
Graph-Based Concept Learning

Jesus A. Gonzalez, Lawrence B. Holder, and Diane J. Cook

Department of Computer Science and Engineering
University of Texas at Arlington

Box 19015, Arlington, TX 76019-0015
{ gonzalez,holder,cook@cse.uta.edu }

Abstract
We introduce the graph-based relational concept learner
SubdueCL. We start with a brief description of other
graph-based learning systems: the Galois lattice,
Conceptual Graphs, and the Subdue system. We then
prcsent our new system SubdueCL and finally we show
some preliminary results of a comparison of SubducCL
with the two Inductive Logic Programming (ILP)
systems Foil and Progol.

Introduction

We describe our current research on graph-based
concept learning based in the SubdueCL system.
Graph-based systems have the potential to be
competitive in the learning task, because they provide
a powerful and flexible representation that can be used
for relational domains. The main competitors of graph-
based systems are logic based systems, especially
Inductive Logic Programming (ILP) systems, which
have dominated the area of relational concept learning.
We are comparing our graph-based approach with the
ILP systems Foil and Progol. On the theoretical side,
we have studied other graph-based systems, and we are
applying the related theory to our system. For example,
we are working in a PAC learning analysis of the
SubdueCL system in order to show that it is possible to
learn using graph-based systems with a polynomial
number of training examples.
The paper is organized as follows. The related work
section briefly describes the graph-based systems that
we have studied: Conceptual Graphs, the Galois lattice
and the Subdue system. The SubdueCL section
describes our graph-based concept learning system.
The empirical results section presents some
preliminary results from a comparison of SubdueCL
with the two ILP systems Foil and Progol. The last
section presents our conclusions and future work.

Copyright © 2001, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Related Work

In this section we briefly describe the role of ILP
systems as concept learners and then we present some
work related to graph-based concept learners.

ILP Systems

One approach to relational concept learning systems is
Inductive Logic Programming (ILP), which represents
data using First Order Predicate Calculus (FOPC)
the form of Prolog logic programs. ILP systems have
been successful in structural domains: Progol in the
Chemical Carcinogenicity domain (Srinivasan, King,
Muggleton et al. 1997) and FOIL (Cameron and
Quinlan 1994) for learning patterns in Hypcrtext
domains (Slattcry & Craven 1998). The system
presented in this paper uses graphs as its data
representation, which are flexible and descriptive.
Graphs can also describe FOPC using Conceptual
Graphs as introduced by John Sowa (Sowa 1992).

Conceptual Graphs

Conceptual Graphs (CGs) are a logic-based knowledge
representation derived from Semantic Networks and
Peirce Existential Graphs (Sowa 1992). Figure 1 shows
an example of a Conceptual Graph expressing "A cat
is on a mat". Square vertices are used to represent
concepts and oval vertices represent relations. Edges
are used to link concepts with relations.

Figure 1: A Conceptual Graph’s Example

CGs are being used in different areas of Artificial
Intelligence like natural language processing,
information retrieval and expert systems. Conceptual
Graphs provide a powerful and rich knowledge
representation that has been used for concept learning
as presented in (Jalopy and Nock 1998). Their work
describes a PAC Learning (Valiant 1985) analysis
using Conceptual Graphs to show its effectiveness for
Learning. With this model, the authors were able to

MACHINE LEARNING 377

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

prove that it is possible to PAC learn Conceptual
Graphs for a restricted class that consists of Conceptual
Graphs with at most n vertices. From that result they
stated the theorem:

"Let Cca,)~ CG denote a conceptual graph

class. If both [Cta,) [and the complexity of the

projection test between elements of Cta,) are

polynomial in (o~i), then Cea~) is PAC
learnable".

Where ai (a~,a2, and a3) are the richness
parameters that define the search space of the class of
conceptual graphs and correspond to the number of
relations, concepts and labels that are available to form
valid conceptual graphs. The projection test
corresponds to the test used to verify if an example
belongs to a class or not (a form of graph morphism).

Galois Lattice
Another technique used to accomplish the task of
concept learning using a graph representation is drawn
from the framework of a Galois Lattice (Liquiere and
Sallantin 1998). In the Galois Lattice framework for
learning, each node in the lattice consists of a
description graph and the set of examples described by
the graph. The lattice construction starts with an empty
lattice. In the first step, the description of all the
examples is added to the lattice. For the rest of the
levels, new concepts are created from each pair of
concepts that have already been found in the previous
step. The operation used to create a concept from two
other concepts is called generalization "^" and given
two description graphs, produces the largest
description graph that is contained in both original
graphs. After a new concept is created, the examples
that it describes are associated with it (the union of the
examples associated to its parent graphs).
The search space for the Galois Lattice algorithm
consists of all the possible generalizations of the set of
training examples. In this case, the learning process
goes from specific to general. The complexity of the
Galois Lattice creation algorithm is O(n3p) (Liquiere
and Sallantin 1998), where n is the number of
examples and p is the size of the lattice. Liquiere and
Sallantin mentioned that they had an experimental
implementation called GRAAL, but that it could not be
used in practical cases yet and that it was only an
algorithm used for formal analysis. The Galois Lattice
method is restricted to be used only with the subclass
of Locally Injective Graphs (LIGs), because it was
proved that the generalization operation runs in
polynomial time for these types of graphs. If a
different method to create the Galois Lattice (that does

not use this generalization operation) is used, the
restricted classes (in this case LIG’s) might
different. In the future work of the Galois Lattice
research, the authors mentioned that they would work
to prove that LIG is PAC learnable. They also hope to
make GRAAL a tool to work with practical
applications.

Subdue
Subdue (Cook, Holder 1994) is a Data Mining tool
that achieves the task of clustering using an algorithm
categorized as an example-based and relational
learning method. It is a general tool that can be applied
to any domain that can be represented as a graph.
Subdue has been successfully used on several domains
like CAD circuit analysis, chemical compound
analysis, and scene analysis (Cook, Holder and Djoko
1996, Cook, Holder and Djoko 1995, Cook and Holder
1994, and Djoko, Cook and Holder 1995).
Subdue uses a model evaluation method called
"Minimum Encoding" that is a technique derived from
the minimum description length principle (Rissanen
1989) and chooses as best substructures those that
minimize the description length metric that is the
length in number of bits of the graph representation.
The number of bits is calculated based on the size of
the adjacency matrix representation of the graph.
According to this, the best substructure is the one that
minimizes I(S) + I(GIS), where I(S) is the number
bits required to describe substructure S, and I(GIS)
the number of bits required to describe graph G after
being compressed by substructure S.
The main discovery algorithm is a computationally
constrained beam search. The algorithm begins with
the substructure matching a single vertex in the graph.
Each iteration the algorithm selects the best
substructure and incrementally expands the instances
of the substructure. The algorithm searches for the best
substructure until all possible substructures have been
considered or the total amount of computation exceeds
a given limit. Evaluation of each substructure is
determined by how well the substructure compresses
the input graph according to the heuristic being used.
The best substructure found by Subdue can be used to
compress the input graph, which can then be input to
another iteration of Subdue. After several iterations,
Subdue builds a hierarchical description of the input
data where later substructures are defined in terms of
substructures discovered on previous iterations.
Figure 2 shows a simple example of Subdue’s
operation. Subdue finds four instances of the triangle-
on-square substructure in the geometric figure. The
graph representation used to describe the substructure,
as well as the input graph, is shown in the middle.

378 FLAIRS-2001

Vertices: objects or attributes
Edges: relationships

4 instances of
t__.J

Figure 1: SUBDUE’S Example.

SubdueCL

As we mentioned before, first-order logic can also be
represented as a graph, and in fact, first-order logic is a
subset of what can be represented using graphs (Sowa
1992). Therefore, learning systems using graphical
representations have the potential to learn richer
concepts if they can handle the increased size of the
hypothesis space. The Subdue Concept Learner (which
we will refer to as SubdueCL) is an extension to the
Subdue system described before. The main challenge
in adding concept-learning capabilities to Subdue was
the inclusion of "negative" examples into the process.
Substructures that describe the positive examples; but
not negative examples, are likely to represent the target
concept. Therefore, the Subdue concept learner accepts
both positive and negative examples in graph format.
Since SubdueCL is an extension to Subdue, it uses
Subdue’s core functions to perform graph operations,
but the learning process is different. SubdueCL works
as a supervised learner by differentiating positive and
negative examples using a set-covering approach
instead of graph compression. The hypothesis found by
SubdueCL consists of a set of disjunctions of
conjunctions (substructures), i.e., the concept may
contain several rules. SubdueCL forms one of these
conjunctions (rules) in each iteration. Positive example
graphs that are described by the substructure found in a
previous iteration are removed from the graph for
subsequent iterations.
The way in which SubdueCL decides if the
substructures (or rules) will be part of the concept
not is also different from Subdue. SubdueCL uses an
evaluation formula to give a value to all the generated
substructures. This formula assigns a value to a
substructure according to how well it describes the
positive examples (or a subset of the positive
examples) without describing the negative examples.
Thcn, positive examples covered by the substructure
increase the substructure value while negative
examples decrease its value. In this formula the
positive examples that are not covered and the negative
examples covered by the substructure are considered

errors because the ideal substructure would be one
covering all the positive examples without covering
any negative example. The substructure valuc is
calculated as follows:

value = 1 - Error

Error = # PosEgsNotCovered +# NegEgsCovered
PosEgs+# NegEgs

Using this formula, SubdueCL chooses rules that
maximize the substructure’s value and in this way it
minimizes the number of errors made by the
substructures used to form the concept.
We have two versions of SubducCL. The first is an
inconsistent learner, which means that the
substructures of the hypothesis are allowed to cover
some negative examples. The second vcrsion is a
consistent learner, in which the substructures that form
the hypothesis are not allowed to cover any negative
example.

SubdueCL’s Algorithm

The SubducCL algorithm is shown in figure 3. The
main function takes as parameters the positive
examples Gp, the negative examples G,, the Beam
length (since SubdueCL’s search algorithm is a beam
search) and a Limit on the number of substructures to
include in its search. The main function makes calls to
the SubdueCL function in order to form the hypothesis
H that describes the positive examples. A substructure
is added to H each time that the SubdueCL function is
called. In case that the SubdueCL returns NULL, the
Beam is increased so that a larger search space can be
explored during SubdueCL’s search. Also, after
SubdueCL finds a substructure, the positive examples
covered by it are removed from the positive graph.

Main(Gp, Gn, Limit, Beam)
H={}
Repeat

Repeat
BestSub = SubdueCL(Gp, Gn, Limit, Beam)
If BestSub = {}
Then Beam = Beam * 1.1

Until (BestSub #: {})
Gp = Gp - { p ̄ Gp I BestSub covers p }
H = H + BestSub

Until Gp = { }
Return H

End
Figure 3: SubdueCL’s Main Function

Figure 4 shows the SubdueCL function, which starts
building a ParentList creating a substructure for each
vertex in the graph with a different label but keeping
only as many substructures as the length of the Beam
The "raod Beam" qualifier means that the lists keep
only as many substructures as the Beam size. Each of

MACHINE LEARNING 379

those substructures in the parent list is then expanded
by one vertex or one vertex and an edge in all possible
ways and evaluated according to the formula presented
before. Those substructures that cover at least one
positive example are kept in the BestList but limited to
the Beam size. A ChildList keeps all the substructures
that were obtained from the expansion of the
substructures in the ParentList and is also limited by
the Beam size. The Limit parameter is used to expand
as many substructures as the Limit, but if the BestList
is empty after expanding Limit substructures from the
ParentList, the limit is increased until one is found.
The SubdueCL function returns the BestList containing
all the substructures that at least cover one positive
example. It is important to mention that all the lists are
ordered according to the substructures values. The only
variation of the Consistent version of the SubdueCL
algorithm is that it only considers substructures
covering no negative examples in the BestList.

SubdueCL(Gp, Gn, Limit, Beam)
ParentList = (All substructures of one vertex) rood Beam
Repeat

BestList = { I
Exhausted = FALSE
While ((Limit > 0) or (ParentList ~e {})

ChildList = {}
Foreaeh substueture in ParentList

C = Expand(Subslrueture)
BestList = (BestList u CoverPos(C)) rood
ChildList = (ChildList u C) rood Beam
Limit = Limit - 1

EndFor
ParentList = ChildList rood Beam

EndWhile
IfBestList = {}

Then Exhausted = TRUE
Else Limit = Limit * 1.2

Until ((BestList ~e {}) or (exhausted = TRUE
Return first(BestList)

End

Figure 4: SubdueCL Function

Learning with Graphs
Although the search space that SubdueCL considers to
learn from graphs is exponential, empirical results
show that it is able to learn without exhaustively
reviewing it. Empirical experiments in the following
section show this. We are working in a PAC Learning
analysis of SubdueCL to support this statement. Using
graphs as the knowledge representation for learning
has several advantages, among them we have that
graphs are a very expressive and comprehensible
representation. Another advantage is that the
hypothesis space consists of connected graphs,
SubdueCL searches using the relations that connect
concepts, this makes SubdueCL’s approach good for
both non-relational and relational domains.

Empirical Results

We are now in the testing phase of our graph-hased
concept learner, and as part of those tests we are
comparing it with the two ILP systems FOIL and
Progol. Until now we have tested it in five domains but
we will continue with more and different types of
domains. Five non-relational domains were used to
compare FOIL, Progol and SubdueCL: golf, vote,
diabetes, credit, and Tic-Tac-Toe. The golf domain is a
trivial domain used to demonstrate machine learning
concepts, typically decision-tree induction (Quinlan
1986). The vote domain is the Congressional Voting
Records Database available from the UCI machine
learning repository (Keogh et. al 1998). The diabetes
domain is the Pima Indians Diabetes Database, and the
credit domain is the German Credit Dataset from the
Staflog Project Databases (Keogh et. AI 1998). The
Tic-Tac-Toe domain consists of 958 exhaustively
generated examples. Positive examples are those where
"X" starts moving and wins the game and negative
examples are those where "X" looses or the game is
fled. The examples are represented by the position on
the board and the value for that position. Therefore the
possible values for each position are either "X" or
"O". The three systems were able to learn the concept
correctly, that is; they learned the eight configurations
where "X" wins the game. Table 1 shows the percent
accuracy results on the non-relational domains. The
results show that SubdueCL is competitive with Foil
and Progol in these types of domains.

Table 1: Percent accuracy results on non-relational domains

Uolf Vote Diabetes Credit TTT
POlL 60.67 93.U2 70.66 66.16 IOU.UU
Progol 33.33 76.9~ 51.97 44.55 lOO.OO
SubdueCL 66.67 94.~B 64.21 71.52 100.00

As for relational domains we are working with the
chess, and carcinogenesis domains. The Chess domain
consists of 20,000 examples of row-column positions
for a white king, white rook and black king such that
the black king is in check (positive) or not (negative).

co)
Figure 5. An example from the chess domain. (a) Board
configuration and (b) SubdueCL’s graphical representation
of the example.

Therefore, if white’s turn is next, then the positive
examples are illegal configurations. Figure 5b shows

380 FLAIRS-2001

Subdue’s representation for the chess domain example
in figure 5a. Figure 6 shows two substructures found
by SucdueCL in the chess domain. Each piece is
represented by two vertices corresponding to the row
and column of the piece, connected by a position
relation (e.g., WKC stands for white king column).
Results in the Chess domain show 97% accuracy for
SubdueCL, 99% for FOIL, and 86% for Progol. Due to
computational constraints only a subset (5000
examples) of the entire database was used for the 10
fold cross validation. The accuracy results are 99.74%
for Progol, 99.34% for FOIL, and 99.74% for
SubdueCL. In terms of number of rules, Progol learned
5 rules, FOIL learned 11 rules, and Subdue learned 7
rules (substructures).

Figure 6. Two of eleven substructures found by SubdueCL
in the chess domain.

/

Figure 7. Two of the substructures found by SubdueCL in
the cancer domain.

The carcinogenesis database is composed of
information about chemical compounds and the results
of laboratory tests made to rodents in order to
determine if the chemical induces cancer to them or
not. The information used for this experiment was
taken from the web site:
ht_~://web.comlab.ox.ac.uk/oucl/research/areas/machle
arn/PTE/. This database was built for a challenge to
predict the result of the tests using machine-learning
techniques. The dataset contains 162 positive examples
and 136 negative examples. Figure 7 shows two
substructures found by SubdueCL in preliminary
results in the cancer domain. The first substructure
says that a compound that has a positive
"drosophila_slrl" test causes cancer. The second
substructure says that a compound that has a positive
"chromaberr" test and also has an "amine" group
causes cancer.

Conclusions

We have described three approaches to graph-based
concept learning: conceptual graphs, the Galois lattice,
and SubdueCL. Preliminary theoretical analyses

indicate that a constrained version of SubdueCL may
PAC learn, but more analysis is necessary. Empirical
results indicate that SubdueCL is competitive with the
ILP systems FOIL and Progol. Therefore, graph-based
relational concept learning is competitive with, and
potentially more expressive than logic-based
approaches. Future experimentation will compare the
two approaches on controlled artificial domains, the
cancer domain, and graph representations of the web,
where we can learn hyperlink-based relational concepts
distinguishing two sets of web pages.

References

Cameron, R. M. and Quinlan, J. R. Efficient top-down
induction of logic programs. SIGART, 5(1):33-42, 1994.

Cook, D. J.; Holder, L. B. Substructure discovery using
minimum description length and background knowledge.
Journal of Artificial Intelligence Research, 1:231-255, 1994.

Cook, D. J.; Holder, L. B.; and Djoko, S. "Knowledge
Discovery from Structural Data," Journal of Intelligence and
Information Sciences, Vol. 5, Number 3, pp. 229-245, 1995.

Cook, D. J.; Holder, L. B.; and Djoko, S. Scalable discovery
of informative structural concepts using domain knowledge.
IEEE Expert, 11 (5):59-68, 1996.

Jappy. and Nook, "PAC Learning Conceptual Graphs," Int.
Conference in Conceptual Structures, pp. 303 - 318, 1998.

Keogh, E.; Blake, C.; and Merz, C. J. UCI repository of
machine learning databases, 1998.

Liquiere, M. and Sallantin, J. "Structural Machine Learning
with Gaiois Lattice and Graphs," Proceedings of the
Fifteenth Intemational Conference in Machine Learning,
Morgan Kanfmann, pp. 305-13, 1998.

Muggleton, S. Inverse entailment and Progol. New
Generation Computing, 13:245-286, 1995.
Quinlan, J. R. Induction of decision trees. Machine Learning,
1(1):81-106, 1986.

Rissanen, J. Stochastic Complexity in Statistical Inquiry,
World Scientific Publishing Company, 1989.

Sowa, J., "Conceptual graphs summary," Current Research
and Practice, chapter 1, pp 3-52, Ellis Horwood, 1992.

Srinivasan; Muggleton; King; and Steinberg, "Mutagenesis:
ILP Experiments in a Non-Determinate Biological Domain,"
Proceedings of the Fourth Inductive Logic Programming
Workshop, 1994.

Valiant, L. "Learning Disjunction of Conjunctions,"
International Joint Conference on Artificial Intelligence pp.
560 - 566, 1985.

MACHINE LEARNING381

