

Graph-Based Concept Learning

Jesus A. Gonzalez, Lawrence B. Holder, and Diane J. Cook

Department of Computer Science and Engineering
University of Texas at Arlington

Box 19015, Arlington, TX 76019-0015
{gonzalez,holder,cook@cse.uta.edu}

Abstract
We introduce the graph-based relational concept
learner SubdueCL. We start with a brief description of
other graph-based learning systems: the Galois lattice,
Conceptual Graphs, and the Subdue system. We then
present our new system SubdueCL and finally we
show some preliminary results of a comparison of
SubdueCL with the two Inductive Logic Programming
(ILP) systems Foil and Progol.

Introduction
We describe our current research on graph-based
concept learning based in the SubdueCL system.
Graph-based systems have the potential to be
competitive in the learning task, because they provide
a powerful and flexible representation that can be used
for relational domains. The main competitors of
graph-based systems are logic based systems,
especially Inductive Logic Programming (ILP)
systems, which have dominated the area of relational
concept learning. We are comparing our graph-based
approach with the ILP systems Foil and Progol. On the
theoretical side, we have studied other graph-based
systems, and we are applying the related theory to our
system. For example, we are working in a PAC
learning analysis of the SubdueCL system in order to
show that it is possible to learn using graph-based
systems with a polynomial number of training
examples.
The paper is organized as follows. The related work
section briefly describes the graph-based systems that
we have studied: Conceptual Graphs, the Galois lattice
and the Subdue system. The SubdueCL section
describes our graph-based concept learning system.
The empirical results section presents some
preliminary results from a comparison of SubdueCL
with the two ILP systems Foil and Progol. The last
section presents our conclusions and future work.

Copyright © 2001, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Related Work
In this section we briefly describe the role of ILP
systems as concept learners and then we present some
work related to graph-based concept learners.

ILP Systems
One approach to relational concept learning systems
is Inductive Logic Programming (ILP), which
represents data using First Order Predicate Calculus
(FOPC) in the form of Prolog logic programs. ILP
systems have been successful in structural domains:
Progol in the Chemical Carcinogenicity domain
(Srinivasan, King, Muggleton et al. 1997) and FOIL
(Cameron and Quinlan 1994) for learning patterns in
Hypertext domains (Slattery & Craven 1998). The
system presented in this paper uses graphs as its data
representation, which are flexible and descriptive.
Graphs can also describe FOPC using Conceptual
Graphs as introduced by John Sowa (Sowa 1992).

Conceptual Graphs
Conceptual Graphs (CGs) are a logic-based knowledge
representation derived from Semantic Networks and
Peirce Existential Graphs (Sowa 1992). Figure 1
shows an example of a Conceptual Graph expressing
“A cat is on a mat”. Square vertices are used to
represent concepts and oval vertices represent
relations. Edges are used to link concepts with
relations.

CGs are being used in different areas of Artificial
Intelligence like natural language processing,
information retrieval and expert systems. Conceptual
Graphs provide a powerful and rich knowledge
representation that has been used for concept learning
as presented in (Jappy and Nock 1998). Their work
describes a PAC Learning (Valiant 1985) analysis
using Conceptual Graphs to show its effectiveness for

Cat MatOn

Figure 1: A Conceptual Graph’s Example

Cat MatOnCat MatOn

Figure 1: A Conceptual Graph’s Example

Learning. With this model, the authors were able to
prove that it is possible to PAC learn Conceptual
Graphs for a restricted class that consists of
Conceptual Graphs with at most n vertices. From that
result they stated the theorem:

 “Let CGC
i
?)(? denote a conceptual graph

class. If both ||)(i
C ? and the complexity of the

projection test between elements of)(i
C ? are

polynomial in)(i? , then)(i
C ? is PAC

learnable”.

Where i? (? 1,? 2, and ? 3) are the richness
parameters that define the search space of the class of
conceptual graphs and correspond to the number of
relations, concepts and labels that are available to
form valid conceptual graphs. The projection test
corresponds to the test used to verify if an example
belongs to a class or not (a form of graph morphism).

Galois Lattice
Another technique used to accomplish the task of
concept learning using a graph representation is
drawn from the framework of a Galois Lattice
(Liquiere and Sallantin 1998). In the Galois Lattice
framework for learning, each node in the lattice
consists of a description graph and the set of examples
described by the graph. The lattice construction starts
with an empty lattice. In the first step, the description
of all the examples is added to the lattice. For the rest
of the levels, new concepts are created from each pair
of concepts that have already been found in the
previous step. The operation used to create a concept
from two other concepts is called generalization “? ”
and given two description graphs, produces the largest
description graph that is contained in both original
graphs. After a new concept is created, the examples
that it describes are associated with it (the union of the
examples associated to its parent graphs).
The search space for the Galois Lattice algorithm
consists of all the possible generalizations of the set of
training examples. In this case, the learning process
goes from specific to general. The complexity of the
Galois Lattice creation algorithm is O(n3p) (Liquiere
and Sallantin 1998), where n is the number of
examples and p is the size of the lattice. Liquiere and
Sallantin mentioned that they had an experimental
implementation called GRAAL, but that it could not
be used in practical cases yet and that it was only an
algorithm used for formal analysis. The Galois Lattice
method is restricted to be used only with the subclass
of Locally Injective Graphs (LIGs), because it was
proved that the generalization operation runs in
polynomial time for these types of graphs. If a

different method to create the Galois Lattice (that does
not use this generalization operation) is used, the
restricted classes (in this case LIG’s) might be
different. In the future work of the Galois Lattice
research, the authors mentioned that they would work
to prove that LIG is PAC learnable. They also hope to
make GRAAL a tool to work with practical
applications.

Subdue
Subdue (Cook, Holder 1994) is a Data Mining tool
that achieves the task of clustering using an algorithm
categorized as an example-based and relational
learning method. It is a general tool that can be
applied to any domain that can be represented as a
graph. Subdue has been successfully used on several
domains like CAD circuit analysis, chemical
compound analysis, and scene analysis (Cook, Holder
and Djoko 1996, Cook, Holder and Djoko 1995, Cook
and Holder 1994, and Djoko, Cook and Holder 1995).
Subdue uses a model evaluation method called
“Minimum Encoding” that is a technique derived from
the minimum description length principle (Rissanen
1989) and chooses as best substructures those that
minimize the description length metric that is the
length in number of bits of the graph representation.
The number of bits is calculated based on the size of
the adjacency matrix representation of the graph.
According to this, the best substructure is the one that
minimizes I(S) + I(G|S), where I(S) is the number of
bits required to describe substructure S, and I(G|S) is
the number of bits required to describe graph G after
being compressed by substructure S.
The main discovery algorithm is a computationally
constrained beam search. The algorithm begins with
the substructure matching a single vertex in the graph.
Each iteration the algorithm selects the best
substructure and incrementally expands the instances
of the substructure. The algorithm searches for the
best substructure until all possible substructures have
been considered or the total amount of computation
exceeds a given limit. Evaluation of each substructure
is determined by how well the substructure compresses
the input graph according to the heuristic being used.
The best substructure found by Subdue can be used to
compress the input graph, which can then be input to
another iteration of Subdue. After several iterations,
Subdue builds a hierarchical description of the input
data where later substructures are defined in terms of
substructures discovered on previous iterations.
Figure 2 shows a simple example of Subdue’s
operation. Subdue finds four instances of the triangle-
on-square substructure in the geometric figure. The

graph representation used to describe the substructure,
as well as the input graph, is shown in the middle.

Figure 1: SUBDUE’S Example.

SubdueCL
As we mentioned before, first-order logic can also be
represented as a graph, and in fact, first-order logic is
a subset of what can be represented using graphs
(Sowa 1992). Therefore, learning systems using
graphical representations have the potential to learn
richer concepts if they can handle the increased size of
the hypothesis space. The Subdue Concept Learner
(which we will refer to as SubdueCL) is an extension
to the Subdue system described before. The main
challenge in adding concept-learning capabilities to
Subdue was the inclusion of “negative” examples into
the process. Substructures that describe the positive
examples; but not negative examples, are likely to
represent the target concept. Therefore, the Subdue
concept learner accepts both positive and negative
examples in graph format.
Since SubdueCL is an extension to Subdue, it uses
Subdue’s core functions to perform graph operations,
but the learning process is different. SubdueCL works
as a supervised learner by differentiating positive and
negative examples using a set-covering approach
instead of graph compression. The hypothesis found
by SubdueCL consists of a set of disjunctions of
conjunctions (substructures), i.e., the concept may
contain several rules. SubdueCL forms one of these
conjunctions (rules) in each iteration. Positive
example graphs that are described by the substructure
found in a previous iteration are removed from the
graph for subsequent iterations.
The way in which SubdueCL decides if the
substructures (or rules) will be part of the concept or
not is also different from Subdue. SubdueCL uses an
evaluation formula to give a value to all the generated
substructures. This formula assigns a value to a
substructure according to how well it describes the
positive examples (or a subset of the positive
examples) without describing the negative examples.
Then, positive examples covered by the substructure

increase the substructure value while negative
examples decrease its value. In this formula the
positive examples that are not covered and the
negative examples covered by the substructure are
considered errors because the ideal substructure would
be one covering all the positive examples without
covering any negative example. The substructure value
is calculated as follows:

Errorvalue ?? 1

Using this formula, SubdueCL chooses rules that
maximize the substructure’s value and in this way it
minimizes the number of errors made by the
substructures used to form the concept.
We have two versions of SubdueCL. The first is an
inconsistent learner, which means that the
substructures of the hypothesis are allowed to cover
some negative examples. The second version is a
consistent learner, in which the substructures that
form the hypothesis are not allowed to cover any
negative example.

SubdueCL’s Algorithm
The SubdueCL algorithm is shown in figure 3. The
main function takes as parameters the positive
examples Gp, the negative examples Gn, the Beam
length (since SubdueCL’s search algorithm is a beam
search) and a Limit on the number of substructures to
include in its search. The main function makes calls to
the SubdueCL function in order to form the hypothesis
H that describes the positive examples. A substructure
is added to H each time that the SubdueCL function is
called. In case that the SubdueCL returns NULL, the
Beam is increased so that a larger search space can be
explored during SubdueCL’s search. Also, after
SubdueCL finds a substructure, the positive examples
covered by it are removed from the positive graph.

Figure 4 shows the SubdueCL function, which starts
building a ParentList creating a substructure for each

NegEgsPosEgs
redNegEgsCoveoveredPosEgsNotCError

##
##

?
??

Main(Gp, Gn, Limit, Beam)
H = {}
Repeat

Repeat
BestSub = SubdueCL(Gp, Gn, Limit, Beam)
If BestSub = {}
Then Beam = Beam * 1.1

Until (BestSub ? {})
Gp = Gp – { p ? Gp | BestSub covers p }
H = H + BestSub

Until Gp = {}
Return H

End
Figure 3: SubdueCL’s Main Function

Main(Gp, Gn, Limit, Beam)
H = {}
Repeat

Repeat
BestSub = SubdueCL(Gp, Gn, Limit, Beam)
If BestSub = {}
Then Beam = Beam * 1.1

Until (BestSub ? {})
Gp = Gp – { p ? Gp | BestSub covers p }
H = H + BestSub

Until Gp = {}
Return H

End
Figure 3: SubdueCL’s Main Function

object
shape

shape

on

triangle

square

object

4 instances of

Vertices: objects or attributes
Edges: relationships

vertex in the graph with a different label but keeping
only as many substructures as the length of the Beam
The “mod Beam” qualifier means that the lists keep
only as many substructures as the Beam size. Each of
those substructures in the parent list is then expanded
by one vertex or one vertex and an edge in all possible
ways and evaluated according to the formula presented
before. Those substructures that cover at least one
positive example are kept in the BestList but limited to
the Beam size. A ChildList keeps all the substructures
that were obtained from the expansion of the
substructures in the ParentList and is also limited by
the Beam size. The Limit parameter is used to expand
as many substructures as the Limit, but if the BestList
is empty after expanding Limit substructures from the
ParentList, the limit is increased until one is found.
The SubdueCL function returns the BestList
containing all the substructures that at least cover one
positive example. It is important to mention that all
the lists are ordered according to the substructures
values. The only variation of the Consistent version of
the SubdueCL algorithm is that it only considers
substructures covering no negative examples in the
BestList.

Learning with Graphs
Although the search space that SubdueCL considers to
learn from graphs is exponential, empirical results
show that it is able to learn without exhaustively
reviewing it. Empirical experiments in the following
section show this. We are working in a PAC Learning
analysis of SubdueCL to support this statement. Using
graphs as the knowledge representation for learning
has several advantages, among them we have that
graphs are a very expressive and comprehensible

representation. Another advantage is that the
hypothesis space consists of connected graphs,
SubdueCL searches using the relations that connect
concepts, this makes SubdueCL’s approach good for
both non-relational and relational domains.

Empirical Results
We are now in the testing phase of our graph-based
concept learner, and as part of those tests we are
comparing it with the two ILP systems FOIL and
Progol. Until now we have tested it in five domains
but we will continue with more and different types of
domains. Five non-relational domains were used to
compare FOIL, Progol and SubdueCL: golf, vote,
diabetes, credit, and Tic-Tac-Toe. The golf domain is
a trivial domain used to demonstrate machine learning
concepts, typically decision-tree induction (Quinlan
1986). The vote domain is the Congressional Voting
Records Database available from the UCI machine
learning repository (Keogh et. al 1998). The diabetes
domain is the Pima Indians Diabetes Database, and
the credit domain is the German Credit Dataset from
the Statlog Project Databases (Keogh et. Al 1998). The
Tic-Tac-Toe domain consists of 958 exhaustively
generated examples. Positive examples are those
where “X” starts moving and wins the game and
negative examples are those where “X” looses or the
game is tied. The examples are represented by the
position on the board and the value for that position.
Therefore the possible values for each position are
either “X” or “O”. The three systems were able to
learn the concept correctly, that is; they learned the
eight configurations where “X” wins the game. Table
1 shows the percent accuracy results on the non-
relational domains. The results show that SubdueCL is
competitive with Foil and Progol in these types of
domains.

Table 1: Percent accuracy results on non-relational domains

 Golf Vote Diabetes Credit TTT
FOIL 66.67 93.02 70.66 66.16 100.00
Progol 33.33 76.98 51.97 44.55 100.00
SubdueCL 66.67 94.88 64.21 71.52 100.00

As for relational domains we are working with the
chess, and carcinogenesis domains. The Chess domain
consists of 20,000 examples of row-column positions
for a white king, white rook and black king such that
the black king is in check (positive) or not (negative).

WKC

WKR

WRR WRC

BKC

BKR

pos

adj

adj

pos

adj

adj

pos eq
0 1 2

0

1

2

WK

WR

BK

(a) (b)

lt

lt

lt

lt

SubdueCL(Gp, Gn, Limit, Beam)
ParentList = (All substructures of one vertex) mod Beam
Repeat

BestList = {}
Exhausted = FALSE
While ((Limit > 0) or (ParentList ? {}))

ChildList = {}
Foreach substucture in ParentList

C = Expand(Substructure)
BestList = (BestList ? CoverPos(C)) mod Beam
ChildList = (ChildList ? C) mod Beam
Limit = Limit – 1

EndFor
ParentList = ChildList mod Beam

EndWhile
If BestList = {}

Then Exhausted = TRUE
Else Limit = Limit * 1.2

Until ((BestList ? {}) or (exhausted = TRUE))
Return first(BestList)

End

Figure 4: SubdueCL Function

SubdueCL(Gp, Gn, Limit, Beam)
ParentList = (All substructures of one vertex) mod Beam
Repeat

BestList = {}
Exhausted = FALSE
While ((Limit > 0) or (ParentList ? {}))

ChildList = {}
Foreach substucture in ParentList

C = Expand(Substructure)
BestList = (BestList ? CoverPos(C)) mod Beam
ChildList = (ChildList ? C) mod Beam
Limit = Limit – 1

EndFor
ParentList = ChildList mod Beam

EndWhile
If BestList = {}

Then Exhausted = TRUE
Else Limit = Limit * 1.2

Until ((BestList ? {}) or (exhausted = TRUE))
Return first(BestList)

End

Figure 4: SubdueCL Function

Figure 5. An example from the chess domain. (a) Board
configuration and (b) SubdueCL’s graphical representation
of the example.

Therefore, if white’s turn is next, then the positive
examples are illegal configurations. Figure 5b shows
Subdue’s representation for the chess domain example
in figure 5a. Figure 6 shows two substructures found
by SucdueCL in the chess domain. Each piece is
represented by two vertices corresponding to the row
and column of the piece, connected by a position
relation (e.g., WKC stands for white king column).
Results in the Chess domain show 97% accuracy for
SubdueCL, 99% for FOIL, and 86% for Progol. Due to
computational constraints only a subset (5000
examples) of the entire database was used for the 10
fold cross validation. The accuracy results are 99.74%
for Progol, 99.34% for FOIL, and 99.74% for
SubdueCL. In terms of number of rules, Progol
learned 5 rules, FOIL learned 11 rules, and Subdue
learned 7 rules (substructures).

Figure 6. Two of eleven substructures found by SubdueCL
in the chess domain.

Figure 7. Two of the substructures found by SubdueCL in

the cancer domain.

The carcinogenesis database is composed of
information about chemical compounds and the results
of laboratory tests made to rodents in order to
determine if the chemical induces cancer to them or
not. The information used for this experiment was
taken from the web site:
http://web.comlab.ox.ac.uk/oucl/research/areas/machle
arn/PTE/. This database was built for a challenge to
predict the result of the tests using machine-learning
techniques. The dataset contains 162 positive
examples and 136 negative examples. Figure 7 shows
two substructures found by SubdueCL in preliminary
results in the cancer domain. The first substructure
says that a compound that has a positive
“drosophila_slrl” test causes cancer. The second
substructure says that a compound that has a positive
“chromaberr” test and also has an “amine” group
causes cancer.

Conclusions
We have described three approaches to graph-based
concept learning: conceptual graphs, the Galois
lattice, and SubdueCL. Preliminary theoretical
analyses indicate that a constrained version of
SubdueCL may PAC learn, but more analysis is
necessary. Empirical results indicate that SubdueCL is
competitive with the ILP systems FOIL and Progol.
Therefore, graph-based relational concept learning is
competitive with, and potentially more expressive than
logic-based approaches. Future experimentation will
compare the two approaches on controlled artificial
domains, the cancer domain, and graph
representations of the web, where we can learn
hyperlink-based relational concepts distinguishing two
sets of web pages.

References
Cameron, R. M. and Quinlan, J. R. Efficient top-down
induction of logic programs. SIGART, 5(1):33-42, 1994.
Cook, D. J.; Holder, L. B. Substructure discovery using
minimum description length and background knowledge.
Journal of Artificial Intelligence Research, 1:231-255, 1994.
Cook, D. J.; Holder, L. B.; and Djoko, S. “Knowledge
Discovery from Structural Data,” Journal of Intelligence and
Information Sciences, Vol. 5, Number 3, pp. 229-245, 1995.
Cook, D. J.; Holder, L. B.; and Djoko, S. Scalable discovery
of informative structural concepts using domain knowledge.
IEEE Expert, 11(5):59-68, 1996.
Jappy. and Nock, “PAC Learning Conceptual Graphs,” Int.
Conference in Conceptual Structures, pp. 303 – 318, 1998.
Keogh, E.; Blake, C.; and Merz, C. J. UCI repository of
machine learning databases, 1998.
Liquiere, M. and Sallantin, J. “Structural Machine Learning
with Galois Lattice and Graphs,” Proceedings of the
Fifteenth International Conference in Machine Learning,
Morgan Kaufmann, pp. 305-13, 1998.
Muggleton, S. Inverse entailment and Progol. New
Generation Computing, 13:245-286, 1995.
Quinlan, J. R. Induction of decision trees. Machine
Learning, 1(1):81-106, 1986.
Rissanen, J. Stochastic Complexity in Statistical Inquiry,
World Scientific Publishing Company, 1989.
Sowa, J., “Conceptual graphs summary,” Current Research
and Practice, chapter 1, pp 3-52, Ellis Horwood, 1992.
Srinivasan; Muggleton; King; and Sternberg, “Mutagenesis:
ILP Experiments in a Non-Determinate Biological Domain,”

compound

amine

p
chromaberr

has_group

compound p
drosophila_slrl compound

amine

p
chromaberr

has_group

compoundcompound

amine

p
chromaberr

has_group

compound p
drosophila_slrlcompoundcompound p
drosophila_slrl

WRR

BKC

BKR

pos

eq

WKC

WKR BKC

BKR

adj

adj

pos

Proceedings of the Fourth Inductive Logic Programming
Workshop, 1994.
Valiant, L. “Learning Disjunction of Conjunctions,”
International Joint Conference on Artificial Intelligence pp.
560 – 566, 1985.

