdue
consists of a subgraph definition and all its occurrences
throughout the graph. The initial state of the search is the set
of substructures consisting of all uniquely labeled vertices.
The only operator of the search is the ExtendSubstructure
operator, which extends a substructure in all possible ways
by a single edge or an edge and a neighboring vertex.

Subdue uses a beam search to identify candidate
substructure concepts by applying the ExtendSubstructure
operator to each substructure in the current state. The
substructures are kept on a beam-limited queue and are
ordered based on their description length (sometimes
referred to as value) as calculated using the MDL principle.

The search terminates upon reaching a user-specified

limit on the number of substructures extended or upon

exhaustion of the search space. Once the search terminates

and Subdue returns the list of best substructures found, the

graph can be compressed using the best substructure. The

compression procedure replaces all instances of the sub-

structure in the input graph by single vertices, which

represent the substructure definition. Incoming and out-

going edges to and from the replaced instances will point to

or originate from the new vertex that represents the instance.

The Subdue algorithm can be invoked again on this

compressed graph. This procedure can be repeated a user-

specified number of times and is referred to as an iteration.
Subdue’s search is guided by the MDL [27] principle.

The evaluation heuristic based on the MDL principle
assumes that the best substructure is the one that

minimizes the description length of the input graph when
compressed by the substructure. The description length of
the substructure S given the input graph G is calculated
as DLðSÞ þDLðGjSÞ, where DLðSÞ is the description
length of the substructure, and DLðGjSÞ is the description
length of the input graph compressed by the substructure.
Description length is calculated as the number of bits in a
minimal encoding of the graph. Subdue seeks a sub-
structure S that maximizes compression, calculated as
Compression ¼ DLðGÞ

DLðSÞþDLðGjSÞ .

As an example, Fig. 7 shows the four instances that
Subdue discovers a pattern S1 in the example input graph
and the resulting compressed graph, as well as the
pattern S2 found in this new graph and the resulting
compressed graph. To allow slight variations between
instances of a discovered pattern (as is the case in Fig. 7),
Subdue applies an error-tolerant graph match between the
substructure definition and potential instances.

4.2 Supervised Learning from Training Graphs

Extending a graph-based discovery algorithm to perform
supervised learning introduces the need to handle negative
examples (focusing on the two-class scenario). The negative
information can come in two forms. First, the data may be in
the form of numerous small graphs or graph transactions,
each labeled either positive or negative. Second, data may
be composed of two large graphs: one positive and one
negative.

The first scenario is closest to the standard supervised

learning problem in that we have a set of clearly defined

examples. Fig. 8 depicts a set of positive ðGþÞ and negative

ðG�Þ examples. One approach to supervised learning is to

find a subgraph that appears in many positive graphs but in

few negative graphs. This amounts to replacing the

compression-based measure with an error-based measure.

For example, we would find a subgraph S that minimizes

the value jfg2G
þjS 6�ggjþjg2G�jS�ggj
jGþjþjG�j ¼ FNþFP

PþN , where S � g means

S is isomorphic to a subgraph of g (although we do not need

to perform a subgraph isomorphism test during learning).

The first term of the numerator is the number of false

negatives, and the second term is the number of false

positives.

This approach will lead the search toward a small

subgraph that discriminates well; for example, the
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Fig. 7. Example of Subdue’s unsupervised discovery algorithm. A

repetitive subgraph ðS1Þ is identified and used to compress the graph.

New discoveries (in this case, pattern S2) are made in subsequent

iterations of the algorithm.



subgraph shown in Fig. 8b. However, such a subgraph

does not necessarily compress well nor represent a

characteristic description of the target concept. We can

bias the search toward a characteristic description by

using the compression-based measure to look for a

subgraph that compresses the positive examples but not

the negative examples. If DLðGÞ represents the descrip-

tion length (in bits) of the graph G and DLðGjSÞ
represents the description length of G compressed by

subgraph S, then we look for an S that minimizes

DLðGþjSÞ þDLðSÞ þDLðG�Þ �DLðG�jSÞ, where the last

two terms represent the portion of the negative graph

incorrectly compressed by the subgraph. This approach

will lead the search toward a larger subgraph that

characterizes the positive examples but not the negative

examples; for example, the subgraph shown in Fig. 8c.
Finally, this process can be iterated in a set-covering

approach to learn a disjunctive hypothesis. Using the error
measure, any positive example containing the learned
subgraph would be removed from subsequent iterations.
Using the compression-based measure, instances of the
learned subgraph in both the positive and negative exam-
ples (even multiple instances per example) are compressed
to a single vertex.

5 ANALYSIS OF PATTERNS

For our analyses of human transfer learning data, we
represent logged game information as a graph and use
Subdue to identify common patterns. The raw player data is
recorded using actual < x; y; z > locations. To facilitate the
identification of more abstract patterns, we map the
3D location into a region of the scenario map. A volumetric
map of the scenario shown in Fig. 2 is given in Fig. 9a. The
figure indicates how the scenario is divided into labeled
regions.

The input to Subdue is a labeled graph. Every region that
is visited during the game is indicated by a vertex in the
graph, labeled with the region ID number. Two vertices are
connected with a directed edge labeled “next” when the
player moves from the source region to the destination
region. Only one vertex is created for each visited region.
This way, if a player visits a region more than once, the loop
will be evidenced as a cycle in the graph representation.

Applied to interactive player-based environments, the

resulting graph of captured spatial interaction is called a

player graph [40].
For our first analysis, we fed data from the entire

collection of games to Subdue. Our goal was to identify

player movement patterns that were common among all

scenarios and players. The most prevalent pattern (referred

to as SUB_1) is the sequence of regions highlighted with

dashed lines in Fig. 9,

102! 96! 86! 62! 75! 47! 35:

As the corresponding picture in Fig. 2 shows, this pattern

represents a player moving down the sidewalk between

two buildings. All of the scenarios contain the same

buildings, sidewalks, and roads, so this movement pattern

will be common for all players who are exploring the space

or using the simplest path to move across the space. Subdue

found other patterns of this type as well. All of the most

common patterns reflected movement patterns across the

main sidewalks/roadways in the game environments.
In later iterations of Subdue, a pattern that emerges is

SUB_1 connected to itself multiple times. SUB_1 refers to

the first substructure, described above. After the first

iteration, Subdue compresses the graph by replacing every

instance of the substructure by a single vertex labeled

SUB_1. This discovered pattern thus represents a player

exploring the main road and returning several times to

already-visited regions on the main road. For players who

are unfamiliar with the game, the scenario, or even the

specific goal of a given scenario, this type of exploring will

be necessary to find the goal, to identify the obstacles, and

to find paths that move the player beyond the obstacles.
This initial analysis provided several insights. First, we

were able to verify that the region graph representation

adequately represented the game logs and that the patterns

could be interpreted in a straightforward manner. Second,

we were able to identify some activities common to all

players, trained and untrained. The main goal of this work,

however, is to identify the knowledge that players transfer

from one game to another. We focus on this task in the next

section.
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Fig. 8. Visualization of graph-based data with (a) four positive and four negative examples, and (b) and (c) two possible graph concepts learned from
the examples. Graphs that contain the learned concept are labeled as examples of the positive class; other graphs are members of the negative
class.



6 GLOBAL ANALYSIS OF KNOWLEDGE TRANSFER

As a first step in identifying transferred knowledge, we use
Subdue to learn a concept that distinguishes the game logs
of players who were trained on source games (trained
players) from the game logs of players who were not
trained on source games. Only target games are used in this
analysis, and logs from all scenarios at all levels are
included. For this analysis, we use the MDL-based
supervised learning evaluation measure, because this
provided the most insightful results.

We initially allowed the “trained” games to represent the
positive examples of the concept and “untrained” games to
represent the negative examples. However, very few high-
value patterns emerged. This is because trained players will
generally not execute many extra movements but will take
the most efficient path to the goal.

To test this theory, we ran Subdue again as a supervised
learner, this time labeling the untrained games as positive
examples and trained games as negative examples. As
anticipated, this analysis resulted in higher valued patterns.
The initial top concept learned by Subdue (SUB_1) is
highlighted in Fig. 10, which is a simple path on the main
road. The next most interesting substructure (SUB_2)
contains a simple path down another section of the main
road. Interestingly, however, once the graph is compressed
using these patterns, the next concepts that emerge are
highly cyclic. Of the top twenty patterns that were
discovered, almost half included multiple occurrences of
SUB_1 or SUB_2, the top two patterns. The third highest

value pattern contained 16 occurrences of SUB_1 connected
to itself and to a small sequence of other regions, and
another top-twenty pattern contained 24 occurrences of
SUB_1 connected to itself. These are very large action
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Fig. 9. (a) Volumetric map of scenario 1 for level 1. (b) The graph representation for a portion of a logged game is also shown. A region in the
scenario that a player visits is represented by a node in the graph, and the order of the visited regions is indicated by directed edges between the
nodes, all labeled “next.”

Fig. 10. Visualization of learned patterns. The top sequence is indicated
with the solid arrow moving left and down the path, whereas the next
highest valued sequence is indicated with the dashed arrow moving
down from the building and then right to the edge of the environment.
The top substructure occurred in 107 untrained and 51 trained games,
whereas the second substructure occurred in 140 untrained and
77 trained games.



sequence patterns. Similarly, other top patterns contained
eight or more occurrences of SUB_2 connected to itself.
Because the majority of the actions in the sequence are
repetitive (for example, moving along the main road
16 times), we infer that these are exploratory sequences in
which the player is becoming familiar with the surround-
ings and looking for the goal IED.

What is interesting about these findings is that although
both the trained players and the untrained players contain
the SUB_1 and SUB_2 sequences, the untrained players have
more repetitive occurrences of these sequences connected to
themselves. This indicates that untrained players cycle
through regions of space looking for a pathway or looking
for the goal itself. Because trained players transfer key pieces
of knowledge, these cycles do not exist in their graphs. This
analysis indicates that in general, untrained players perform
more repetitive exploratory movements in their games. This
finding helps to validate the hypothesis set forward by
Greeno et al. [14] that during initial learning humans may
acquire an action schema that is responsive to an action
opportunity and will apply this schema in a new situation.
Applying the schema of moving directly down a main path
toward the goal is a common theme in our captured data
and, in turn, accounts for the overall improved performance
of trained players over untrained players. These results
support the hypothesis that humans are able to transfer a
learned game strategy that reduces repetitive movement patterns
in new previously unplayed scenarios.

7 DETAILED ANALYSIS OF KNOWLEDGE TRANSFER

Next, we perform a level-by-level analysis of knowledge
transfer. For each transfer knowledge level, we use Subdue
to learn concepts that distinguish trained from untrained
players, letting the trained games initially represent positive
examples and then repeat the process with untrained
players representing positive examples. Because there are
many results from each piece of the analysis, we only
include the highlights of the results in this discussion.

Results from the analysis of level 1 are shown in Fig. 11.
The patterns in Fig. 11a are common among trained players
and not among untrained ones, whereas the patterns in

Fig. 11b are common for untrained players. Recall that
level 1 tests the ability of humans to parameterize game
information. These results indicate that trained players take
a more direct route to the goal, whereas the untrained
players cycle through a series of regions seeking a way to
reach the goal.

These results are similar to those for the global analysis.
The differences between source and target scenarios for the
first several levels are fairly minor, so the discovered
patterns generally reflect the same principles. For example,
the learned concept for trained players at level 2 contains a
straightforward sequence of regions, whereas the learned
concept for untrained players is a substructure containing
32 vertices and 53 edges (indicative of a large number of
cycles). The next three highest ranked concepts for untrained
players contains (10 vertices and 31 edges), (79 vertices and
119 edges), and (10 vertices and 43 edges), respectively,
giving additional evidence to support this hypothesis.
Similar results can be found for level 3. The results for these
three levels are too similar to provide evidence that the
intended transfer for each is occurring.

Unlike the earlier three levels, the learned concept for
level-4 trained games does involve some cycles. Upon closer
inspection of the scenarios, this makes sense. Some of the
scenarios at this level require the player to push buttons
that open a door along the path to the goal. Players need to
maneuver a bit to find and push the buttons, which is
consistent with the patterns that are learned by Subdue. In
contrast, the cycles that are found in the untrained games
cover much larger regions, which is consistent with the
exploration strategy that must be employed when the
players do not have knowledge to transfer. From these
experiments, we conclude that humans are able to parameterize,
extrapolate, restructure, and extend knowledge from one game to
another new game scenario. We see from the data that the
exploration required to find key elements (for example, the
buttons to push or the obstacles to climb) is eliminated from
source to target games. These players are thus demonstrat-
ing an “extending” type of knowledge transfer. However,
some of the details in handling these challenges (for
example, manipulating the button itself) is not perfectly
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Fig. 11. Visualization of learned patterns for transfer learning level 1. (a) The picture highlights (with arrows) the learned concept from trained
players, and (b) the picture highlights the learned concept from untrained players.



learned after one source game and requires additional
training.

In many of the level-5 scenarios, players must maneuver
around a building to find the IED. Target scenarios often
place the IED in a similar setting but in a different building,
which tests the ability of humans to reuse learned plans in
isomorphic settings. Once the mapping between source and
target buildings is identified, the source plan can be reused
in the new building.

The concepts that are learned by Subdue reveal some
interesting insights. The trained players utilize fewer cycles
around the environment and building to find the IED. This
lends evidence to the hypothesis that human players are adept
at restyling solutions to a new layout. However, the learned
patterns also indicate that even trained players perform
initial exploration in the new building before moving to the
goal. We hypothesize that this initial exploration is needed to
build the mapping between the building layout in the source
scenario and the isomorphic layout in the target scenario. The
source and target buildings look similar, and the initial
exploration is useful to determine their location in the new
building. This activity likely reinforces the learned mapping
and reduces subsequent activity in the target scenarios.
After the initial exploration, the number of cycles identified
by Subdue in the trained games is fewer than in the

untrained games. Fig. 12 visualizes one of these learned
patterns and shows the region inside the building that is
traversed multiple times by trained and untrained players.

The higher transfer learning levels tend to place
increasingly great transfer demands on the player. How-
ever, Subdue easily found patterns to distinguish between
trained and untrained human players at level 6. Untrained
players continued to explore in several loops (the leading
pattern contains 55 vertices and 90 edges), whereas trained
players moved directly to the goal (the average pattern size
is four vertices and three edges). This may be due to the fact
that trained players at this level received two source
scenarios. The solutions to the target scenarios represent
concatenations of the solutions to the two corresponding
source scenarios. The dramatic difference in patterns and in
performance between the trained and untrained players at
level 6 is consistent with theories espoused by Gick and
Holyoak [12] and by Bjork and Richardson-Klavhen [4] that
transfer across contexts is more likely to occur when a
subject is taught in multiple contexts rather than only a
single context.

The example shown in Fig. 13 can be used to distinguish
trained from untrained players. In this scenario, the goal is
behind a climbable fence. All of the untrained players roam
about the space before climbing the fence. In one case, a
player saw the IED behind the fence yet initially tried to
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Fig. 12. (a) Visualization of a learned pattern for games played by trained players at level 5 (highlighted by the arrow) and (b) the area inside a
scenario building that precipitates exploration loops for both trained and untrained players.

Fig. 13. (a) Visualization of a target scenario for level 6 and (b) a picture of the IED in the target scenario, highlighted in white, that is located behind a
climbable fence.



break into the building to explore it before finally jumping
the fence and reaching the IED. In contrast, the trained
players already climbed a fence to solve a similar problem
and so quickly use this solution for the target problem. The
player data and Subdue-discovered patterns support the
hypothesis that humans can transfer composing knowledge
between games. This knowledge helps them to combine
subproblem solutions into a solution to a new target game.

Subdue had a more difficult time finding strong (high-
valued) concepts in levels 7 and 8 than in the lower levels.
This may be due to the fact that the knowledge to be
transferred in these levels is more abstract. Hayes and
Simon [15] have observed that subjects usually do not find
deep structure similarity unless the relationship is explicitly
shown, and we observe the same phenomenon in this
analysis. Another interesting observation is that although
patterns found in the untrained games do involve many
cycles as before, more of the patterns found in the trained
games also include cycles. Despite the overall lack of
prevailing patterns, there are a few pieces of evidence that
indicate that the human players are continuing to transfer
pieces of learned knowledge. As an example, one of the
learned patterns for trained games, shown in Fig. 14, is
found in five of the games. This makes sense, because one of
the five scenarios at level 7 requires the human to use the
key (highlighted with a circle in Fig. 14) to open the door to
the building on the right. No instances of this pattern are
found in the untrained games. The untrained players either
time out or eventually use the key as part of a lengthier and
more complex task solution.

8 ANALYSIS OF KNOWLEDGE TRANSFER BY

EXPERTISE LEVEL

Before each volunteer played their assigned games, we

asked them to provide information about themselves. This

information included the amount of experience and

expertise playing Quake, playing FPS games, and playing

any computer games. We hypothesize that humans will

transfer different amounts and different types of knowledge based

on their expertise on the task.

To validate this hypothesis, we partitioned players
according to their expertise. If they had some experience
with Quake and FPS, they were partitioned into the expert
category. Individuals with little or no Quake experience but
at least a fair rating on FPS games were partitioned into the
intermediate category, and individuals with little or no
experience with Quake or FPS games were partitioned into
the beginner category.

We measured the amount of transfer as the improvement
in the final score from the source to the target game. As
expected, beginners and intermediate players saw greater
improvement from source to target games (12.24 seconds on
the average, based on the time-score metric described
earlier) than experienced players (8.24 seconds on the
average). Experienced players have in essence been trained
on many games in the past and can transfer abstract
strategies to these new scenarios, resulting in less improve-
ment from additional training games.

In order to analyze the type of knowledge that is
transferred, we need to perform supervised learning on
the three classes. We accomplish this with a series of binary
concept learning tasks, distinguishing beginner from inter-
mediate or expert, followed by distinguishing beginner or
intermediate from expert. The highest valued concepts
resulted from learning patterns that distinguish beginners
from intermediate or expert players. Interestingly, the
learned patterns typically involved many cycles of regions.
This is surprising, because we are only analyzing games for
players who received training on source games. With our
earlier analyses, such cycles primarily appeared in un-
trained games.

Upon closer inspection, we see that these cycles do not
reflect large movements throughout the environment.
Instead, they are cycles back and forth between small
regions that correspond to picking up a key and opening a
door, finding and pushing a button, breaking boxes to reach
the goal, and other fine-grained tasks. Many of these tasks
differed between source and target scenarios. Experienced
players would be familiar with these manipulations from
earlier games, but beginners need to reposition the player
several times in order to perform the more subtle functions
required by some of the scenarios. A similar case occurs for
scenario 2 in level 8, where the player must learn to jump
over the hazard (a pool of water) to reach the goal. The
beginner players spend much time trying to swim across
the body of water before they attempt to jump over the
hazard. The visualized pattern and hazard are shown in
Fig. 15. Therefore, players with less gaming experience
learn more knowledge in the source games that can be
transferred to the target games, whereas the players with
gaming experience already possess this knowledge.

9 CONCLUSIONS

In this study, we analyze the amount of learned information
that is transferred to new gaming scenarios by human
players. To more closely analyze the type of knowledge that
is transferred, we use GBRL to identify patterns of transfer
learning in humans. Using the data collected from logged
Urban Combat games, we recognized common movement
strategies. We also identified patterns that distinguished
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Fig. 14. Visualization of learned concept for trained games at level 7.

The player grabs the key (circled in the figure) and uses it to open the

door to the right.



players who were trained on similar games to those who
were playing target games with no prior training. From the
evidence that was produced by the graph-based relational
learner, we conclude that humans are able to perform
transfer of learned knowledge at multiple levels of complex-
ity. We observe that beginners benefit the most from training
in the game scenarios and, as a result, transfer the greatest
amount of learned knowledge to new situations.

There are several influential factors in our analysis that
warrant greater attention in future experiments. Due to the
small sample size that was available for each of the many
scenarios, we randomly paired human players. Future
experiments could control for differences in prior experience
by pairing players with similar gaming expertise to provide
a clearer assessment of performance that is due to transfer.
Future work is also needed to more precisely quantify the
similarity between source and target scenarios and to use
this as a basis for determining the expected amount of
transfer between scenarios. Barnett and Ceci’s taxonomy of
far transfer [2] includes a temporal context dimension, and
they argue that depending on the task, the ability to transfer
learned knowledge may peak immediately after training or
may peak much later. This is an aspect that would be
interesting to analyze as part of our future work.

Results from this study indicate that data mining
algorithms such as the Subdue GBRL system can be used
to effectively analyze human behavior and capabilities. We
would like to extend this analysis to human transfer
learning on a greater range of tasks. We anticipate that this
analysis will also form the basis for analyzing the ability of
artificial agents to perform transfer learning and to compare
strategies for task completion, as well as transfer of learned
task strategies between artificial agents and biological
agents.

The patterns we find in human trials can be used to
instill similar patterns in artificial agents to improve their
human consistency. This provides both challenging oppo-
nents in games and a basis for realistic simulation. For
example, if we want to simulate an artificial agent finding
IEDs, we will want the agent and the simulation to be
consistent with how we observe humans performing such a

task in the real world. This is an important direction for

continued research.
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