
Streaming Data Analytics for Anomalies in Graphs

William Eberle 

Tennessee Technological University 

Box 5101, Cookeville, TN 38505 

931-372-3278 (phone) 

931-372-3686 (fax) 

weberle@tntech.edu 

Lawrence Holder 

Washington State University 

Box 642752, Pullman, WA 99164-2752 

509-335-6138 (phone) 

509-335-3818 (fax) 

holder@wsu.edu 

Abstract— Protecting our nation’s infrastructure and securing 

sensitive information are critical challenges for both industry and 

government. Due to the complex and diverse nature of the 

environments which can expose attacks or terrorism activity, one 

must not only be able to deal with attacks that are dynamic, or 

constantly changing, but also take into account the structural 

aspects of the networks and the relationships among 

communication events.  However, analyzing a massive, ever-

growing graph will quickly overwhelm currently-available 

computing resources. One potential solution to the issue of 

handling very large graphs is to handle data as a “stream”. In 

this work, we present an approach to processing a stream of 

changes to the graph in order to efficiently identify any changes 

in the normative patterns and any changes in the anomalies to 

these normative patterns without processing all previous data. 

The overall framework of our approach is called PLADS for 

Pattern Learning and Anomaly Detection in Streams.  We 

evaluate our approach on a dataset that represents people 

movements and actions, as well as a scalable, streaming data 

generator that represents social network behaviors, in order to 

assess the ability to efficiently detect known anomalies.   

Keywords- Graph-based, knowledge discovery, anomaly 

detection, streaming data 

I.  INTRODUCTION 

Detecting potential attacks to our nation’s infrastructure, 
whether it is via insider threats or social threats to the 
populace are critical challenges for industry as well as our 
government. With the plethora of information that is 
transmitted in all aspects of today’s culture, physical as well as 
environmental attacks pose serious consequences to 
individuals, corporations, governments, and society as a 
whole. A good example is the spread of the Ebola virus, where 
the potential spread due to contact is becoming exponentially 
difficult to follow, and could potentially become difficult to 
manage both organizationally as well as financially [1].   

In order to address the issue of analyzing complex 
networks for patterns and anomalies, one must provide 
methods of monitoring and rapidly detecting pattern changes 
and any associated anomalies. However, due to the complex 
and diverse nature of these networked environments, one must 
not only be able to deal with threats that are dynamic, but also 
take into account the structural aspects of the networks and 
the relationships among communication events. 

In previous work, we represented networks and various 
security related information using a graph and developed the 
graph-based anomaly detection (GBAD) approach that was 

able to detect anomalies with high accuracy and low false 
positive rates. However, the GBAD approach required the 
analysis of a graph containing all information up to a current 
point in time. Analyzing a massive, ever-growing graph will 
quickly overwhelm currently-available computing resources. 
One potential solution to the issue of handling very large 
graphs, and one we explore in this work, is to handle data as a 
“stream”. Instead of processing an entire graph, which 
represents a complete set of data (or at least a very large 
portion of the data), one can process the graph a few edges at a 
time. Recent work in this area has focused on finding patterns 
in streams of small, independent graph transactions or on 
outliers in global graph properties. In this work, we present an 
approach to processing a stream of changes to the graph in 
order to efficiently identify any changes in the normative 
patterns and any changes in the anomalies to these normative 
patterns without processing all previous data. 

The overall framework of our approach is called PLADS 
for Pattern Learning and Anomaly Detection in Streams.  We 
evaluate our approach on two different synthetic data sets. 
The first represents the movements and actions of employees 
at an embassy where an insider threat activity is occurring. 
We will use this dataset to present our approach on 
heterogeneous data where there is anomaly ground-truth, and 
partition the data so as to simulate a streaming approach.  The 
second data source is a streaming social network generator. 
The generator will allow us to scale the amount of posts, likes, 
etc. for users that are static (i.e., do not change), and social 
network activity that is dynamic (i.e., streaming).  These data 
sources will not only allow us to evaluate the accuracy of 
detecting anomalies, but also, because of the data volume, the 
scalability of our methods.  In addition, using these diverse 
data sets will allow us to demonstrate a general approach to 
structural anomaly detection that could be applied to a wide 
array of relevant security threat scenarios.  

II. GRAPH-BASED ANOMALY DETECTION

A graph is a set of nodes and a set of links, where each link 
connects either two nodes or a node to itself.  More formally, 
we use the following definition. 

Definition:  A labeled graph G = (V,E,L) consists of the set V 
of vertices (or nodes), the set E of edges (or links) between the 
vertices, and the set L of string labels assigned to each of the 
elements of V and E.  
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Much work has been done using graph-based representations 
of data.  Using vertices to represent entities such as people, 
places and things, and edges to represent the relationships 
between the entities, such as friend, lives-in and owns, allows 
for a much richer expression of data than is present in the 
standard textual or tabular representation of information.  
Representing various data sets like telecommunications call 
records, GPS movements and social networks in a graph form 
allow us to discover structural properties in data that are not 
evident using traditional data mining methods. The idea 
behind our approach to graph-based anomaly detection is to 
find anomalies in graph-based data where the 
anomalous substructure (or subgraph) in a graph is part of (or 
attached to or missing from) a normative pattern.   

Definition: A substructure SA is anomalous in graph G if (0 < 
d(SA,S) < TD) and (P(SA|S,G) < TP), where S is a normative 
pattern in G, TD bounds the maximum distance an anomaly SA 
can be from the normative pattern S, and TP bounds the 
maximum probability of SA.  
Definition: The anomalous score of an anomalous 
substructure SA based on the normative substructure S in 
graph G as d(SA,S) * P(SA|S,G), where the smaller the score, 
the more anomalous the substructure. 

The distance between two graphs can be due to a difference in 
structure from one graph to the other. The probability of SA 
given S and G is based on the frequency of SA among all 
graphs within distance TD of S. Therefore, the more anomalous 
substructure is that which is closer to the normative pattern 
and appears with lower probability. 

The advantage of graph-based anomaly detection is that the 
relationships between entities can be analyzed for structural 
oddities in what could be a rich set of information. For 
instance, take the example situation that occurred at the Enron 
Corporation [2].  Using anomaly detection on graphs that 
represent e-mail correspondences (Figure 1), such as those 
between executives at Enron, might help in the prevention of 
lost revenues, pensions, and jobs. However, graph-based 
approaches have been prohibitive due to computational 
constraints.  Because graph-based approaches typically perform 
subgraph isomorphisms, in order to address this issue, most 
approaches use some type of heuristic to arrive at an 
approximate solution. However, this is still problematic, and in 
order to use graph-based anomaly detection techniques in a 
real-world environment, we need to take advantage of the 
structural/relational aspects found in dynamic, streaming data. 

 

Figure 1.  Example partial graph of Enron e-mail correspondences. 

III. GBAD 

The PLADS approach is based on our previous work on 
static graph-based anomaly detection (GBAD) [3]. Here we 
briefly review the GBAD approach. There are three general 
categories of anomalies in a graph: insertions, modifications 
and deletions.  Insertions would constitute the presence of an 
unexpected vertex or edge. Modifications would consist of an 
unexpected label on a vertex or edge. Deletions would 
constitute the unexpected absence of a vertex or edge. GBAD 
discovers each of these types of anomalies.  Using a greedy 
beam search and a minimum description length (MDL) 
heuristic, GBAD first discovers the best substructure, or 
normative pattern, in an input graph.  The minimum 
description length (MDL) approach is used to determine the 
best substructure(s) (i.e., normative pattern) as the one that 
minimizes the following: 

 )()|(),( SDLSGDLGSM   

where G is the entire graph, S is the substructure, DL(G|S) is 
the description length of G after compressing it using S, and 
DL(S) is the description length of the substructure.  Using a 
beam search (a limited length queue of the best few patterns 
that have been found so far), the algorithm grows patterns one 
edge at a time, continually discovering what substructures best 
compress the description length of the input graph.  The 
strategy implemented is that after extending each substructure 
by one edge, it evaluates each extended substructure based 
upon its compression value (the higher the better).  A list is 
maintained of the best substructures, and this process is 
continually repeated until either there are no more 
substructures to consider or a user-specified limit is reached. 

The GBAD approach is based on the exploitation of 
structure in data represented as a graph. We have found that a 
structural representation of such data can improve our ability 
to detect anomalies in the behaviors of entities being tracked 
[6]. GBAD discovers anomalous instances of structural 
patterns in data that represent entities, relationships and 
actions. GBAD uncovers the relational nature of the problem, 
rather than solely the traditional statistical deviation of 
individual data attributes. Attribute deviations are evaluated in 
the context of the relationships between structurally similar 
entities. In addition, most anomaly detection methods use a 
supervised approach, requiring labeled data in advance (e.g., 
illicit versus legitimate) in order to train their system. GBAD 
is an unsupervised approach, which does not require any 
baseline information about relevant or known anomalies.  In 
summary, GBAD looks for those activities that appear to 
match normal/legitimate/expected transactions, but in fact are 
structurally different. 

For more information regarding the GBAD algorithms, the 
readers should refer to [3]. 

IV. RELATED WORK 

One potential solution to handling very large graphs is to view 
the graph as a “stream” and processing the graph one, or a few 
edges, at a time.  Previous work in this area has provided a 
few different approaches to handle streaming graphs. One 
approach is to use what is called a semi-streaming model as a 
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way of studying massive graphs whose edge sets cannot be 
stored in memory.  For example, Feigenbaum et al.’s work 
presents semi-streaming constant approximation algorithms 
for un-weighted as well as weighted matching problems, as 
well as an improvement for handling bipartite graphs [4].  
Other work has evaluated approaches to different graph 
properties, such as shortest paths in directed graphs [7], 
counting triangles [5][6], or finding the maximum clique [16]. 
In the work by Jha et al., they propose a single-pass streaming 
algorithm that maintains a real-time estimate of the number of 
triangles of a graph, by storing only a fraction of edges [5].  
Pavan et al. present a novel space-efficient algorithm for 
counting and sampling triangles in a massive graph whose 
edges arrive as a stream [6]. Another approach is to examine 
the problem of clustering massive graph streams and use a 
technique for creating hash-compressed micro-clusters from 
graph streams [8].  

Recently, others have attempted to mine frequent closed 
subgraphs in non-stationary data streams.  One such approach 
called AdaGraphMiner, maintains only the current frequent 
closed graph, utilizing estimation techniques with theoretical 
guarantees [9].  Empirical experiments have demonstrated the 
effectiveness of this approach on graph streams representing 
chemical molecules and structural representations of cancer 
data.  In addition, there have been recent attempts to discover 
outliers in massive network streams by dynamically 
partitioning the network [10].  Using techniques such as 
reservoir sampling methods that compress a graph stream, one 
can search for structural summaries of the underlying network.  
The goal of this type of outlier detection is to identify graph 
objects which contain unusual bridging edges, or edges 
between regions of a graph that rarely occur together.  Other 
non-outlier detection approaches have involved sampling 
schemes to sample from the stream of graph edges.  In the 
work by Ahmed et al., they use sampling techniques to 
primarily deal with estimating certain graph properties, like 
triangle counts [14].  

However, all of the approaches so far have not addressed 
the issue of scalability associated with performing graph-based 
anomaly detection.  While some approaches have detected 
outliers in graph streams, their objective is to identify unusual 
clusters of subgraphs in the graph by analyzing the statistical 
nature of the existence of edges, as opposed to discovering 
anomalies in the structure of a graph, or graph stream.  In 
addition, while some work has attempted to discover 
anomalous subgraphs using an ensemble-based approach [11] 
based on the GBAD approach [3], that type of approach does 
not address the issue of scalability. 

V. A STREAMING PARTITIONED APPROACH TO GRAPH-

BASED ANOMALY DETECTION 

The advantages associated with graph-based anomaly 
detection are well-documented, providing a myriad of 
approaches for discovering structural and relational anomalies.  
However, they have been limited to static domains, or data 
sets that are relatively small in size – certainly nothing on the 
order of what we would call “big data”.  What our experiments 
have shown us is that we can devise an approach whereby if 
we take into account smaller, individual partitions (i.e., a 

segment of the data that is processed individually, in parallel 
with other partitions) in terms of what we know about other 
partitions, we can not only provide similar accuracy but do it 
in a fraction of the time. 

In order to formalize our approach, we propose the 
following algorithm. PLADS accepts as input a set of N graph 
partitions either by partitioning a static graph, or fed in over 
time. 

PLADS (input graph partitions) 
1. Process N partitions in parallel 

a. Each partition discovers top M normative patterns. 
b. Each partition waits for all partitions to discover their 

normative patterns. 
2. Determine best normative pattern P among NM 

possibilities. 
3. Each partition discovers anomalous substructures based 

upon P. 
4. Evaluate anomalous substructures across partitions and 

report most anomalous substructure(s). 
5. Process new partition 

a. If oldest partition(s) has exceeded a threshold T (based 
upon criteria such as the number of available partitions 
or the time-stamped-age of the partition), remove 
partition(s) from further processing. 

b. Determine top M normative patterns from new 
partition. 

c. Determine best normative pattern P’ among all active 
partitions. 

d. If (P’ ≠ P), each partition discovers new anomalous 
substructures based upon P’. 

e. Else, only new partition discovers anomalous 
substructure(s). 

f. Evaluate anomalous substructures across partitions and 
report most anomalous substructure(s). 

g. Repeat. 

 

This is a generic algorithm for applying graph-based anomaly 
detection methods to streaming data. The user can apply any 
normative pattern discovery techniques and any graph-based 
anomaly detection algorithms with this approach. For the 
purpose of demonstrating the PLADS approach, we use 
GBAD (defined earlier) for determining what are the 
normative patterns and what are the anomalous substructures.   
 
The parameters to the PLADS algorithm are defined as 
follows: 
 
N – number of partitions in the sliding window. This will be 
the initial number of graph partitions processed in parallel, and 
the number of partitions considered for determining the 
normative pattern and the substructures that are anomalous as 
each subsequent partition is processed. 
 
M – number of normative patterns to retain. This will be the 
number of normative patterns saved from each graph partition 
to compare against other graph partitions. 
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It should be mentioned that the size of each partition (i.e., 
number of vertices and edges) is not necessarily the same. For 
instance, with the first data set representing employee 
movements and actions at an embassy, we will partition the 
graph down to the day level (~2000 edges per partition), where 
each partition presents a day at the embassy.  Then, for the 
second data set, we will experiment with partitions that 
represent not only a day, but also partitions down to the hour 
and minutes level.  In previous work, we analyzed the effect 
that varying the values of M and N has on the running-times as 
well as accuracy [12]. 

A. Experiments Using Insider Threat Example 

Take the example of a cyber-security threat where there is 
the leaking of information by employees with access to 
confidential and sensitive information. One of the Visual 
Analytics Science and Technology (VAST) 2009 mini-
challenges involved various aspects of a fictional insider threat 
scenario where someone is leaking information [13]. The goal 
of these challenges is to allow contestants to apply various 
visual analysis techniques to discover the spy and their 
associated actions. The VAST data set consists of the activities 
(card swipes and network traffic) of 60 employees at an 
embassy over the month of January in 2008. 

1) GBAD 
As input to GBAD, the entire data set is represented as a 

graph, composed of 39,331 vertices and 38,052 edges, where 
movement, building, and type of room are depicted as vertices 
and edges indicating direction and movement between rooms. 
The normative pattern for this graph is depicted in Figure 2. 
After running GBAD on the entire graph, two anomalous 
substructures are discovered (one of the substructures is shown 
in Figure 3, where it shows that an employee somehow got 
into the classified area without ever badging in).  However, it 
took 14,347 seconds to discover the anomalous substructure 
when analyzing the entire graph. 

 
Figure 2.  Normative pattern of movements and transactions (left). 

Figure 3.  Anomalous substructure of movement/transactions (right). 

 

2) PLADS 
In order to demonstrate the potential effectiveness of the 

PLADS approach, we applied the algorithm to the same 
dataset that represents cyber-threat activity, following the 
steps outlined in the algorithm: 

1. Process N partitions in parallel. 

We arbitrarily chose to initially process the first 5 (N) 
partitions of the graph.  Running them in parallel, all of 
the partitions finish processing in 293 seconds, each 
producing 3 (M) normative patterns. 

2. Determine best normative pattern, P, among NM 
possibilities. 

We then examine all of the partitions’ normative patterns, 
searching for the best normative substructure among them 
(i.e., the substructure that maximizes the value of size * 
frequency).  The result is a normative pattern that is 
identical to the normative pattern shown in Figure 2.  

3. Each partition discovers anomalous substructures based 
upon P. 

Based upon the best substructure from among all of the 
partitions (previous step), we then search for all 
anomalous substructures related to that normative pattern.  
The result is that only 1 substructure is reported as 
anomalous across all of the partitions, with the longest 
running partition taking 328 seconds. 

4. Evaluate anomalous substructures across partitions and 
report most anomalous substructure. 

For this example, since there is only one anomalous 
substructure reported, evaluation is trivial.  (It should be 
noted that this is one of the anomalous substructures 
discovered when the graph was processed in its entirety.) 

5. Process new partition. 

Processing data as streams can be handled in two ways.  
Either we can always remove the oldest partition, or we 
can remove any partitions that are older than some time 
threshold T (i.e., a sliding window).  For this example, we 
will do the former, removing the oldest partition and 
processing a new partition (e.g., removing partition 1 and 
processing partition 6).  We then discover the best 
substructure on the new partition, so that we can 
determine the best normative pattern among all of the 
remaining partitions.  However, while the reported 
normative pattern in partition 6 is different, it is not better 
than the best substructure reported by the other four 
partitions.  So, we use the best substructure on partition 6, 
and no anomalous substructures are discovered (in 106 
seconds).  Also, since we are using the best substructure 
from a previous iteration, we do not have to re-discover 
any anomalous substructures in the older partitions. 

At the next iteration (e.g., partition 2 is removed and 
partition 7 is added), we discover that the normative 
pattern has not changed (i.e., it is still the best 
substructure across all of the active partitions).  Again, 
only the new partition needs to be analyzed for any 
anomalous substructures, as the anomalies would not 
change for the already processed partitions.  Analysis of 
the results from the new partition (partition 7) yields (in a 
total of 257 seconds) no anomalous substructures. 

This same behavior continues over partitions 8 and 9, in 
207 and 301 seconds respectively.  However, on partition 
10, the same best substructure is reported, but a new 
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anomalous substructure is reported of equal 
“anomalousness” (in 501 seconds) to the substructure 
discovered in partition 3.  This happens to be the second 
anomalous substructure discovered when the entire, non-
partitioned graph was processed. 

So, we are able to implement a graph-based anomaly 
detection approach on data that represents movements of 
people, and successfully discover the same two anomalous 
substructures (with no false positives) within a streaming-like 
approach in a fraction of the time (1,993 seconds) it took to 
process the entire graph (14,347 seconds).   However, this 
graph is rather sparse (i.e., few edges compared to the number 
of vertices), and not very large.  So, now we will examine 
results on denser graphs that actually represent streaming data. 

B. Experiments Using Social Network Genrator 

The Linked Stream Benchmark (LSBench) data generator 
allows one to generate data that represents users as the static 
data, and their actions as a data stream, including gps locations, 
posts, and photo albums, as well as “like”s and “know”s 
(https://code.google.com/p/lsbench/).  Using the provided 
sibgenerator tool, we can generate RDF triplets of varying 
sizes and periods of time, that contain user information, and 
their associated locations, devices used, postings, photos, likes, 
and whom they know.  Figure 4 shows the schema of the data 
as shown on the LSBench web-site. 

 

Figure 4. Logical schema of the stream data. 

person

<name>

<name>

<location>

firstName
lastName

based_near

<year>

class_year

<organization>

organization

<gender>

gender

user

<status>

status

subscriber_of **

user ...

knows **

<interest>

interest **

forum

moderator_of **

account_of **

group

group_membership

member_of_membership **

group_of_membership **

subscriber_of

has_member **

<name> <tag>

name tag **

<browser>

browser

Initiated_friendship**

 

Figure 5. Graph topology of user information. 

photo

<location>

<agent>

location

agent

photo_album<title> title

user ...

creator_of **

container_of **

user ...

like **

usertag **

gps

trackedAt **

<location>

trackedLocation

<browser>

browser

postcreator_of **

forum

container_of **

<agent>

agent
<browser>

browser

<hashtag>

hashtag

 

Figure 6. Graph topology of streaming data. 

We then converted the sibgenerator output into a graph 
format, representing the LSBench objects as vertices, and 
actions as edges.  Figure 5 presents the graph topology of the 
static user information - information that is repeated in a 
partition where an action takes place.  Figure 6 presents the 
graph topology of the streaming data.  It should also be noted 
that a quick analysis of data from the generator shows that 
values created for the firstName, lastName, organization, and 
based_near fields (associated with a user) are highly unique.  
Table 1 shows an example from a generation of 500 users. 

Table 1.  Number of unique values. 

Field name Entity Num unique values/total values 

firstName user 431/500 

lastName user 413/500 

organization user 416/500 

based_near user 236/500 

 
Because there is such a high diversity amongst these values 
with a uniform probability, and from an anomaly detection 
perspective we are not interested in discovering the differences 
between these values, we will remove these particular fields 
from the final generated input graphs.  

Varying the number of users from anywhere between 500 
and 10,000 users results in between 5,000 and up to 150,000 
edges per graph input file (i.e., partition), depending upon the 
time period of the captured data, which is anywhere from every 
15 minutes to every day.  We quickly discover that the 
generator is consistent in its generation of patterns, and despite 
us also varying the number of minutes, hours and days, as well 
as the probabilities of occurrence of values (as much as the 
generator will allow us), the normative pattern is fairly 
consistent. 

To demonstrate the potential of this approach to 
discovering anomalies in a social network, we will take the 
example of a network generated for 500 users using the default 
sibgenerator settings.   We will generate graph partitions that 
are composed of all activity broken down to the hour (i.e., 
midnight-00:59AM, 1:00AM-1:59AM, etc.) on February 28

th
.  

(This is just one arbitrary example to show the potential of this 
approach, but we observe similar results throughout many 
different configurations.)  Using PLADS, we discover the 
normative pattern shown in Figure 7.  
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Figure 7.  Normative pattern. 

The substructure shown in Figure 7 indicates that the 
normative pattern is a user that moderates/subscribes to at 
least two forums.  Starting at 6:00AM, PLADS reports two 
users showing an interest in (i.e., are a fan of) “Cyndi Lauper”, 
despite the fact that there are 34 other users that are “Lauper” 
fans throughout the entire day.  What makes this interesting is 
that starting at 7:00AM, PLADS then reports a single instance 
of a user – one of the “Lauper” users reported previously - that 
belongs to a Japanese group called “Andrea Bocelli”.  This is 
interesting because this is the only user (out of 10) that does 
not fit the pattern for users in this group, as all of the other 
members of the group do not moderate or subscribe to any 
forums.  In short, PLADS discovers a user that fits the 
normative pattern, but is interested in “Cyndi Lauper” while 
also belonging to a group devoted to “Andrea Bocelli” – a 
group that seems solely devoted to the Italian tenor, as none of 
its others members moderate or subscribe to any forums – 
unlike this lone “Lauper” fan.  While somewhat 
inconspicuous, this scenario can be mapped to more serious 
situations in which a clandestine group attempts to remain 
inconspicuous by acting like other groups. 

In these experiments, PLADS discovers all of the targeted 
anomalies.  As reported in our previous work [12], when we 
handle the data as a stream, whereby a partition only has 
knowledge about its current partition as well as previous 
partitions, we achieve a false positive rate of 14%.  However, 
if we evaluate all the partitions individually, and compare their 
discoveries once all the partitions have been processed, the 
result is a false positive rate of 6%.  With these experiments 
using the social network generator data, we observe a similar 
false positive rate, and we achieve a slightly better processing 
average of 222 edges/second.  The improved edge processing 
rate can probably be attributed to the diversity of values 
produced by the lsbench data generator, which reduces the 
possible candidates during beam generation.  In regards to the 
high FP rate, if we were to increase the size of the processing 
window, we would be able to reduce the number of false 
positives by observing more repetitions of the incorrectly-
identified anomalous substructures (i.e., noise), and thus 
excluding them from being considered as anomalies of 
interest, albeit at the sacrifice of speed.   

VI. CONCLUSIONS AND FUTURE WORK 

Detecting potential attacks, whether it is via insider threats 
or social threats to the populace are critical challenges for 
industry as well as our government.  In order to address the 
issue of analyzing complex networks for patterns and 
anomalies, one must provide methods of monitoring and 
rapidly detecting anomalies.  In previous work, we represented 
networks and various security related information using a graph 
and developed the graph-based anomaly detection (GBAD) 

approach that was able to detect anomalies with high accuracy 
and low false positive rates.  In this work we present our 
streaming approach called PLADS for Pattern Learning and 
Anomaly Detection in Streams.  We then evaluated the 
relevance of our approach on two different synthetic data sets:  
one representing an insider threat scenario, and the other 
demonstrating a social network scenario.  PLADS allows us to 
process information that is represented in data streams, 
discovering patterns and anomalies with minimal false-
positives, with an order-of-magnitude speed-up over the 
traditional GBAD approach. Next, we will develop an 
incremental approach that processes only the stream of graph 
changes over time, where normative patterns and anomalies are 
updated only as necessary based on the impact of the changes. 
Going to a purely streaming approach will allow us to remove 
the “boundary issues” associated with anomalous substructures 
that could span graph partitions. We will also develop parallel 
implementations of these approaches to take advantage of high-
performance computing platforms and further improve the 
scalability of the PLADS framework. 
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