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Abstract 

The goal of the MavHome smart home project is to build an 
intelligent home environment that is aware of its inhabitants 
and their activities. Such a home is designed to provide 
maximum comfort to inhabitants at minimum cost. This can 
be done by learning the activities of the inhabitants and to 
automate those activities. For this it is necessary to identify 
among multiple inhabitants who is currently present in the 
home. Subdue is a graph-based data mining algorithm that 
discovers patterns in structural data. By representing the 
activity patterns for each inhabitant as graphs, Subdue can 
be used for inhabitant identification. We introduce a 
multiple-class learning version of Subdue and show some 
preliminary results on synthetic smart home activity data for 
multiple inhabitants. 
Keywords: Data Mining, Machine Learning, Intelligent 
Environments, Graph Representation, Minimum 
Description Length 

Introduction� 

Recent advances in machine learning research and 
application motivate us to construct a smart home that 
provides maximum comfort to its inhabitants. One use of 
today’s technology is to automate day-to-day activities of 
individuals with minimum interaction and minimal operating 
costs. This is the goal of the MavHome smart home project 
(Das et al. 2002).  MavHome learns patterns of inhabitant 
activity and automates selected activities through control of 
home devices. 

Activities performed by inhabitants, such as switching on 
a floor lamp in the living room, can be logged. Over time, 
this collected information becomes a large data set that 
contains extensive knowledge useful for learning. Mining of 
data has become an important research technique due to its 
ability to extract knowledge from large databases. Mining 
can, in the context of our work, be used for discovering 
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patterns representing inhabitant’s activities from smart home 
data. 

Smart home data is structural in nature, or is composed of 
data and relationships between the data. The data points in 
this application consist of individual inhabitant activities and 
the data is related spatially and temporally. Therefore, we 
need a data mining technique that can represent this 
structural information. Individual activity data points, and 
relationships between these data points, can be represented 
as a graph. Subdue is a graph-based data mining algorithm 
(Cook and Holder 2000). The distinct advantage of Subdue 
as compared to other data mining techniques is its ability to 
mine structural information. Individual data points can be 
mapped to vertices and relationships between the data can 
be mapped to edges in a graph.  

In order to provide maximum comfort, MavHome needs 
to automate selected inhabitant activities. By learning 
patterns of typical inhabitant activities, MavHome can 
automate some of the interactions with the house. This task 
is complicated if there are multiple inhabitants in a house. 
Therefore, the initial task is to perform inhabitant 
identification and then perform activity prediction. 

Subdue has many features such as a supervised concept 
learner which can be used for inhabitant identification. The 
Subdue supervised concept learner, SubdueCL, supports 
binary classification. We modify this system to handle 
classification of inhabitants among an arbitrary number of 
possibilities, within the MavHome smart home project. 

This paper is organized as follows. We first describe the 
MavHome project, followed by background on Subdue and 
SubdueCL. We then introduce the Multiple-Class Learning 
using Subdue (SubdueCLM) algorithm and validate our 
approach with empirical evidence. Finally we conclude with 
observations and directions for future research.   

The MavHome Smart Home Environment 

The MavHome (Managing an Intelligent Versatile Home) 
smart home project is a multi-disciplinary research project at 
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the University of Texas at Arlington focused on the creation 
of an intelligent home environment. The goal of the home is 
to create an environment that is aware of its inhabitants and 
activities. One of the tasks of MavHome is to identify the 
inhabitants, learn their activities and automate them, so that 
it can maximize comfort to the inhabitants and minimize the 
cost of operations and maintenance. In order to meet these 
goals, the home should continuously learn and adapt to the 
changing activities of the inhabitants. Our approach is to 
view the smart home as an intelligent agent that perceives its 
environment through the use of sensors, and can act upon 
the environment through the use of actuators. In short, the 
home should be able to correctly distinguish between 
multiple inhabitants, predict their activities, and select some 
of the activities for automation. This information can be 
used by the home to pass necessary messages to appropriate 
devices in order to automate activities which otherwise 
would be performed by the inhabitants manually. 

MavHome operations can be characterized by the 
following scenario (Das et al. 2002). At 6:45am, MavHome 
turns up the heat because it has learned that the home needs 
15 minutes to warm to optimal temperature for waking. The 
alarm goes off at 7:00, which signals the bedroom light to go 
on as well as the coffee maker in the kitchen. One of 
MavHome’s inhabitants, Bob, steps into the bathroom and 
turns on the light. MavHome records this interaction, 
displays the morning news on the bathroom video screen, 
and turns on the shower. While Bob is shaving MavHome 
senses that Bob is two pounds over his ideal weight and 
adjusts Bob's suggested menu. When Bob finishes 
grooming, the bathroom light turns off while the kitchen 
light and menu/schedule display turns on. During breakfast, 
Bob notices that the floor is dirty and requests the janitor 
robot to clean the house. When Bob leaves for work, 
MavHome secures the home, and starts the lawn sprinklers 
despite knowing the 70% predicted chance of rain. 

This scenario requires a number of tasks to be performed, 
including data collection, data mining, and activity 
prediction, as well as information passing between multiple 
agents. The task of activity prediction is further complicated 
if there is more than one inhabitant in a house. Different 
inhabitants follow different activity patterns and activities 
for some inhabitants may overlap with others. For example, 
after Bob steps out of the bathroom, another MavHome 
inhabitant, Jack, steps into the bathroom and turns on the 
light. This activity of Jack overlaps with Bob, so the home 
should be able to distinguish between the Bob and Jack 
activities. 

As the scenario suggests, MavHome needs to first identify 
who is currently in the house and then predict the 
inhabitants’ activities.  In the case of multiple inhabitants 
present at the same time, MavHome needs to distinguish 
between the inhabitants’ activities.  We hypothesize that this 
identification of inhabitants can be performed given a 
history of device interactions between inhabitants and 

household devices. Due to the structural nature of the data, 
Subdue is particularly well suited to the task.  

Subdue 

Subdue (Cook and Holder 2000) is a graph-based data 
mining tool that can discover patterns and learn concepts 
from structured data.  It is a general tool that can be applied 
to any domain that can be represented as a graph. Subdue 
expects input to be a labeled graph. Objects in the data are 
mapped to vertices and relationships between objects are 
mapped to directed or undirected edges. 

The main algorithm for discovery is a variant of a beam 
search. The goal of the search algorithm is to find a 
subgraph that compresses the input graph the best. These 
subgraphs, or substructures, are evaluated according to 
Minimum Description Length principle, originally 
developed by Rissanen (Rissanen 1989).  This compression 
is calculated as follows: 
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where DL(G) is the description length of the input graph, 
DL(S) is the description length of the subgraph and DL(G|S) 
is the description length of the input graph compressed by 
the subgraph. The search algorithm tries to maximize the 
value of the subgraph, which is simply the inverse of the 
compression. 

The initial state of the search is the set of subgraphs 
consisting of every part of uniquely-labeled vertices, where 
each subgraph represents a uniquely-labeled vertex. The 
search begins by extending a subgraph in all possible ways 
by a single edge and a vertex, or by a single edge if both 
vertices are already in the subgraph. The algorithm searches 
for the best substructure until all possible substructures have 
been considered or the total amount of computation exceeds 
a given limit.  

Once the search terminates and returns a list of best 
subgraphs ordered by compression value, the graph can be 
actually compressed using the best subgraph. The 
compression procedure replaces all instances of the 
subgraph with a pointer to the newly discovered 
substructure. The discovered substructures allow abstraction 
over detail in the original data. The resulting graph can be 
input to another iteration of Subdue, which further 
compresses the graph. This process of substructure 
discovery and compression can be performed on the graph 
until it cannot be further compressed (i.e., the graph is 
compressed into a single vertex). After several iterations, 
Subdue builds a hierarchical description of the structural 
data where substructures discovered later in the process are 
defined in terms of substructures discovered during earlier 
iterations. 

Subdue also has a feature by which predefined 
substructures can be provided to Subdue. In this predefined 
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mode, Subdue will try to find and expand predefined 
substructure instances. Subdue reports to the user whether 
instances of the predefined substructure occur in the input 
graph. 

Figure 1 shows a simple example of Subdue’ s operation. 
Subdue finds four instances of the triangle-on-square 
substructure in the geometric figure. The graph 
representation used to describe the substructure, as well as 
the input graph, is shown. 

 
Figure 1: Subdue Example 

The Subdue Concept Learner 
Concept learning is a process that consists of the induction 
of a function (concept) from training examples. Training 
examples are labeled as belonging to class x if they contain 
the substructures discovered for concept x. The training 
examples are used to guide the search for the target 
function. After the learning process, this function must be 
capable of correctly classifying a new example, one that 
was not included in the training examples. Then, if the 
training examples are an accurate representation of their 
domain, it is possible to learn a function that will be 
accurate when tested with new examples. 

Subdue can act as a supervised concept learner (Cook and 
Holder 2000). The Subdue concept learner (SubdueCL) 
accepts positive and negative examples in graph format. 
Substructures that occur often in the positive graph but not 
often in the negative graph are likely to be the target 
function. Therefore SubdueCL discovers substructures that 
compress the positive graph more than the negative graph.  

The compression value for a substructure S is calculated as 
follows: 

),()()(),(),,( SGDLGDLSDLSGDLSGGValue nnpnp −++=  

where DL(G,S) is the description length, according to the 
MDL encoding, of a graph G after being compressed using 

substructure S and DL(G) is description length of a graph G. 
This value represents information needed to represent the 
positive graph Gp using the substructure S plus the 
information needed to represent the portion of the negative 
graph Gn that was compressed using substructure S. 
SubdueCL will iterate until it finds a substructure that 
compresses the positive graph more than the negative graph. 

One of the limitations of this compression-based concept 
learner is that it only looks for substructures which compress 
the entire positive graph more than the entire negative graph. 
Therefore, it is biased to look for a substructure that offers 
more compression as compared to a substructure that covers 
a greater number of positive examples. 

The Subdue set-covering approach (Gonzalez, Holder and 
Cook 2001) to concept learning looks for substructures that 
cover the greatest possible number of positive examples 
while not covering negative examples. The evaluation of 
substructure S thus becomes 
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where #PosEgsCovered is the number of positive examples 
covered by the substructure and #NegEgsNotCovered is the 
number of negative examples not covered by the 
substructure. #PosEgs is the total number of positive 
examples and #NegEgs is the total number of negative 
examples. 

Multiple-Class Learning Using Subdue 

To date, SubdueCL can perform only binary classification. 
However, in the smart home task a classification needs to be 
made among multiple possible inhabitants. We have 
extended Subdue to learn concepts with multi-valued target 
attributes. This algorithm, SubdueCLM, expects an input file 
that contains the number of classes that are possible as well 
as labeled training data for each class.  

SubdueCLM uses SubdueCL to perform classification 
separately for each value of the target attribute (in this case, 
the inhabitant label). The steps are 

1. Read and create a graph for each class. While 
reading, SubdueCLM converts the logged smart 
home activity data to a graph. 

2. Iterate for the number of classes specified. During 
each iteration, SubdueCLM views the data for one 
class value (one inhabitant) as a positive graph and 
the collection of the other graphs as a negative 
graph. If there are more than two classes, the 
graphs representing all classifications except the 
current target value are merged into one negative 
graph. Substructures are then discovered for these 
positive and negative graphs using SubdueCL. 

object 

object 

triangle 

square 

   shape  

shape  
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4 instances of 

Vertices : objects or attributes 
Edges     : relationships 
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3.  Store the concept found during each iteration for 
classification of new data points. 

This algorithm will find concepts that represent a target 
function for each class. The target function can now be used 
to perform classification among previously-unseen 
examples.  In order to perform classification, the new 
inhabitant activity data is converted to a graph. Using the 
ability to search for a predefined substructure provided by 
Subdue, SubdueCLM can search for the substructures 
representing each class value in the new data.  If one of the 
learned structures is found in the input graph, the 
corresponding class value (in this case, inhabitant label) is 
reported.  Because a smart home may have multiple 
inhabitants at home at the same time, all inhabitants whose 
patterns are noticed in the data are reported as currently 
being present. 

Identification of Multiple Inhabitants in 
MavHome Using Subdue. 

Subdue can be used for identification of inhabitants in 
MavHome. A smart home can have many inhabitants. 
Therefore, in order to automate activities for each 
individual, the home must identify them. SubdueCLM can 
be used for identification of a home’ s inhabitants from 
observed interactions with the home. In order to use 
SubdueCLM we must convert MavHome data to a graph 
representation.  

An event in a smart home consists of interaction with a 
device, such as turning a lamp on or off, playing music, and 
starting the water sprinklers. Each event can be considered 
as a device whose state is being changed at a particular time. 
The event device and event time can be mapped to nodes 
with an edge labeled with the state change.  

In the smart home graph, consecutive events are 
connected with an edge that is labeled with the discretized 
time difference between the two events. For example, if the 
time difference is less than 5 minutes than the edge is 
labeled as ImmediatelyFollows, if the time difference is 
more than 5 minutes but less than 15 minutes the edge is 
labeled as SoonFollows and so on.  The amount of 
discretization can be varied according to the application. 

A simple example of MavHome data is as follows.  The 
data follows the format collected by software packages such 
as HomeSeer. 

(1) 7/7/2001 9:52:07 AM~!~X10 Received~!~A6 (?)  A On 

(2) 7/7/2001 9:55:07 AM~!~X10 Received~!~A6 (?)  A Off 

Entries (1) And (2) represents two events. The first entry 
indicates that lamp A6 was switched ON at 9:52 am on 
7/7/2001 and was switched OFF at 9:55am on the same day.  
The corresponding graph representation is shown in Figure 
2. 

 

  
 
 
 
 
 

 
 

Figure 2: Graph representation of MavHome data 

The activity log for each inhabitant collected over a 
number of days can be used to train SubdueCLM.  
SubdueCLM will find concepts describing each inhabitant’ s 
activity pattern. This concept can now be used to classify 
new activity logs which were not used to train the system. In 
this way, inhabitants can be identified according to the 
activity they perform with the house. 

Experimental Results 

To illustrate the classification of inhabitants using 
SubdueCLM, we apply the SubdueCLM algorithm on 
synthetic data for three inhabitants, which indicates activities 
followed by each inhabitant. The activity patterns for two of 
the inhabitants, Ritesh and Sira, overlaps in time. As a 
result, a pattern for one individual may be interrupted by 
activities for another individual.  Activity patterns for the 
third inhabitant, Karthik, do not overlap the others. 

The primary activity pattern followed by Ritesh is to enter 
the environment, play some music, turn ON lights on way to 
his desk and at his desk. After some time, Ritesh goes to the 
lounge and watches TV. Before leaving, Ritesh turns off the 
TV, the lounge light and the light at his desk. 

The activity pattern for Sira is similar to that for Ritesh. 
Sira enters the environment 15 to 20 minutes after Ritesh 
enters, plays some music and turns ON lights at his desk. 
Other activities which Sira performs are to close the blinds, 
go to the kitchen and select some food to eat from the 
refrigerator. Before leaving, Sira switches off the lights at 
his desk and in the pathway. Ritesh and Sira are together in 
the lab for 20 to 25 minutes. 

Karthik’ s activity pattern does not overlap with other two. 
After entering the smart environment, Karthik plays some 
music, turns on lights on the way to his desk and opens the 
blinds. Upon entering the kitchen, Karthik turns on the 
kitchen light, opens the refrigerator, and turns off the light 
before leaving the kitchen. Before leaving environment, 
Karthik watches TV for a while and finally closes the blinds 
and switches off the light in the pathway. 

The graph representation used for our synthetic data is as 
explained in previous section. We use separate labels for 

 

ON 

0952 

A6 

OFF 

0955 

  A6 

ImmediatelyFollows
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consecutive events occurring within 5 minutes, 15 minutes, 
60 minutes, and 120 minutes of each other 

SubdueCLM is tested using the compression evaluation 
heuristic as well as using the set-covering evaluation 
heuristic. Experiments used ten days of activity log for each 
inhabitant, where seven days worth of data is used for 
training and the remaining three days is used for testing. 
Subdue version 5.0.3 is used for our experiment.  

The predictive accuracy for SubdueCLM approach is 
100% with both evaluation heuristics if log for each 
inhabitant is tested individually. We also have tested 
SubdueCLM by interleaving activity logs for multiple 
inhabitants. The interleaving of data is performed in two 
ways. In the first case, an activity log is interleaved 
according to the time each event occurs in a day. In this 
case, the predictive accuracy is 0% for the Ritesh and Sira 
whereas it is 100% for Karthik using the compression 
heuristic. For the set-covering approach the predictive 
accuracy is 0% for Ritesh, 66.67% for Sira and 100% for 
Karthik. In the second case, the activity log is interleaved 
according to inhabitant. This means that the log file for three 
days of activity for Ritesh is followed by three days of 
activity for Sira, and so on. The predictive accuracy in this 
case was found to be 100% for each inhabitant for both 
approaches. 

If the relative order of the events in the activity pattern for 
inhabitants is changed then SubdueCLM does not perform 
well. Results for MavHome environment show that 
SubdueCLM can classify inhabitants correctly if the 
inhabitant follows a sequential activity pattern. 

Conclusions 

In this paper we introduced an algorithm, SubdueCLM, for 
classification of multi-valued concepts using the graph-
based data mining system Subdue. We demonstrate the 
application of SubdueCLM to data from the MavHome 
smart home project. The experiments performed using 
MavHome data to classify inhabitants based on activity log 
show that SubdueCLM can successfully identify inhabitants 
from observing inhabitant activity. 

There are some enhancements that we would like to make 
to SubdueCLM to increase its usefulness for the MavHome 
project. We need to refine SubdueCLM to perform 
classification when the smart home the activity log contains 
partially-ordered events and when activities for multiple 
inhabitants overlap. We would like to perform an exhaustive 
testing for a different number of inhabitants with different 
activity patterns and different amounts of overlapping 
between inhabitant activity patterns. We are currently 
gathering real activity data that will be used for in-depth 
testing of the algorithm.  We would also like to apply 
SubdueCLM to other domains which can benefit from a 
structural approach to multiple-class concept learning.  
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