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I. INTRODUCTION
Automated knowledge discovery is essential for extracting information from databases [2].
However, complex databases have moved from the simplistic attribute-value representation
assumed by recent knowledge-discovery systems to a structural data representation that
reflects the relationships among objects. Discovering concepts in this structural data requires
the identification of common substructures within the data. The motivation for this process
is not merely to find substructures capable of compressing the data by abstracting instances
of the substructure, but also to identify conceptually interesting substructures that enhance
the interpretation of the data. Substructure discovery is the process of identifying concepts
describing interesting and repetitive substructures within structural data. Once discovered,
the substructure concept can be used to simplify the data by replacing instances of the
substructure with a pointer to the newly discovered concept. The discovered substructure
concepts allow abstraction over detailed structure in the original data and provide new,
relevant attributes for interpreting the data. Iteration of the substructure discovery and
replacement process constructs a hierarchical description of the structural data in terms of
the discovered substructures. This hierarchy provides varying levels of interpretation that

can be accessed based on the goals of the data analysis.

Discovering interesting concepts requires a cognitive evaluation component and the ability



to consider instances of the concept that do not exactly match the concept definition. We
describe the SUBDUE system that utilizes psychologically-motivated heuristics and an inexact
graph match to discover substructures which occur often in the data, but not always in the
same form. This inexact substructure discovery can be used to formulate fuzzy concepts,
compress the data description, and discover interesting structures in data that are found
either in an identical or in a slightly convoluted form. Examples from the domains of scene
analysis and chemical analysis demonstrate the benefits of the discovery technique.
II. SUBDUE

The SUBDUE system [3] discovers substructure in structured data based on four psycho-
logically motivated heuristics: cognitive savings, connectivity, compactness and coverage.
The cognitive savings of a substructure represents the net reduction in complexity when con-
sidering both the reduction in complexity of the input data after replacing each substructure
instance by a single conceptual entity and the gain in complexity associated with the defini-
tion of the new substructure. Substructure compactness is defined as the ratio of the number
of edges to the number of nodes in a graph representation of the substructure. Connectivity
measures the amount of external connection in the instances of the substructure. Coverage
measures the fraction of structure in the input data described by the substructure. SUBDUE
evaluates a substructure based on the product of these four heuristic values, each weighted
by a user-supplied exponent.

The substructure discovery algorithm used by SUBDUE is a computationally constrained
best-first search guided by the heuristics. SUBDUE represents structured data as a directed
graph. The algorithm begins with the substructure matching a single node in the graph. Each

iteration through the algorithm selects the heuristically-best substructure and expands the
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Figure 1: Scene analysis example.

instances of the substructure by one neighboring edge in all possible ways. The algorithm
searches for the heuristically-best substructure until all possible substructures have been
considered or the amount of computation exceeds a given limit. Holder et al. [4] describe
the SUBDUE system in more detail.
ITI. INEXACT GRAPH MATCH

Although exact structure match can be used to find many interesting substructures,
many of the most interesting substructures show up in a slightly different form throughout
the data. These differences may be due to noise and distortion, or may just illustrate slight
differences between instances of the same general class of structures. Consider the image
shown in Figure 1. The pencil and the cube would make ideal substructures in the picture,
but an exact match algorithm may not consider these as strong substructures because they
rarely occur in the same form and orientation throughout the picture.

We adopt the approach to inexact graph match developed by Bunke and Allermann [1],

where each distortion of a graph is assigned a cost. A distortion is described in terms of basic



transformations such as deletion, insertion, and substitution of nodes and edges. SUBDUE
finds the mapping between a substructure definition and instance that minimizes the cost,
or amount of distortion, necessary to make the graphs isomorphic. The order of complexity
of the inexact graph match is equivalent to that of exact graph match; however, the inexact
match offers the additional benefit of assigning a similarity measure to each possible mapping.
Integrating the inexact graph match into SUBDUE is accomplished by including as instances
of a substructure all subgraphs in the input data that match the substructure definition with
a match cost within a user-supplied threshold. The contributions of individual instances to
the four heuristics are weighted according to their match cost.
IV. EXAMPLE 1 — SCENE ANALYSIS

Images provide a rich source of structure. Images that humans encounter, both natural
and synthesized, have many structured subcomponents that draw our attention and that
help us to interpret the data or the scene we are viewing. Applying SUBDUE to image data,
we extract edge information from the image and construct a graph representing the scene.
The graph representation consists of two types of arcs (edge and space), and three types of
nodes (L, T and A). The edge arcs represent lines in the image, and the space arcs connect
vertices from two objects that are closest together. Node labels come from the Waltz labeling
[5] of the junctions of lines in the image, where A stands for an arrow junction.

Figure 1 gives an example of a scene which contains many similar substructures. Using
the graph representation described above, a line drawing of this image would consist of
rectangles (pencils stuck in the surface), partially occluded rectangles (overlapping pencils),
and rectangles with triangles on the end (pencils with sharp points). In order to compare

the types of substructures found, a variety of heuristic weights and inexact match thresholds
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Figure 2: Portion of DNA molecule and discovered substructure.

were tested. Figure 1 shows the highest-valued substructure for three sets of parameter
values. In Test 1, all heuristics are equally weighted. In Test 2, connectivity is stressed. In
Test 3, connectivity is still emphasized, but the amount of variation between instances of the
substructure is minimized. The results indicate that the amount of noise and the weights of
the heuristics greatly affect the discovered substructure. Each result may be desired, based
on whether the goal of discovery is image compression or interestingness.
V. EXAMPLE 2 CHEMICAL ANALYSIS

Identification of the common and interesting substructures within chemical compounds
can benefit scientists by identifying recurring components, simplying the data description,
and focusing on substructures that stand out and possibly merit additional attention.

Figure 2 shows a portion of DNA consisting of two chains of double helix, using three



pairs of bases which are held together by hydrogen bonds. For this example, we tested the
ability of SUBDUE to find a hierarchy of substructures. Once SUBDUE selects a substructure,
all nodes which comprise the exact instances of the substructure are replaced in the graph
by a single node representing the discovered substructure. Edges connecting nodes outside
the instance to nodes inside the instance now connect to the new node. Edges internal to
the instance are removed. The program is then run a second time, with heavier weight
given to substructures which utilize the previously discovered substructure. The increased
weight reflects increased attention to this substructure. Figure 2 shows the results after each
pass. Note that on the third pass SUBDUE linked together the instances of the substructure
in the second pass to find the chains of the double helix. Results indicate that SUBDUE
can discover pertinent substructures and find a hierarchical description of the input data by
replacing previously-discovered substructures on successive passes.
VI. CONCLUSIONS

Automated knowledge discovery is essential for extracting information from databases
[2]. Extracting knowledge from structural databases requires the identification of repetitive
substructures in the data. The previous examples show how SUBDUE’s heuristic search and
inexact graph match can discover interesting and repetitive substructures in real structural
domains. Applying SUBDUE to scene analysis assists in compression of the image and identi-
fication of similar objects in the scene. Application to chemical analysis assists the discovery
of previously-unknown molecules and cognitive compression of the compound by abstract-
ing over newly-discovered molecules. Further experimentation is underway in both artificial
domains and other real domains in order to determine the effects of parameters and reduce

the computational requirements of SUBDUE’s substructure discovery algorithm.
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