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Abstract

Most approaches to knowledge discovery concen-
trate on either an attribute-value representation
or a structural data representation. The discover},
systems for these two representations are typically
different, and their integration is non-trivial. We
investigate a simpler integration of the two sys-
tems by coupling the two approaches. Our method
first executes the structural discovery s}~tem on
the data, and then uses these results to augment
or compress the data before being input to the
attribute-value-based system. We demonstrate
this strategy using the AutoClass attribute-value-
based clustering system and the Subdue structural
discovery system. The results of the demonstra-
tion show that coupling the two systems allows
the discovery of knowledge imperceptible to either
system alone.

Introduction
With the increasing amount and complexity of to-
day’s data, there is an urgent need to improve the
discoveo" of knowledge in large databases. Nu-
merous approaches have been developed for dis-
covering knowledge in databases using a linear,
attribute-value representation. Although much of
the data collected today has an explicit or implicit
structural component (e.g., spatial or temporal),
few discovery systems are designed to handle this
type of data (Fayyad, Piatetsky-Shapiro, & Smyth
1996). One reported method for dealing specifically
with structural data is with the SUBDUE system
(Cook, Holder, & Djoko 1996). SUBDUE provides 
method for discovering substructures in structural
databases using the minimum description length
(MDL) principle introduced by Rissanen.

Although numerous approaches exist for either
attribute-value-based or structural discovery, no
system provides a general approach to performing
discovery in the presence of both types of data. An
alternative to a unified approach is to separate the
attribute-value and structural components of the
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Figure 1: Sample input/output for AUTOCLASS.

database, run appropriate discovery tools on each
component, and combine the results. We demon-
strate this approach using two specific systems: the
AutoClass clustering system and the Subdue struc-
tural discovery system. The results of the demon-
stration show that coupling the two systems allows
the discovery of knowledge imperceptible to either
system alone.

AutoClass
The AUTOCLASS system (Cheeseman & Stutz
1996) is a~l attribute-value-based discovery tool
that clusters the input data into classes describ-
ing natural partitions in the data. Input to Au-
TOCLASS consists of a set of tuples described by
real-valued and discrete-valued attributes, a proba-
bilistic model for each attribute, a~d a set of control
parameters. The output of AUTOCLASS is a set of
classes. The best classification is the one that max-
imizes the ability to predict the attribute values of
a tuple in the data, given the correct class of the
tuple.

Figure I shows a simple example of the typical in-
put and output for AUTOCLASS. The input consists
of two real-valued attributes X and Y whose proba-
bilistic models are given as Gaussian. AUTOCLASS
finds two classes in the data, each described by an
instantiated Gaussian model for each attribute.

To perform the clustering, AUTOCLASS uses a
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Figure 2: Example substructure in graph form.

Bayesian statistical tectmique. AUTOCLASS breaks
the clustering problem into two parts: determining
the number of cla.sses or clusters and determining
the parameters of the attribute probabilistic models
that define the classes.

AUTOCLASS has classified data supplied by re-
searchers from a number of domains. These do-
mains include a DNA protein donor/accepter site
database, a 1024x1024 L~dSat image of a county
in Kansas, and Infrared Astronomical Satellite
(IRAS) data. From the IRAS database, AUTO-
CLASS discovered 5,425 classes using 94 different
attributes, and gave NASA scientists a new look
at a database which is not thoroughly understood
by domain experts. AtrTOCLASS discovered classes
which differed significantly from NASA’s previous
analysis lint clearly reflect physical phenomena in
the data.

Subdue

The SUBDUr~ syst(;m (Cook & Holder 1994; Cook,
th)lder, & Djoko 1996; Djoko, Cook, & Holder
1995) is a structural discovery tool that finds sub-
structures in a graph-based representation of struc-
tural databases using the minimum description
length (MDL) principle introduced by (Rissanen
1989). SUBDUE discovers substructures that com-
press the original data and represent structural con-
cept.s in the data. Once a substructure is discov-
ered, the substructure is used to simplify the data
t)y replacing instances of the substructure with 
pointer to the newly discovered substructure. The
discovered substructures "allow abstraction over de-
tailed structures in the original data. Iteration of
the substructure discovery and replacement process
constructs a hierarchical description of the struc-
tural data in terms of tim discovered substructures.
This hierarchy provides ,-arying levels of interpre-
tation that can be accessed based on tile specific:

¯ goals of the data analysis.
SUBDUE represents structural data as a labeled

graph. Objects in the data map to vertices or small
subgraphs in the graph, and relationships between
objects map to directed or undirected edges in the
graph. A substructure, is a connected subgraph
within the graphical representation. This graphi-
cal representation serves as input to the substruc-

ture discovery system. Figure 2 shows a gcomet-
ric example of such aa1 input graph. The objects
in the figure become labeled vertices in the graph,
and the relationships become labeled edges in the
graph. The graphical representation of the sub-
structure discovered by SUBDUE from this data is
also shown in Figure 2. One of the four instances of
the substructure is highlighted in the input graph.
An instance of a substructure in an input graph is
a sct of vcrticcs and edges from the input graph
that match, graph theoretically, to the graphical
representation of the substructure.

Figure 3 shows a sample input database contain-
ing a portion of a DNA sequence. In this case,
atoms and small molecules in the sequence are r(,p-
resented with labeled vertices in the graph, and the
single and double bonds between atoms are repre-
sented with labeled edges in the graph. SUBDt:~:
discovers substructure Si from the input datal)ase.
After compressing the original database using $1,
SUI3DUE finds substructure $9, which when used to
compress the database further allows SUBDUE to
lind substructure 83. Such repeated apl)lication of
Sum)tJE generates a hierarchical description of the
structures in the database.

The substructure discovery algorithm used by
SUBDUE is a computationally-constrained be~n
search. The algorithm begins with the substruc-
ture matching a single vertex in the graph. Each
iteration the algorithm selects the best substruc-
ture and incrementally expands the instances of the
substructure. The algorithm searches for the best
substructure until "all possible substructures have
been considered or the total amount of computation
exceeds a given limit. Evaluation of each substruc-
ture is determined by how well the substructure
compresses the description length of the database.
Because instances of a substructure can appear in
different forms throughout the database, ;m inex-
act graph match is used to identify substructure
instances.

SUBDUE has been successfully applied with and
without domain knowledge to databases in do-
mains including image analysis, CAD circuit anal-
ysis, Chinese character databases, program source
code, ctlenfical reaction chains, Brookhaven protein
databases, and artificially-generated databases.

Coupling Complementary Discovery

Systems

One method for coupling a linear attribute-value-
based discovery system (system A) and a structural
discovery system (system S), depicted in Figure 
is to run system S first on the structural compo-
nent of the data and use the resulting structural
patterns to modify the input to system A. The
results of system S, which will typically link sev-
eral tuples together, can be used to attgment tuples
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Figure 3: Sample results of Subdue on a protein sequence.

Attribute-Value

Data
Component

;-Q >[ A
I

A

Structural Structural
PatternsComponent ~,.{ S

Attribute-
> Value

Patterns

Q = combination of tupies, or
addition of new attributes

Figure 4: Coupling of complementary discovery systems (S -~ A).
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with attributes whose values indicate other tuples
involved in the structural pattern or can be used
to combine all the attributes of the participating
tuples into a single, larger tuple.

As a demonstration of this coupling strategy, we
perform discovery in the squares database shown
in Figure 5. The squares database consists of 30
squares represented as 120 line segments. Each line
segment consists of the line starting point (X1,Y1)
and ending point (X2,Y2) (0-1023) along with 
line’s angle (0.0-10.0), length (1-99) and color (red,
green or blue). In Figure 5, red lines are solid,
green lines are dotted, and blue lines are dashed.
The pattern we have artificially embedded in this
database consists of three types squares based on
line color: 10 red-red-grcen-green squares: 10 green-
green-blue-blue squarcs, mid 10 red-red-blue-blue
squares. To demonstrate the benefits of the cou-
pling strategy, we compare the results of this strat-
egy with those of AUTOCLASS aJone and SUBDUE
alone.

AUTOCLASS represents this database using one
tuple for each line. The tuple consists of attributes
fi)r X1, Y1, X2, Y2, Angle, Length and Color.
Each attribute is modeled by a Gaussian. This in-
chlttes the Color attribute using the values 1 for
red, 2 for green and 3 fi)r blue. We run AutoClass
with this information and with added structural
infornmtkm in the form of adding a line number
(LineNo) to eaz.h entry and two attributes (LineTol
and LineTo2) whose vahms are the line numbers of
the lines connected to the enpoints, (X1,Y1) anti
(X2,Y2), respectively. Given these 120 tuples, At:-
TOCLAsS alone finds the following 12 classes (num-
bers in parentheses are the mlmber of tuples having
highest probability of belonging to the class):

Class 0 (20): Color = green,
LineNo = LineTol = LineTo2 = 98 + 10

Class 1 (20): Color -- red,
LineNo -- LineTol = LineTo2 = 99 + 10

Class 2 (15): Color = red,
LineNo = LineTol = LineTo2 --- 12 4- 10

Class 3 (13): Color = blue,
LineNo -- LineTol -- LineTo2 = 17 4- 10

Class 4 (12): Y1 = Y2, X1 -- 
Class 5 (10): Length = 8() 4- 

LineNo = LineTol -- LineTo2 = 51 4- 1
Class 6 (8): Y1 = Y2,

LineNo = LineTol = LineTo2 --- 69 4- l
Class 7 (8): X1 = X2,

Length = 8.4 4- 1.2
Class 8 (4): Length = 59 4- 

LineNo = LineTol = LineTo2 = 54 4- 1
Class 9 (4): Length = 90 4- 

LineNo = LineTol = LineTo2 = 33 4- 1
Class 10 (3): Color = blue, LineNo = 3 4- 
Class 11 (3): LincTo2 = 1 4- 13,

Color = green

These classes show that AUTOCLASS uses color
as the main differentiator between classes. The
concept of squares, and particularly two-colored
squares, is absent from these concept descriptions.

Each line is represented as a vertex in thc graph
input to SUBDUE, and the attribute values are rep-
resented as directed edges from the lint, vertex to
a vertex for that attribute’s value. The one addi-
tion piece of information given to SUBDUE iS the
structural relation "touch" used to conncct adjoin-
ing lines. The output of SUBDUE on the 30 squares
corresponds to the four connected lines comprising
the square with no attribute information. Thus,
SUBDUE discovers the square, but not the fact that
there are three different types of squares based on
line color.

Completing the coupling strategy of Figure 4, we
next use the structural pattern found by SUBDUE to
modify the original attribute-value data for input
to AUTOCLASS. The modification involves com-
bining the four line tuples comprising each square
structure into a single larger tuple consisting of
all the attributes of the four line tul)les. Thus,
the database is reduced to 30 tuples, one for each
square, where each tuple has attributes correspond-
ing to the four et)rners of the square (X1-X4, Y1-
Y,i) along with the angles, lengths and colors of
the four lines. Given the modified database, At:-
TOCLASS finds the desired classes that neither Av-
TOCLASS or SUBDUE could find alone:

Cl~s 0 (10): Color1 = red, Color2 = red,
Color3 = green, Color4 = green

Cl,~s 1 (10): Colorl = green. Color2 = green.
Color3 = blue, Color4 = blue

Cla.~s 2 (10): Colorl = blue, Color2 = blue,
Color3 = red, Color4 = red

To fllrther test this coupling strategy, we cre-
ated a second artificial database consisting of three
embedded concepts: two small structures and one
larger structure. Each vertex of the structures is
embe.llished with a numeric attribute. The numeric
values vary between instances of the graphs but fall
within specified ranges for e~u:h vertex of each struc-
ture. In the database we embed 9 instances of the
smaller concepts and 5 instances of the larger con-
cept.

AutoClass is given the dataset represented as a
set. of labeled data entries with numeric at.tributes
and structural information indicating to what other
data i)oints each entry is connected in the struc-
ture. When AutoClass is run alone on the datasct:
12 classes are generated which partition lhe data
mainly on tile numeric values. ~I’IH)UE run alone
on this dataset finds the three structural conceI)ts
without any numeric information. We use S[JB-
DUE’S findings to compress the database and run
AutoClass once more, at which point AutoClass
finds the three classes containing the structunfl con-
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Figure 5: Squares database.

cepts with attached numeric ranges.

Conclusions
As this paper demonstrates, coupling two com-
plementary knowledge discovery systems can yield
patterns imperceptible to either system alone. Cou-
pling the systems provides an easier alternative to
integrating the biases of an attribute-value-based
system into a structural discovery system or en-
hancing the attribute-value-based system’s repre-
sentation to include structural information.

We have only demonstrated the usefulness of a
coupling strategy on two artificial databases. Much
more evaluation remains to be done. One direction
would be to evaluate the system on satellite images
of cities containing buildings of various sizes and
orientations. After extracting line segment infor-
mation from the image, executing the coupled sys-
tems may be able to find relevant classes of build-
ings, instead of just different classes of line seg-
ments.
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