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A B S T R A C T 

Open-world AI is characterized by sudden novel changes in a domain that are outside the scope of the training data, or the deployment of an agent 
in conditions that violate the implicit or explicit assumptions of the designer. In such situations, the AI system must detect the novelty and adapt in 
a short time frame. In this introduction to the special issue on open-world AI, we discuss the background and motivation for this new research area 
and define the field in the context of similar AI challenges. We then discuss recent research in the area that has made significant contributions to 
the field. Many of those contributions are reflected in the papers of this special issue, which we summarize alongside more traditional approaches 
to open-world AI. Finally, we discuss future directions for the field.

1. Background and motivation

There are more things in heaven and earth, Horatio, 
Than are dreamt of in your philosophy. 
(Hamlet 1.5.167–168)

AI systems have become increasingly successful on tasks for which there is a well-understood domain model and reasoning ap-

proach, or significant amount of training data and time available, and the underlying assumptions of the task do not vary significantly 
over time. Recent examples include the application of deep convolutional networks on image classification [1], deep reinforcement 
learning on games [2], and large language models on knowledge retrieval and reasoning [3]. Longer standing approaches often taken 
for granted include routing and scheduling, e.g., where AI software allows UPS to save $300 to $400 million annually in fuel, wages 
and vehicle running costs alone [4], tax software that millions of people rely on annually, and NASA mission software [5]. Yet, when 
the tasks change rapidly or assumptions are violated, AI systems can fail in scenarios where humans can robustly adapt [6–9]. Specifi-

cally, the AI system might be deployed in conditions that violate the implicit or explicit assumptions of the designer or that are outside 
the scope of the training data. An example in the domain of image classification is the open-set scenario, in which previously-unseen 
classes appear (e.g., a new disease in medical images [10], or a new species in wildlife images [11]). A non-open-world AI system 
incorrectly classifies the new image as one of its known classes. Preferably, the system would first detect the presence of a novel 
class and then adapt its model to distinguish better the new class from others going forward. Another example is the appearance of 
novel adversarial behaviors in games (e.g., cyclic attacks against deep Go models [12]). The commensurate decrease in game-play 
performance assists with the detection of novelty, but adaptation to combat the strategy is challenging given the lack of experience 
with the strategy combined with the need for quick adaptation to regain performance or even to exploit the novel behavior. Such 
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adversarial attacks are becoming increasingly difficult to anticipate given the adversary’s ability to use AI systems to find weaknesses 
in existing AI systems [13].

The challenges demonstrated above are the hallmarks of Open-World AI: sudden changes in the domain that impact performance 
due to use of the agent in conditions that violate design assumptions or that are outside the scope of training data, and the need for 
detection and adaptation in a short time frame. In addition, the agent would ideally characterize the novelty, which can assist in 
the selection of an appropriate adaptation technique. Open-world AI systems need mechanisms to deal quickly with novel situations, 
where collecting and retraining on large amounts of data is costly, if not impossible. The development of such mechanisms will have 
a significant impact on the capability and robustness of AI systems as we enter an era of AI systems combining general intelligence 
and adaptive decision making that “could enable fully autonomous decision-making in novel or unpredictable situations, such as 
coordinating multiple unmanned systems in complex, dynamic environments.” [14]

This special issue presents several approaches for designing AI systems that adapt effectively to open-world novelty along with 
techniques for evaluating such systems. First, we provide a more precise definition of open-world AI and the challenges presented 
by open worlds. Then, we discuss the Science of Artificial Intelligence and Learning for Open-world Novelty (SAIL-ON) program that 
facilitated significant advances in open-world AI. Next, we discuss approaches to open-world AI with a focus on the papers in this 
special issue. Finally, we discuss future directions for the field.

2. Open-world AI

Open-world AI is characterized by sudden and unannounced changes in the environment that degrade an agent’s performance 
due to deployment or use in conditions or environments unanticipated by the designers or not covered by training data. In order to 
regain acceptable performance, the agent must detect, characterize and accommodate the novelty with limited time and experience. 
This differs from environments in which the agent has sufficient time and experience to retrain from scratch or adapt over the 
long term, where techniques such as reinforcement learning have been successful. This also differs from non-real time adaptation 
mediated by developers. For example, autonomous driving collects data from large numbers of initially equivalent agents and which 
then results in retraining and version updating mediated by developers. By contrast, in open-world AI, the agents must recognize 
and adapt to novelty by themselves and in real time. New approaches are needed to rapidly repair expertise with limited experience, 
drawing from multiple paradigms, such as model diagnosis and repair, plan monitoring, meta-cognition, problem reformulation, 
change detection, theory revision, scientific discovery, and transfer of learned expertise. Of particular interest are approaches that 
span both perceptual and interactive settings and that support both reactive and deliberative behavior. In addition to the development 
of new approaches, research is needed into the sources and classes of novelty, methods for generating and evaluating approaches, 
and theoretical frameworks for understanding open-world AI.

The term “open world” has been used in the literature to describe various specializations of open-world AI. For example, “open 
world” has been used to describe out of distribution learning tasks [15] and learning in the presence of previously-unseen classes 
[16]. Other terms have been proposed to generalize over these tasks, such as “open-environment machine learning” [17]. But “open 
world” has been used in a more general context in the last few years [18,19] to also encompass the challenges mentioned above, 
leading to integrated approaches [20] and novel theoretical frameworks [21,22].

Open-world AI is a critical real-world capability needed by AI systems to adapt to novel environments. The timeliness of the topic 
prompted the 2022 AAAI Spring Symposium on “Designing Artificial Intelligence for Open Worlds” that included 22 papers and other 
talks and panels on the topic [23]. Other special issues have appeared on this topic. The Pattern Recognition journal’s special issue 
on “Open World Robust Pattern Recognition” [24] focuses on pattern recognition, which is a subset of the types of open-world tasks 
confronting AI systems, in particular, decision-making and planning tasks. The Neural Networks journal’s special issue on “Lifelong 
Learning” [25] is related in terms of the need to learn new tasks and adapt behavior to changing tasks over time, but many open-world 
scenarios require immediate adaptation, and approaches encompass a much larger set of paradigms beyond just neural networks. The 
need for advances in open-world AI is highlighted in the area of defense by the Defense Advanced Research Project Agency program 
on the Science of Artificial Intelligence and Learning for Open-world Novelty (SAIL-ON), which resulted in significant advances in 
the field.

3. SAIL-ON

For AI to be used widely for defense applications, the ability to recognize and act in novel contexts is essential, as is a rigorous 
engineering methodology for scaling to many diverse applications. For this reason, the Defense Advanced Research Project Agency 
(DARPA) formulated and executed the Science of Artificial Intelligence and Learning for Open-world Novelty (SAIL-ON) program, 
starting in 2019 and finishing in 2023 [26]. The SAIL-ON program had three goals: (1) develop scientific principles to quantify and 
characterize novelty in open-world domains; (2) create AI systems that act appropriately and effectively in open-world domains; and 
(3) demonstrate and evaluate these systems in multiple domains. The SAIL-ON program wanted to ensure that novelties were truly 
unknown and unknowable to the agent and its designer. Frequently, the agent evaluator and agent designer had been one and the 
same [27], which means that novelties are not truly unanticipated. These experiments misrepresent the open world capabilities of the 
agent and often lead to over-engineered AI/ML applications failing when deployed to the real-world [28,29]. The program addressed 
these issues by (i) instituting a firewall between the evaluators and the agent designers and (ii) requiring the agents to be evaluated 
in multiple domains. The program selected ten agent design teams and six evaluation teams. Papers from three of the agent design 
teams [30–32] and one of the evaluation teams [33] appear in this special issue. Many of the results from the SAIL-ON program 
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Table 1
The open-world novelty hierarchy developed under the SAIL-ON program describing different categories and types of novelties with examples from chess.

Category Type Description Chess Example

Single Entities Objects New classes, attributes, or representations of non-volitional 
entities.

Number of board columns increased.

Agents New classes, attributes, or representations of volitional 
entities.

Opponent uses new opening strategy.

Actions New classes, attributes, or representations of external agent 
behavior.

Opponent takes more time per move.

Multiple Entities Relations New classes, attributes, or representations of static 
properties of the relationships between multiple entities.

Rooks and bishops swap starting positions.

Interactions New classes, attributes, or representations of dynamic 
properties of behaviors impacting multiple entities.

Capturing opponent’s piece removes agent’s piece.

Complex Phenomena Environment New classes, attributes, or representations of elements 
independent of specific entities.

All pieces pushed forward one square every three 
turns.

Goals New classes, attributes, or representations of external agent 
objectives.

One of each type of piece must be captured to 
win.

Events New classes, attributes, or representations of series of state 
changes that are not each the direct result of volitional 
action by an agent.

Captured pieces reenter the game after delay.

Fig. 1. The SAIL-ON experiment methodology, where the SAIL-ON agent and a non-novelty-aware Baseline agent are given a series of instances. At some point, novelty 
is introduced into the instances, and the SAIL-ON agent is assessed according to its ability to recover performance and detect novelty. While a Baseline agent is unlikely 
to recover, a Robust agent can be resilient to the novelty. Metrics (in bold) measure various aspects of the agent’s novelty detection and adaptation based on pre and 
post performance (see Table 2).

were published at the AAAI Spring Symposium on Designing Artificial Intelligence for Open-Worlds [23] and the SAIL-ON GitHub 
repository [34].

The SAIL-ON program achieved several major accomplishments in the field of open-world AI. The evaluation teams created 
novelty generators in one or more domains, including interactive tasks (Angry Birds, CartPole, MineCraft, Monopoly, ViZDoom) and 
perceptual tasks (image recognition, activity recognition). Interactive tasks provide goals to the agent, allow the agent to affect the 
environment through actions, and facilitate exploration in the environment. Perceptual tasks provide feedback to the agent regarding 
perception performance, but do not support agent interaction. The program also developed a separate military-relevant domain for 
evaluating AI agents [35,36]. The design teams developed several different types of agents to detect and accommodate novelty, 
including capabilities in perception, learning, planning, reasoning, and combinations. The program sought to formalize different 
categories and types of novelty, called the novelty hierarchy. The hierarchy underwent several revisions, which resulted in a formal 
framework for characterizing novel environment transformations [37]. The final version of the novelty hierarchy is shown in Table 1
with examples from the domain of chess. By the end of the program each AI agent had to handle all eight different types of novelty 
for three different domains and the military-relevant domain. In the final phase of the program, the agents were also expected to 
characterize the novelties according to the novelty hierarchy in a language agreed upon between the agent and domain teams.

The SAIL-ON program developed an experiment methodology and set of metrics to assess different aspects of an agent’s ability to 
detect and adapt to novelty [38]. Fig. 1 shows the progress of an experiment trial in the SAIL-ON methodology. Agents are assumed to 
have done some pretrial model learning on non-novel instances from the domain. A state-of-the-art non-novelty-aware Baseline agent 
is also trained on the pretrial data. A trial begins with non-novel data presented to both the SAIL-ON and Baseline agents. The relevant 
task performance (e.g., accuracy, percent games won) is collected throughout the trial. At some point during, unknown to the agent, 
novelty is introduced. Typically, both the Baseline and SAIL-ON agents experience a decline in performance. The Baseline agent, 
possessing no novelty adaptation apparatus, does not recover, but a novelty-robust agent will regain performance, ideally reaching, 
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Table 2
SAIL-ON performance metrics used for evaluating novelty detection (FN-CDT, CDT, FP) and reaction (ONRP, 
INRP, OPTI, IPTI, APTI). Metrics marked with ↓ indicate that lower values are better.

Metric Description 
FN-CDT ↓ Number of instances before novelty detection (for correctly detected trials). 
CDT Fraction of trials that are correctly detected trials (CDTs). 
FP ↓ Fraction of trials with at least one false positive (FP). 
ONRP Overall Novelty Reaction Performance (NRP) relative to baseline pre-novelty performance. 
INRP NRP for the first 10% of instances after novelty introduction. 
OPTI Overall Performance Task Improvement (PTI) across all post-novelty instances. 
IPTI Initial PTI based on the first 10% of post-novelty instances. 
APTI Asymptotic PTI based on the last 10% of post-novelty instances. 

or even better, exceeding pre-novelty performance levels. Fig. 1 also depicts a Robust agent, representing non-adaptive agents that are 
resilient to the novelty, which the program found to occur in some cases due to the agent’s approach being independent of the details 
of the novelty. The SAIL-ON agent is also called upon to identify the presence of novelty as soon as possible after introduction, as 
well as characterize the novelty using the agent’s internal representation of the domain. Trials are repeated many times with different 
novelty introduction points during the trial to ensure statistical validity.

The SAIL-ON program developed several metrics to assess different aspects of agent performance, as outlined in Table 2. These 
metrics are domain-independent functions of the domain and task dependent metrics that are typically used to evaluate performance of 
AI agents. The first three metrics evaluate the agent’s ability to detect novelty. One key aspect of detection is identifying a Correctly 
Detected Trial (CDT) - a scenario where the agent detects novelty only after it has been introduced, not before. The CDT metric 
quantifies the fraction of trials that meet this criterion. The FN-CDT detection metric measures the number of instances that pass 
after novelty is introduced before the agent successfully detects it. This is calculated only for trials where novelty is eventually 
recognized (CDTs). The third detection metric, FP (False Positives), determines the proportion of trials in which the agent falsely 
detects novelty before it actually occurs. Collectively, these three metrics capture both the accuracy and speed of novelty detection. 
Ideally, a well-performing agent should achieve a high CDT score while keeping FN-CDT and FP scores low.

The remaining five metrics assess how well the agent adapts to novelty in terms of its task performance. A distinctive feature of 
these metrics is that they evaluate the novelty-aware SAIL-ON agent’s performance relative to a state-of-the-art, non-novelty-aware 
Baseline agent. Before novelty is introduced, the novelty-aware agent should perform at least as well as the Baseline agent. After 
novelty is introduced, both agents typically experience a performance drop. However, the expectation is that the novelty-aware agent 
will adapt and eventually surpass the non-novelty-aware Baseline agent.

Two key metrics, ONRP (Overall Novelty Reaction Performance) and INRP (Initial Novelty Reaction Performance), quantify this 
adaptation. The NRP metric is defined as the ratio of the SAIL-ON agent’s performance after novelty is introduced (post-novelty) to 
the Baseline agent’s performance before novelty is introduced (pre-novelty):

NRP =
𝑃𝛼,post

𝑃𝛽,pre

(1)

where 𝑃𝛼 represents the SAIL-ON agent’s performance and 𝑃𝛽 represents the Baseline agent’s performance. ONRP measures this ratio 
over all post-novelty instances, whereas INRP focuses on the first 10% of post-novelty instances.

Additionally, three Performance Task Improvement (PTI) metrics assess the SAIL-ON agent’s relative advantage over the Baseline 
agent post-novelty. While NRP compares pre- and post-novelty performance, PTI only evaluates post-novelty performance. PTI is 
defined as:

PTI =
𝑃𝛼,post

𝑃𝛼,post + 𝑃𝛽,post

(2)

which represents the fraction of post-novelty performance attributed to the SAIL-ON agent. PTI is further categorized into: OPTI 
(Overall PTI) computed over all post-novelty instances, IPTI (Initial PTI) based on the first 10% of post-novelty instances, and APTI 
(Asymptotic PTI) based on the last 10% of post-novelty instances.

Three major evaluations were conducted during the SAIL-ON program, each one adding additional novelty types and domains to 
the agent requirements. While a complete review of the results is beyond the scope of this article, several lessons were learned from 
the program. First, robust accommodation can be achieved by a mix of adaptability and resilience, as depicted by the robust agent in 
Fig. 1. Reaction performance does not directly depend on accurate novelty detection. Therefore, agents must trade-off the resources 
necessary to do detection and accommodation and find a balance between exploring the domain for novelty and exploiting the 
novelty. Second, although agent teams developed methods for novelty characterization, this capability did not significantly enhance 
an agent’s ability to adapt to the novelty. Third, interactive domains are fundamentally different from perceptual domains in terms 
of detecting and adapting to novelty. Agents in interactive domains are able to actively seek information and decide whether to 
explore or exploit. Agents in perceptual domains require feedback from the domain, e.g., requesting shared labels of novel images. 
This contrasts with interactive domain agents for which feedback is received as they act. Fourth, the SAIL-ON evaluation paradigm 
of separating domains from agents (e.g., hiding novelty and schemes for generating novelties) makes it difficult for peer reviewers 
to verify results but is essential to build open-world agents. Fifth, there is no clear way to measure the difficulty of task a priori, i.e., 
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there is no clear set of independent variables that determine a task’s difficulty [39]. Also, the difficulty of a task depends heavily on 
the abilities of the agent performing the task. Still, identifying characteristics of domains and novelties that fundamentally increase 
the difficulty of adaptation, or increase the required complexity of the agent, is an interesting future direction [40].

4. Approaches

In this section we discuss existing methods that address some aspects of open-world AI challenges, but fail to address others. 
We then discuss the specific approaches proposed in the special issue articles. One existing approach to tackle open-world settings 
is through reinforcement learning (RL), which has demonstrated remarkable success in game-playing tasks (e.g., [41]). However, 
RL methods typically require millions of iterations, making them impractical for real-world scenarios where large-scale simulations 
are unavailable. Open-world AI emphasizes limited exposure to the novel environments and the need for rapid adaptation. Several 
approaches have been proposed based on a system’s ability to modify itself to overcome some gap in its expertise for handling 
open-world settings. Model-based diagnosis and repair [42] can modify an agent’s expertise to accommodate novelty, though it is 
designed for handling specific cases rather than developing general models. Integrated planning, execution, and monitoring [43] 
enables agents to dynamically generate and adjust plans to achieve objectives. Metacognition [44] analyzes cognitive processes to 
identify gaps or errors in knowledge. Problem reformulation [45] modifies state and operator representations to improve task feasi-

bility. Change detection in streaming data [46] is primarily used for classification tasks in dynamic environments. Theory revision 
[47] refines predictive models based on new training data. Scientific discovery [48] uncovers underlying laws and models to ex-

plain observed phenomena. Transfer learning [49,50] facilitates the adaptation of previously acquired expertise to new contexts 
once a change has been identified. While these approaches are valuable, none alone are sufficient to fully address open-world AI. 
However, a combination of these techniques, structured within an integrated agent architecture, holds promise for a more effective 
solution.

The papers in the special issue mostly focus on methods for detection and adaptation in open-world environments, although 
one paper focuses on the challenge of evaluating open-world AI systems. The first two papers focus on open-world classification. 
Zhao et al. [51] consider the scenario in which unknown classes exist in the domain, and instances of these classes are incorrectly 
classified using known class labels, i.e., unknown unknowns. Their approach first detects the presence of unknown unknowns using a 
rejection model [52] to identify unknown instances, then identifies new features that can better distinguish unknown instances from 
known instances, and then learns an augmented model that better classifies these instances. Both empirical and theoretical analyses 
confirm the superiority of their approach for the unknown unknowns scenario. Continual or lifelong learning [53] is one approach 
for adapting to change, although the change is typically more gradual and still within the scope of abilities of the AI agent. Kim et 
al. [54] extend the continual learning approach into the open-world scenario to accommodate new items in the image classification 
task. They further show both theoretically and empirically that the closed-world detection and adaptation techniques are necessary 
for good performance in open-world settings.

The next three papers focus on robust AI approaches to handling novelty in open-world settings. Goel et al. [30] take a more robust 
approach to a novelty-aware AI agent using a framework that combines symbolic planning, counterfactual reasoning, reinforcement 
learning, and deep computer vision, where violations of planner expectations initiate detection and adaptation. The framework 
synergizes lower-level perception and learning with higher-level planning and reasoning, and thus can be applied to a broad spectrum 
of domains. Extensive empirical evaluation demonstrates the strengths of the approach in a Minecraft-like domain called PolyCraft 
[55]. Mohan et al. [31] propose the HYDRA framework that augments a planning module with visual reasoning, task selection and 
action execution modules that allow the agent to monitor its own behavior and detect a divergence from expectations. HYDRA 
then identifies model changes that can realign the agent with observed behavior and adapt to novel situations. The framework is 
evaluated on numerous discrete-continuous domains, including PolyCraft, a three-dimensional cartpole world [56], and an Angry 
Birds novelty generator called Science Birds [57]. Loyall et al. [32] propose the Coltrane planning based system that is designed 
to rapidly detect, characterize and adapt to novelty, and continues to improve over time as more observations of the environment 
become available. Major components of their approach include using probabilistic program synthesis to learn minimal changes to 
the internal domain model to characterize the novelty, and a Monte Carlo tree search (MCTS) [58] that finds new heuristics and 
feature weighting to improve planning performance post-novelty in the expanded domain model. They demonstrate their approach 
on several novel changes to the Monopoly game [59] and the VizDoom domain [60,61].

The next two papers focus on more task-specific approaches. For the task of knowledge-based visual reasoning, in which the AI 
system has to both understand and answer questions about visual scenes, the appearance of new objects and concepts in the scenes is 
a difficulty challenge. Zheng et al. [62] propose a method for open-world knowledge representation learning (OWKRL) that transfers 
previously-learned knowledge to new scenes using a novel graph-based self-cross transformer network that learns how to transfer 
attention across knowledge graph networks to identify new concepts and relationships in a novel visual scene. Experimentation 
validates the approach and suggests its applicability to related tasks, such as science and medical question answering. Transportation 
services (e.g., public transport, ride sharing) and their inter-operation represent a complex domain that can be significantly impacted 
by novel events, such as natural disasters or epidemics. Wang et al. [63] propose an open-world spatio-temporal network (OWST-

Net) that can adapt to unexpected changes to the multi-modal network of mobility services. They validate their approach on several 
real-world mobility datasets and show superior performance over state-of-the-art methods.

Evaluating open-world AI systems is challenging, because true open-world tasks are those we have not yet considered, even in 
a simulated setting. Still some progress has been made in designing systems for generating novelties and in designing metrics for 
assessing agent performance. In the final paper of the special issue, Pinto et al. [33] developed the NovPhy system that generates 
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physics-based novelties in the Science Birds simulator [57] and evaluated several AI agents using these novelties. They also assessed 
human performance on these novel tasks. Results found that despite improvements in AI agents’ abilities to detect and adapt to 
novelties, humans are still superior.

5. Future directions

Open-world AI remains one of the most significant challenges in artificial intelligence, requiring systems that can dynamically 
adapt to unexpected changes, novel scenarios, and evolving environments. As AI applications extend beyond controlled, well-defined 
domains into complex, real-world settings - such as autonomous robotics, cybersecurity, and adaptive healthcare - the need for more 
robust, generalizable, and self-improving AI systems becomes increasingly critical. Future research in this area is likely to focus on 
several key advancements.

One promising direction is the development of AI architectures that integrate multiple learning paradigms to handle novelty 
detection, adaptation, and knowledge transfer more effectively. Current approaches often rely on either deep learning or symbolic 
reasoning, but combining neuro-symbolic AI with meta-learning and continual learning may provide a more holistic approach to 
handling novelty. Hybrid models could allow AI systems to detect novelties, assess their significance, and modify their internal 
representations accordingly, leading to better generalization across a wide range of tasks. Some of the papers in this special issue, 
and further work from the SAIL-ON program [64–69], are taking this hybrid approach, but more work is needed to explore the space 
and identify best practices.

Another important area of focus is few-shot and zero-shot adaptation [70]. Real-world environments do not provide the vast 
amounts of labeled training data that AI models typically require. Future AI systems must become proficient at recognizing novel 
situations with minimal prior experience. Self-supervised learning and unsupervised reinforcement learning are expected to play a 
larger role in enabling agents to infer patterns, learn new rules on the fly, and generalize across different domains without relying on 
explicit supervision.

Catastrophic forgetting [71] is a significant challenge in open-world AI, which refers to the tendency of AI systems to abruptly and 
drastically forget previously learned information upon learning new information. This phenomenon poses a substantial obstacle for AI 
systems that must adapt continuously to new data and tasks in dynamic environments. To mitigate catastrophic forgetting, researchers 
have proposed various strategies, e.g., regularization techniques to prevent significant updates to previously acquired knowledge [72], 
and replay techniques to integrate data from past tasks alongside new data to reinforce earlier learning [73]. Catastrophic forgetting 
has also been addressed in the context of lifelong learning as an emphasis in the Lifelong Learning Machines (L2M) program [74], 
highlighting both algorithmic approaches [75] and biological underpinnings [76]. Given open-world AI’s emphasis on sudden change 
and quick response, more robust approaches to catastrophic forgetting are essential for advancing the field.

Additionally, the field is moving towards AI systems that engage in self-explanation and causal reasoning to enhance transparency 
and adaptability. Many current deep learning models struggle with interpretability, making it difficult to understand how they react 
to novelty. Future AI should not only be able to identify when it encounters something unexpected but also characterize why a 
situation is novel and what changes need to be made to adapt successfully. This capability is particularly relevant in safety-critical 
applications, such as autonomous vehicles and medical diagnosis, where understanding AI decisions is just as important as achieving 
high accuracy.

Large Language Models (LLMs) can significantly enhance open-world AI by enabling real-time knowledge integration, supporting 
adaptive reasoning, facilitating agent communication, and improving explainability. Future research should focus on hybrid AI archi-

tectures that combine LLM-driven reasoning with real-time sensor-based adaptation, allowing AI systems to not only react to novel 
situations but also understand and explain them. As AI continues to advance, LLMs will play an increasingly critical role in making 
open-world AI systems more intelligent, flexible, and human-aligned.

Finally, open-world AI must become more adept at collaborative learning and knowledge sharing. This is particularly useful in 
dynamic, interconnected environments such as disaster response, industrial automation, military engagements, and global cyber-

security, where multiple AI systems must coordinate in real-time to handle unforeseen challenges. The Shared-Experience Lifelong 
Learning (ShELL) program [77] advanced this area in the context of lifelong learning [78]. Future research should explore dis-

tributed AI networks where multiple AI agents can share knowledge, exchange learned experiences, and collectively adapt to new 
challenges.

Overall, the next generation of open-world AI will need to move beyond static models trained on predefined datasets and towards 
truly autonomous learning systems capable of understanding and reasoning about novel situations in real time. By integrating ad-

vances in meta-learning, causal inference, neuro-symbolic reasoning, and collaborative AI, researchers can develop more adaptive, 
reliable, and generalizable AI systems that thrive in complex and unpredictable environments.
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