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Abstract 
We introduce the graph-based relational concept 
learner SubdueCL. We start with a brief description of 
other graph-based learning systems: the Galois lattice, 
Conceptual Graphs, and the Subdue system. We then 
present our new system SubdueCL and finally we 
show some preliminary results of a comparison of 
SubdueCL with the two Inductive Logic Programming 
(ILP) systems Foil and Progol. 

Introduction   
We describe our current research on graph-based 
concept learning based in the SubdueCL system. 
Graph-based systems have the potential to be 
competitive in the learning task, because they provide 
a powerful and flexible representation that can be used 
for relational domains. The main competitors of 
graph-based systems are logic based systems, 
especially Inductive Logic Programming (ILP) 
systems, which have dominated the area of relational 
concept learning. We are comparing our graph-based 
approach with the ILP systems Foil and Progol. On the 
theoretical side, we have studied other graph-based 
systems, and we are applying the related theory to our 
system. For example, we are working in a PAC 
learning analysis of the SubdueCL system in order to 
show that it is possible to learn using graph-based 
systems with a polynomial number of training 
examples. 
The paper is organized as follows. The related work 
section briefly describes the graph-based systems that 
we have studied: Conceptual Graphs, the Galois lattice 
and the Subdue system. The SubdueCL section 
describes our graph-based concept learning system. 
The empirical results section presents some 
preliminary results from a comparison of SubdueCL 
with the two ILP systems Foil and Progol. The last 
section presents our conclusions and future work. 
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Related Work 
In this section we briefly describe the role of ILP 
systems as concept learners and then we present some 
work related to graph-based concept learners. 

ILP Systems 
One approach to relational concept learning systems 
is Inductive Logic Programming (ILP), which 
represents data using First Order Predicate Calculus 
(FOPC) in the form of Prolog logic programs. ILP 
systems have been successful in structural domains: 
Progol in the Chemical Carcinogenicity domain 
(Srinivasan, King, Muggleton et al. 1997) and FOIL 
(Cameron and Quinlan 1994) for learning patterns in 
Hypertext domains (Slattery & Craven 1998). The 
system presented in this paper uses graphs as its data 
representation, which are flexible and descriptive. 
Graphs can also describe FOPC using Conceptual 
Graphs as introduced by John Sowa (Sowa 1992). 

Conceptual Graphs 
Conceptual Graphs (CGs) are a logic-based knowledge 
representation derived from Semantic Networks and 
Peirce Existential Graphs (Sowa 1992). Figure 1 
shows an example of a Conceptual Graph expressing 
“A cat is on a mat”. Square vertices are used to 
represent concepts and oval vertices represent 
relations. Edges are used to link concepts with 
relations. 

 

CGs are being used in different areas of Artificial 
Intelligence like natural language processing, 
information retrieval and expert systems. Conceptual 
Graphs provide a powerful and rich knowledge 
representation that has been used for concept learning 
as presented in (Jappy and Nock 1998). Their work 
describes a PAC Learning (Valiant 1985) analysis 
using Conceptual Graphs to show its effectiveness for 
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Learning. With this model, the authors were able to 
prove that it is possible to PAC learn Conceptual 
Graphs for a restricted class that consists of 
Conceptual Graphs with at most n vertices. From that 
result they stated the theorem: 

 “Let CGC
i
?)(?  denote a conceptual graph 

class. If both || )( i
C ?  and the complexity of the 

projection test between elements of )( i
C ?  are 

polynomial in )( i? , then )( i
C ?  is PAC 

learnable”. 

Where i?  (? 1,? 2, and ? 3)  are the richness 
parameters that define the search space of the class of 
conceptual graphs and correspond to the number of 
relations, concepts and labels that are available to 
form valid conceptual graphs. The projection test 
corresponds to the test used to verify if an example 
belongs to a class or not (a form of graph morphism). 

Galois Lattice 
Another technique used to accomplish the task of 
concept learning using a graph representation is 
drawn from the framework of a Galois Lattice 
(Liquiere and Sallantin 1998). In the Galois Lattice 
framework for learning, each node in the lattice 
consists of a description graph and the set of examples 
described by the graph. The lattice construction starts 
with an empty lattice. In the first step, the description 
of all the examples is added to the lattice. For the rest 
of the levels, new concepts are created from each pair 
of concepts that have already been found in the 
previous step. The operation used to create a concept 
from two other concepts is called generalization “? ” 
and given two description graphs, produces the largest 
description graph that is contained in both original 
graphs. After a new concept is created, the examples 
that it describes are associated with it (the union of the 
examples associated to its parent graphs). 
The search space for the Galois Lattice algorithm 
consists of all the possible generalizations of the set of 
training examples. In this case, the learning process 
goes from specific to general. The complexity of the 
Galois Lattice creation algorithm is O(n3p) (Liquiere 
and Sallantin 1998), where n is the number of 
examples and p is the size of the lattice. Liquiere and 
Sallantin mentioned that they had an experimental 
implementation called GRAAL, but that it could not 
be used in practical cases yet and that it was only an 
algorithm used for formal analysis. The Galois Lattice 
method is restricted to be used only with the subclass 
of Locally Injective Graphs (LIGs), because it was 
proved that the generalization operation runs in 
polynomial time for these types of graphs. If a 

different method to create the Galois Lattice (that does 
not use this generalization operation) is used, the 
restricted classes (in this case LIG’s) might be 
different. In the future work of the Galois Lattice 
research, the authors mentioned that they would work 
to prove that LIG is PAC learnable. They also hope to 
make GRAAL a tool to work with practical 
applications. 

Subdue 
Subdue (Cook, Holder 1994 ) is a Data Mining tool 
that achieves the task of clustering using an algorithm 
categorized as an example-based and relational 
learning method. It is a general tool that can be 
applied to any domain that can be represented as a 
graph. Subdue has been successfully used on several 
domains like CAD circuit analysis, chemical 
compound analysis, and scene analysis (Cook, Holder 
and Djoko 1996, Cook, Holder and Djoko 1995, Cook 
and Holder 1994, and Djoko, Cook and Holder 1995). 
Subdue uses a model evaluation method called 
“Minimum Encoding” that is a technique derived from 
the minimum description length principle (Rissanen 
1989) and chooses as best substructures those that 
minimize the description length metric that is the 
length in number of bits of the graph representation. 
The number of bits is calculated based on the size of 
the adjacency matrix representation of the graph. 
According to this, the best substructure is the one that 
minimizes I(S) + I(G|S), where I(S) is the number of 
bits required to describe substructure S, and I(G|S) is 
the number of bits required to describe graph G after 
being compressed by substructure S. 
The main discovery algorithm is a computationally 
constrained beam search. The algorithm begins with 
the substructure matching a single vertex in the graph. 
Each iteration the algorithm selects the best 
substructure and incrementally expands the instances 
of the substructure. The algorithm searches for the 
best substructure until all possible substructures have 
been considered or the total amount of computation 
exceeds a given limit. Evaluation of each substructure 
is determined by how well the substructure compresses 
the input graph according to the heuristic being used. 
The best substructure found by Subdue can be used to 
compress the input graph, which can then be input to 
another iteration of Subdue. After several iterations, 
Subdue builds a hierarchical description of the input 
data where later substructures are defined in terms of 
substructures discovered on previous iterations. 
Figure 2 shows a simple example of Subdue’s 
operation. Subdue finds four instances of the triangle-
on-square substructure in the geometric figure. The 



graph representation used to describe the substructure, 
as well as the input graph, is shown in the middle. 
 
 
 

 

Figure 1: SUBDUE’S Example. 

SubdueCL 
As we mentioned before, first-order logic can also be 
represented as a graph, and in fact, first-order logic is 
a subset of what can be represented using graphs 
(Sowa 1992). Therefore, learning systems using 
graphical representations have the potential to learn 
richer concepts if they can handle the increased size of 
the hypothesis space. The Subdue Concept Learner 
(which we will refer to as SubdueCL) is an extension 
to the Subdue system described before. The main 
challenge in adding concept-learning capabilities to 
Subdue was the inclusion of “negative” examples into 
the process. Substructures that describe the positive 
examples; but not negative examples, are likely to 
represent the target concept. Therefore, the Subdue 
concept learner accepts both positive and negative 
examples in graph format. 
Since SubdueCL is an extension to Subdue, it uses 
Subdue’s core functions to perform graph operations, 
but the learning process is different. SubdueCL works 
as a supervised learner by differentiating positive and 
negative examples using a set-covering approach 
instead of graph compression. The hypothesis found 
by SubdueCL consists of a set of disjunctions of 
conjunctions (substructures), i.e., the concept may 
contain several rules. SubdueCL forms one of these 
conjunctions (rules) in each iteration. Positive 
example graphs that are described by the substructure 
found in a previous iteration are removed from the 
graph for subsequent iterations. 
The way in which SubdueCL decides if the 
substructures (or rules) will be part of the concept or 
not is also different from Subdue. SubdueCL uses an 
evaluation formula to give a value to all the generated 
substructures. This formula assigns a value to a 
substructure according to how well it describes the 
positive examples (or a subset of the positive 
examples) without describing the negative examples. 
Then, positive examples covered by the substructure 

increase the substructure value while negative 
examples decrease its value. In this formula the 
positive examples that are not covered and the 
negative examples covered by the substructure are 
considered errors because the ideal substructure would 
be one covering all the positive examples without 
covering any negative example. The substructure value 
is calculated as follows: 

Errorvalue ?? 1  
 

Using this formula, SubdueCL chooses rules that 
maximize the substructure’s value and in this way it 
minimizes the number of errors made by the 
substructures used to form the concept. 
We have two versions of SubdueCL. The first is an 
inconsistent learner, which means that the 
substructures of the hypothesis are allowed to cover 
some negative examples. The second version is a 
consistent learner, in which the substructures that 
form the hypothesis are not allowed to cover any 
negative example. 

SubdueCL’s Algorithm 
The SubdueCL algorithm is shown in figure 3. The 
main function takes as parameters the positive 
examples Gp, the negative examples Gn, the Beam 
length (since SubdueCL’s search algorithm is a beam 
search) and a Limit on the number of substructures to 
include in its search. The main function makes calls to 
the SubdueCL function in order to form the hypothesis 
H that describes the positive examples. A substructure 
is added to H each time that the SubdueCL function is 
called. In case that the SubdueCL returns NULL, the 
Beam is increased so that a larger search space can be 
explored during SubdueCL’s search. Also, after 
SubdueCL finds a substructure, the positive examples 
covered by it are removed from the positive graph. 
 

Figure 4 shows the SubdueCL function, which starts 
building a ParentList creating a substructure for each 
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BestSub = SubdueCL(Gp, Gn, Limit, Beam)
If BestSub = {}
Then Beam = Beam * 1.1

Until ( BestSub ? {})
Gp = Gp – { p ? Gp | BestSub covers p }
H = H + BestSub

Until Gp = {}
Return H

End
Figure 3: SubdueCL’s Main Function
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vertex in the graph with a different label but keeping 
only as many substructures as the length of the Beam 
The “mod Beam” qualifier means that the lists keep 
only as many substructures as the Beam size. Each of 
those substructures in the parent list is then expanded 
by one vertex or one vertex and an edge in all possible 
ways and evaluated according to the formula presented 
before. Those substructures that cover at least one 
positive example are kept in the BestList but limited to 
the Beam size. A ChildList keeps all the substructures 
that were obtained from the expansion of the 
substructures in the ParentList and is also limited by 
the Beam size. The Limit parameter is used to expand 
as many substructures as the Limit, but if the BestList 
is empty after expanding Limit substructures from the 
ParentList, the limit is increased until one is found. 
The SubdueCL function returns the BestList 
containing all the substructures that at least cover one 
positive example. It is important to mention that all 
the lists are ordered according to the substructures 
values. The only variation of the Consistent version of 
the SubdueCL algorithm is that it only considers 
substructures covering no negative examples in the 
BestList. 

Learning with Graphs 
Although the search space that SubdueCL considers to 
learn from graphs is exponential, empirical results 
show that it is able to learn without exhaustively 
reviewing it. Empirical experiments in the following 
section show this. We are working in a PAC Learning 
analysis of SubdueCL to support this statement. Using 
graphs as the knowledge representation for learning 
has several advantages, among them we have that 
graphs are a very expressive and comprehensible 

representation. Another advantage is that the 
hypothesis space consists of connected graphs, 
SubdueCL searches using the relations that connect 
concepts, this makes SubdueCL’s approach good for 
both non-relational and relational domains. 

Empirical Results 
We are now in the testing phase of our graph-based 
concept learner, and as part of those tests we are 
comparing it with the two ILP systems FOIL and 
Progol. Until now we have tested it in five domains 
but we will continue with more and different types of 
domains. Five non-relational domains were used to 
compare FOIL, Progol and SubdueCL: golf, vote, 
diabetes, credit, and Tic-Tac-Toe. The golf domain is 
a trivial domain used to demonstrate machine learning 
concepts, typically decision-tree induction (Quinlan 
1986). The vote domain is the Congressional Voting 
Records Database available from the UCI machine 
learning repository (Keogh et. al 1998). The diabetes 
domain is the Pima Indians Diabetes Database, and 
the credit domain is the German Credit Dataset from 
the Statlog Project Databases (Keogh et. Al 1998). The 
Tic-Tac-Toe domain consists of 958 exhaustively 
generated examples. Positive examples are those 
where “X” starts moving and wins the game and 
negative examples are those where “X” looses or the 
game is tied. The examples are represented by the 
position on the board and the value for that position. 
Therefore the possible values for each position are 
either “X” or “O”. The three systems were able to 
learn the concept correctly, that is; they learned the 
eight configurations where “X” wins the game. Table 
1 shows the percent accuracy results on the non-
relational domains. The results show that SubdueCL is 
competitive with Foil and Progol in these types of 
domains. 

Table 1: Percent accuracy results on non-relational domains 

 Golf Vote Diabetes Credit TTT 
FOIL 66.67 93.02 70.66 66.16 100.00 
Progol 33.33 76.98 51.97 44.55 100.00 
SubdueCL 66.67 94.88 64.21 71.52 100.00 

 

As for relational domains we are working with the 
chess, and carcinogenesis domains. The Chess domain 
consists of 20,000 examples of row-column positions 
for a white king, white rook and black king such that 
the black king is in check (positive) or not (negative). 
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SubdueCL(Gp, Gn, Limit, Beam)
ParentList = (All substructures of one vertex) mod Beam
Repeat

BestList = {}
Exhausted = FALSE
While ( (Limit > 0 ) or (ParentList ? {}) )

ChildList = {}
Foreach substucture in ParentList

C = Expand(Substructure)
BestList = ( BestList ? CoverPos(C) ) mod Beam
ChildList = ( ChildList ? C ) mod Beam
Limit = Limit – 1

EndFor
ParentList = ChildList mod Beam

EndWhile
If BestList = {}

Then Exhausted = TRUE
Else Limit = Limit * 1.2

Until ( ( BestList ? {} ) or ( exhausted = TRUE ) )
Return first(BestList)

End

Figure 4: SubdueCL Function
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Figure 5.  An example from the chess domain. (a) Board 
configuration and (b) SubdueCL’s graphical representation 
of the example. 
 

Therefore, if white’s turn is next, then the positive 
examples are illegal configurations. Figure 5b shows 
Subdue’s representation for the chess domain example 
in figure 5a. Figure 6 shows two substructures found 
by SucdueCL in the chess domain. Each piece is 
represented by two vertices corresponding to the row 
and column of the piece, connected by a position 
relation (e.g., WKC stands for white king column).  
Results in the Chess domain show 97% accuracy for 
SubdueCL, 99% for FOIL, and 86% for Progol. Due to 
computational constraints only a subset (5000 
examples) of the entire database was used for the 10 
fold cross validation. The accuracy results are 99.74% 
for Progol, 99.34% for FOIL, and 99.74% for 
SubdueCL. In terms of number of rules, Progol 
learned 5 rules, FOIL learned 11 rules, and Subdue 
learned 7 rules (substructures). 

 

Figure 6.  Two of eleven substructures found by SubdueCL 
in the chess domain. 
 
 
 

Figure 7.  Two of the substructures found by SubdueCL in 

the cancer domain. 
 

The carcinogenesis database is composed of 
information about chemical compounds and the results 
of laboratory tests made to rodents in order to 
determine if the chemical induces cancer to them or 
not. The information used for this experiment was 
taken from the web site: 
http://web.comlab.ox.ac.uk/oucl/research/areas/machle
arn/PTE/. This database was built for a challenge to 
predict the result of the tests using machine-learning 
techniques. The dataset contains 162 positive 
examples and 136 negative examples. Figure 7 shows 
two substructures found by SubdueCL in preliminary 
results in the cancer domain. The first substructure 
says that a compound that has a positive 
“drosophila_slrl” test causes cancer. The second 
substructure says that a compound that has a positive 
“chromaberr” test and also has an “amine” group 
causes cancer. 

Conclusions 
We have described three approaches to graph-based 
concept learning: conceptual graphs, the Galois 
lattice, and SubdueCL. Preliminary theoretical 
analyses indicate that a constrained version of 
SubdueCL may PAC learn, but more analysis is 
necessary. Empirical results indicate that SubdueCL is 
competitive with the ILP systems FOIL and Progol. 
Therefore, graph-based relational concept learning is 
competitive with, and potentially more expressive than 
logic-based approaches. Future experimentation will 
compare the two approaches on controlled artificial 
domains, the cancer domain, and graph 
representations of the web, where we can learn 
hyperlink-based relational concepts distinguishing two 
sets of web pages. 
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