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Abstract

To be robust, AI systems need to quickly detect and effectively react to novelties
in their environments. Novelty is characterized by a sudden change in the environ-
ment where this is little time to collect new data and retrain. This is particularly
true for smart home systems, where novelties abound and accurate handling
is required for reliable health monitoring and home automation that can react
quickly and effectively to the novelties. In this paper, we introduce a Bayesian
nonparametric method, called OTACON, for novelty handling. OTACON finds
surprising situations using change point detection and adapts accordingly. To
evaluate this proposed approach, we design a smart home novelty generator that
embeds novelties of varying type and difficulty into CASAS real-world smart
home datasets. We observe that OTACON outperforms a state-of-the-art method
for eight types of novel scenarios, in some cases even outperforming its own pre-
novelty baseline. The results provide evidence that this method can boost AI
systems in their ability to handle a variety of unexpected situations.

Keywords: novelty detection, change point detection, smart homes, activity
recognition
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1 Introduction

The ability to handle novelty is essential for AI systems. Novelty here is characterized
by a sudden change in the environment requiring quick adaptation and little time to
collect large amounts of new data and retrain. However, many existing systems are
brittle [1, 2], in that they can achieve high performance by relying on the assumption
that the domain’s task stays the same. However, the real world is fraught with novelty.
In the perceptual task of image classification, a new class may be introduced that
the AI system has never seen before. In an action-based task, other players in the
environment exhibit new behavior. Traditionally, the approach in such cases is to
collect large amounts of data about the novel phenomenon and adapt the AI systems
until performance recovers (i.e., long-term learning [3]). In some environments (e.g.,
autonomous driving), the AI system does not have the luxury to collect vast amounts
of data about a novelty and train over a long period of time.

The goal of DARPA’s Science of AI and Learning for Open-world Novelty (SAIL-
ON) [4, 5] program was to advance the capability for AI systems to detect, characterize,
and accommodate novelty. In this work, we investigate methods for reacting quickly to
novelty in the context of a smart home activity recognition task. We introduce a smart
home novelty generator for evaluating novelty-aware activity recognition systems and
evaluate a new system designed to overcome brittleness by detecting and accommo-
dating multiple types of novelty. In keeping with the SAIL-ON definition, we define
novelty as a sudden, unannounced, and persistent change in the classes, attributes,
actions, interactions, goals and behaviors of entities in the environment.

We focus here on activity recognition, specifically on identifying what activity is
being performed by the inhabitant of a home based on sensor data collected in real time
from the home. Such data may be used for health assessment, monitoring, and inter-
vention, as well as security monitoring and automation. Classifying an inhabitant’s
activities is an essential intermediate step that has been found to improve performance
when the activity is included as a feature in the learning task [6]. Still, most activ-
ity recognition methods assume the future mimics the past or assume significant data
and time is available to adapt to novelty. Nevertheless, novelty can occur quickly. In a
smart home setting, new visitors, utility outages, or sudden behavior changes all vio-
late these assumptions and challenge AI systems to continue to perform at reasonable
levels in the presence of these novelties.

For the smart home activity recognition task, the feedback from the environment
is represented as a set of values from sensors in the environment. While additional
activity classes could have been introduced, the generated data is based on real data
collected from real smart homes, so we do not have real data on new activities and
therefore chose not to explore this type of novelty. However, new sensors may appear
in the data, and others disappear, since different homes had different numbers and
types of sensors. Ultimately, the novelties will manifest in changes to the number, type
and values of the sensor features, and so novelty detection and adaptation here can
be viewed as a change in distribution over these features. However, due to the sudden
nature of the change and the need to adapt quickly, change point detection followed
by retraining are insufficient so handle the novelty in a timely manner.
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We propose a new AI system, OTACON, to handle novelty in smart home activity
recognition tasks. Additionally, we design a smart home novelty generator that sys-
tematically generates different types of novelty, evaluates systems such as OTACON
on these novelties, and computes metrics that provide insight into the system’s abil-
ity to detect and react to novelty. In keeping with the SAIL-ON protocol, the sources
of the novelties in the smart home environment were not revealed to the OTACON
developers until after the evaluation was completed, which would be the case in a
real-world setting.

OTACON is a Bayesian nonparametric method for adding novelty handling capa-
bilities to existing agents. OTACON builds a probabilistic model of the baseline world
using the same training data as the task agent, after which it evaluates changes in
the model-based surprisal (unlikeliness) of the individual records in the incoming data
stream. OTACON exploits the idea that a probabilistic model will attribute differ-
ent likelihoods to data generated by different models. Using change point detection,
OTACON monitors the resulting stream of surprisals, looking for points that indicate
a change in the underlying process. Once a surprisal change has been detected, OTA-
CON infers when the change occurred and uses this information to trigger adaptation
to the novel world.

The next section discusses related work in open-world novelty detection and reac-
tion, and in smart home environments in particular. Section 3 provides details about
the smart home environment and the types of novelties generated in the environment.
Section 4 presents the OTACON approach to novelty detection and reaction. Section 5
describes how smart home novelties are generated and the metrics used to evaluate
novelty detection and reaction performance. The state-of-the-art approach to activ-
ity recognition is also discussed, which is used as a baseline for comparison. Section 6
presents the results of the experimentation. Finally, Section 7 discusses the results and
future directions.

2 Related Work

Performing robustly in the presence of novelty, also referred to as open-world AI [3, 7],
has received significant attention lately due to the goal of overcoming brittleness in
AI systems. Several AI systems have been proposed recently for handling novelty in
a domain-independent manner. For example, the Rapid-Learn system [8] integrates
planning and learning approaches that learn from failures and transfer knowledge over
time to handle novelty. Rapid-Learn has been evaluated on the simulated worlds of
Monopoly and Minecraft. The Hydra [9] and OPENMind [10] systems also combine
a planner with components that facilitate model diagnosis and revision to adapt to
novelty in Angry Birds and Minecraft. In more perceptual domains (e.g., open-set
image recognition tasks), OpenHybrid [11] employs a hybrid deep learning encoder
and classifier to detect and accommodate novel classes.

Ideas have been explored in the literature that are related to novelty detection.
These include detection of anomalies, concept drifts, and change points. Anomaly
detection refers to the process of identifying data points or events that significantly
deviate from the expected data pattern. Anomalies are generally considered outliers
- anomalous data are not consistent with data observed before or after the event
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[12]. Numerous statistical and machine learning methods have been introduced to
detect these situations to tackle challenges found in fraud detection, security, and
healthcare [13]. While anomaly detection is related to novelty detection, they address
different situations. Anomalies refer to isolated deviations from expected behavior,
typically representing outliers; whereas, novelties represent sustained changes in the
environment or task.

Concept drifts are changes over time in the observed data that cause previously
learned models to become less accurate or obsolete [14, 15]. In contrast with anomalies,
these drifts typically happen more gradually and represent sustained changes in the
data. In machine learning, performance drops on previously-successful models may
indicate that a concept drift has occurred. In such situations, the model can often
recapture previous performance levels by forgetting old data and retraining on new [16,
17]. In contrast, novelty refers to sudden changes in the underlying task or environment
the require more rapid detection and adaptation.

Change point detection is also related to novelty detection. Change points are
abrupt shifts in the properties of observed data over time. These shifts occur rapidly,
thus statistical methods are researched to identify the point in a time series where
they occur [18]. Supervised and unsupervised deep learning approaches to change
point detection have been developed for high-dimensional, complex data [19], but
require significant data to establish a baseline. Change point detection typically focuses
on changes in a small set of time series features; whereas, novelties such as subtle
changes in the environment, may not significantly change small sets of features, but can
significantly impact the performance of the AI system operating in the environment.

Systems for evaluating an AI method’s open-world novelty capabilities are also
increasingly available. In addition to the smart home activity recognition task we
describe in this paper, the same novelty generator can be used to create novelties
for the CartPole3D [20] and VizDoom [21] domains. Other novelty generators have
followed a similar design for additional domains, such as Angry Birds [22], Minecraft
[23], and Monopoly [24]. Evaluation of open-world novelty in the image recognition
task has also prompted numerous challenges (e.g., COCO [25] and DIAS [26]).

In the context of smart homes, some attempts have been made to detect nov-
elties using anomaly detection. While these methods neither characterize nor adapt
to the novelties, they do introduce approaches to finding anomalies specific to such
data. Detecting anomalous behavior can also detect some novelties, but these meth-
ods assume the underlying task has not changed, which is not the case for novelties in
this work. Alaghbari et al. [27] create a deep network to look for activity patterns that
deviate from an established norm and illustrate the technique on sample smart home
data. Dahmen et al. [28] tailor an anomaly detection technique to find deviations from
normal that indicate a clinical-relevant change in behavior. Here, clinician feedback
guides the selection of unsupervised anomaly detection methods and hyperparameters
to improve performance. While some detection methods have been considered, Chat-
terjee et al. [29] note that anomaly detection for smart homes and the larger IoT field
is still in its infancy, with a need for unsupervised approaches and techniques that
are not tailored to a particular piece of information such as energy consumption. In
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contrast to these earlier methods, this paper focuses on detecting a wider variety of
smart home novelties and reacting to such heterogeneous situations.

3 Smart Homes

A smart home is a physical environment equipped with sensors and computational
components. The home acts as an intelligent agent, reasoning about the physical
environment and its inhabitants to assess their state and suggest or take actions to
improve their state. Because pervasive computing and machine learning technologies
can transform any residence into a smart home, researchers have been uncovering their
ability to model and recognize normal behavior [30] and quantify changes in behavior
[31]. Building on this foundation, smart homes have been designed to assess a person’s
cognitive health [32, 33], detect exacerbations of chronic conditions [34], and design
behavior-aware health interventions [35]. The same foundation provides a basis for
monitoring the safety of the home [36, 37] and analyzing the relationship between
behavior patterns and factors such as energy consumption [38] and air quality [39].
Ultimately, a home can automate selected actions in response to a stated objective,
such as minimizing energy footprint [40, 41].

Because diverse varied capabilities depend on modeling, recognizing, and tracking
routine behavior, smart home methods are typically not robust to behavior changes
or changes in the environment. Much of the software will fail if, for example, there
are unexpected visitors in the home, a sensor fails, or a person abruptly changes their
behavior patterns. Given the strong tie between expected behavior and smart home
success, we choose this problem as a testbed to design and evaluate a novelty agent.

3.1 CASAS Smart Home in a Box

In this project, we utilize the CASAS smart home infrastructure to collect data, embed
novelties, and assess how effectively an agent can detect, characterize, and react to
such novelties. The CASAS Smart Home in a Box (CASAS SHiB) [42], shown in
Figure 1, contains a collection of ambient sensors, networking components, and a
Raspberry Pi that collects, timestamps, and stores generated sensor readings. Sensors
generate readings whenever they detect a change in state. Several downward-facing
passive infrared (PIR) motion detectors are placed with removable adhesive strips
on ceilings in each room and in the refrigerator. These generate a reading whenever
motion is initiated in their 2m-diameter field of view or motion has stopped (has not
been detected for 1.25 seconds). Magnetic door sensors are attached to exterior doors
and cabinets that contain key items such as medicine dispensers. These generate a
reading when the door state change from open to closed or vice versa. Additionally,
the SHiB includes ambient light and temperature sensors that generate readings when
there is a sufficient change in value.

As shown on the right in Figure 1, the smart home collects readings each time a
sensor detects a change in state. Each reading includes a corresponding date, time,
sensor identifier, and current sensed state (ON/OFF for motion, OPEN/CLOSED for
doors, and numeric values for light and temperature sensors). Researchers analyze
these readings to understand activities within the home and use the models for home
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Fig. 1: CASAS SHiB. Downward-facing passive infrared motion
detectors are installed inside the refrigerator, above each
bed, each seating area, the kitchen sink, and the stove.
Area motion detectors are placed in each large room.
Magnetic door closure sensors are attached to exter-
nal doors and selected cabinets. As sensors generate
readings, the smart home adds timestamps and sensor
identifiers to the readings and stores the data for later
analysis.

monitoring and automation. A variety of machine learning techniques have been intro-
duced for this task. These methods typically process a portion of the data at a time
by moving a sliding window over the readings. Recent algorithms handle increasingly
complex situations, including lack of training data and presence of multiple inhabi-
tants [43, 44]. Once typical activity behavior is modeled reliably, corresponding smart
home functions such as health assessment, security monitoring, and energy-efficient
automation can be added.

3.2 Smart Home Novelties

While progress has been made in smart home design and analysis of smart home
data, many of the current research methods assume that the underlying smart home
processes are stationary. This includes the environment conditions and the behavior
routines exhibited by inhabitants. As a result, models are typically trained and used
for as long as needed, without revision. This assumption contradicts the real world,
in which smart home agents require life-long learning.

In response to the need for continually-adaptive smart homes, we are interested in
determining whether an agent can detect, characterize, and respond to smart home
novelties. For this task, we created a smart home novelty testbed. The challenge for
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Fig. 2: Smart home testbed floorplans and sensor positions. Sensor labels starting
with “M” are motion directors, “D” represents door sensors, “LS” represents
light sensors, and “T” represents temperature sensors. From upper left, the
testbed homes are labeled SH1, SH2, SH3, and SH4.

an agent in this testbed is to recognize an inhabitant’s current activity based on
timestamped sensor data. Testbed data are based on actual sensor readings collected
in four smart homes. The home floorplans and locations of sensors are provided in
Figure 2. In these homes, 11 activity classes are defined. These are bed toilet transition,
cook, eat, enter home, leave home, personal hygiene, relax, sleep, take medicine, wash
dishes, and work. Ground truth activity labels are provided for the testbeds using
external annotators, as described elsewhere in the literature [18]. The ground truth
labeling rules and process do not change during the experiment, before or after novelty
introduction.

The feedback from the environment is represented as a set of values from sensors
in the environment. While additional activity classes could have been introduced, the
data is based on collections from real smart homes, so we do not have real data on new
activities and therefore chose not to explore this type of novelty. However, new sensors
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may appear in the data, and others disappear, since different homes have different
numbers and types of sensors. The novelties manifest as changes to the number, type
and values of the sensor features, and so novelty detection and adaptation here can
be viewed as a change in the feature space and the distribution over these features.

For our experiments, we analyze 200 days of data from each smart home. Each day,
or episode, is presented to the agent as a sequence of sensor vectors. The sensor vectors
are not provided at a fixed frequency but only when any sensor value changes. Thus,
one day’s episode may contain a different number of activity recognition opportunities
than another. Generally, the number of recognition opportunities varies little between
days, though there is some variance due to the differences in homes and inhabitant
behaviors. After each activity recognition opportunity (i.e., the agent is presented
with a timestamped sensor vector), the agent returns the predicted activity. After
the prediction is generated, the smart home environment provides the agent with
its accuracy so far, i.e., the fraction of recognition opportunities for which the agent
correctly classified the activity. The final performance of the agent for the episode is
represented as the accumulated accuracy after the last prediction for the day.

At a randomly-selected point between days 30 and 50, a novelty is injected into the
data.1 For a novelty detection agent to be useful in a practical smart home setting,
the agent needs to be able to respond to different types of novelties and different levels
of difficulty. In the SAIL-ON program, eight types of novelty were defined to cover a
variety of changes to the environment. Therefore, we create eight types of novelties
for the smart home testbed. Each novelty type is further decomposed into three levels
of difficulty: easy, medium, and hard. Difficulty here relates to the adaptation of the
agent, not the detectability of the novelty. In fact, more difficult novelties tend to be
easier to detect, because they result in a more dramatic change in agent performance
when introduced. The novelty types with accompanying descriptions and difficulty
levels are described below and summarized in Table 1. During a trial, the agent is
not given any information about the type of novelty or even the presence or absence
of novelty. The novelty descriptions were not revealed to the novelty-aware agent
development team until the experimental evaluation was completed.

Novelty type 1 focuses on changes in objects (i.e., sensors) in the environment. The
motivation is the case where new sensors are introduced into the environment. In our
implementation of this novelty, some randomly-chosen sensors were disabled (i.e., they
always return a value of 0) in the pre-novelty episodes, and in the novel episodes, some
of these sensors were re-enabled. The difficulty depends on the number of re-enabled
sensors, i.e., the more sensors re-enabled, the more difficult is the agent’s adaptation.
For this novelty type, while the novelty can be detected more easily based on data
drift, there is no change in performance if the agent continues to use its current model,
which is likely to be based on sensors enabled only in pre-novelty. However, there is
an opportunity for the agent to improve performance by retraining on the additional
sensor information once enough data is available. This object novelty type could also
be implemented by disabling sensors, but we use this scenario in novelty type 4, where
sensors in a particular area are disabled.

1Additional information is available at https://github.com/holderlb/WSU-SAILON-NG/tree/master/
domains/smartenv.
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Type Focus Homes Description and Difficulty Levels
1 Objects SH3 Increased sensor access

Easy: 5 additional sensors
Medium: 10 additional sensors

Hard: 30 additional sensors
2 Agents SH4 Shift times to future episodes

Easy: Move readings 30-60 days in the future
Medium: Move readings 120-150 days in the future

Hard: Move readings 260-300 days in the future
3 Actions SH1, SH2 Different inhabitant & behavior, same floorplan

Easy: 25% data from different inhabitant
Medium: 50% of data from different inhabitant

Hard: 100% data from different inhabitant
4 Relations SH3 Sensors turned off in one room

Easy: 5 sensors turned off in study
Medium: 6 sensors turned off in living room

Hard: 7 sensors turned off in bedroom
5 Interactions SH1, SH2 Visitor in home

Easy: 1 visitor
Medium: 2 visitors

Hard: 3 visitors
6 Rules SH2 Temperature decrease triggers motion sensor events

Easy: small decrease (5% chance triggers)
Medium: medium decrease (10% chance triggers)

Hard: large decrease (15% chance triggers)
7 Goals SH3 Attempt to mimic leave home activity

Easy: 6 leave home events added to day
Medium: 12 leave home events added to day

Hard: 18 leave home events added to day
8 Events SH3 Daily activities are fast-forwarded

Easy: Fast-forward by factor of 2
Medium: Fast-forward by factor of 5

Hard: Fast-forward by factor of 10

Table 1: Novelty types, novelty focus, and smart home datasets to which nov-
elties are applied. Each novelty type is further characterized by three
difficulty levels (easy, medium, and hard).

Novelty type 2 focuses on changes in an inhabitant’s routine behavior. Here, a
behavior pattern is shifted into the future at the time novelty is introduced, though
the rest of the environment remains the same. Novelty type 2 emulates the com-
mon situation where the inhabitant’s behavior changes over time, with the amount
of change increasing with time length. The difficulty level corresponds to the extent
of this shift in time: 30-60 days (easy), 120-150 days (medium), 260-300 days (hard).
More extensive shifts in time (and thus behavior) are easier to detect, but more diffi-
cult in terms of adaptation. This situation occurs in the actual smart homes where we
collected data, because behavior for the older adult inhabitants changed with increas-
ing age and onset of cognitive or physical health changes. A common type of observed
changes in these situations was less time spent outside the home during the day or
more frequent sleep interruptions during the night. The activity recognition agent is
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a passive observer that makes predictions about activities. However, the agent’s pre-
dictions have no effect on the world, nor can this agent affect the world in any way.
This scenario is usually referred to as a perceptual task; whereas, in other action-based
tasks (e.g., a player in a first-person shooter game), the agent can take actions that
affect the world.2

Novelty type 3 focuses on changes in the actions performed by smart home inhab-
itants. This novelty is implemented by intermixing data the inhabitant of SH2 into
the data of the data of the inhabitant of SH1. Floorplans SH1 and SH2 were the
same. SH1’s inhabitant was a healthy older adult, and SH2’s inhabitant was a cog-
nitively impaired older adult. The difficulty level was implemented by the extent of
the intermixing of data: 25% (easy), 50% (medium), 100% (hard). Based on data col-
lected in real CASAS smart homes, the newly-introduced data reflect different types
of inhabitants (e.g., older adults, students, cognitively impaired individuals), which in
turn allowed a categorization of how the difficulty level would change at the point of
novelty introduction. In this case, the increased intermixing of impaired behavior into
healthy behavior is easier to detect, but harder in terms of adaptation.

Novelty type 4 focuses on changes in the relationships between agents and objects
in the world. Unlike novelty type 1, where sensors are randomly enabled, here sen-
sors are disabled on the basis of their relationship to the inhabitant’s behavior in the
home. In particular, sensors that are in the same room are disabled, and the room is
chosen based on the extent of the inhabitant’s interaction with that room. The inhab-
itant interacted least with the study in SH3, so the easy difficulty was implemented
by disabling (setting to zero), the five sensors in the study. The medium difficulty was
implemented by disabling the six sensors of the living room, which was used by the
inhabitant more often than the study. The hard difficulty was implemented by dis-
abling the seven sensors of the bedroom, which was used more than the living room.
Disabling the sensors in a room has an immediately impact on performance, because
those sensors could more easily be correlated to the actions in this room (e.g., sleep-
ing usually occurs in the bedroom), but alternative patterns can be learned over time,
such as sleep occurs after a certain time and when no other sensors are triggered in
the home.

Novelty level 5 focuses on change due to interactions between multiple inhabitants
in the smarthome. This novelty was implemented by splicing in real data observed
when one or more visitors were present in the home, such as service providers or
family members. The difficulty level is implemented based on the number of visitors
whose data is included in the post-novelty data stream. Since activity recognition
performance is measured in reference to the permanent inhabitant of the home, the
presence of visitors will trigger new data that may incorrectly be attributed to the
inhabitant.

Novelty type 6 focuses on a change in the rules governing how the world works.
In more simulated domains, this novelty can be implemented in creative ways (e.g.,
change the gravitational influence). Given that the smart home domain is derived
from real data from real homes, the choices for rule changes are constrained. We

2Our novelty generator includes two action-based tasks, CartPole and VizDoom, in addition to the smart
home task described in this paper.
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therefore design this novelty using the very real possibility of a temperature decrease
due to weather or a change in the heating and air conditioning in the home. Motion
sensor sensitivity is affected by temperature, and lower temperatures lead to more
frequent triggering of the motion sensors. The difficulty levels are based on the extent
of the temperature decrease, which is implemented by additional random triggering
of motion sensors throughout the home: 5% chance of triggering (easy), 10% chance
(medium), 15% chance (hard). The increase of noise into the motion sensors increases
the difficulty of the activity recognition task, but the generally low chances of noise
still allow the novelty-aware agent to adapt over time.

Novelty type 7 focuses on changes in the goals of the inhabitant. One goal change in
the elderly inhabitants of the smarthomes was the attempt of the inhabitant to appear
to leave the home more often to appease a caregiver wanting the inhabitant to go on
more walks outside the home. We simulated this behavior by inserting sensor data for
the leave-home and enter-home activities into the sensor stream but did not otherwise
modify the data. The challenge for the activity recognition agent is to determine that
the inhabitant is not actually performing the leave-home and enter-home activities
but is continuing the activity initiated before this interruption. These false leave-
home/enter-home events occurred much closer in time than a real walk, which typically
takes about an hour, and were randomly distributed throughout the day. The difficulty
levels for this novelty are based on the number of false leave-home/enter-home events
inserted into the data: 6 additional leave/enter home events per day (easy), 12 events
added per day (medium), 18 events added per day (hard). The novelty-aware agent
will likely incorrectly predict these are true leave/enter home activities, but can learn
to distinguish them based on their shorter duration and atypical times during the day.

Finally, novelty type 8 focuses on external events that trigger a change in inhabitant
behavior. We implemented this novelty by fast-forwarding the sensor stream, which
simulates the inhabitant having increased energy and performing more activities at
an increased speed. Specifically, we compress each day’s (episode’s) data by a factor
c < 1, and then concatenate 1/c copies of this compressed data to fill in the entire
day. For example, c = 0.5 results in the day’s data being compressed from 24 hours
to 12 hours, and then the day is composed of two copies of the compressed data.
The difficulty levels are implemented based on the value of c: c = 0.9 (easy), c = 0.5
(medium), c = 0.1 (hard). While the decreased duration and atypical start times of the
activities will reduce activity recognition performance, the increase in sensor readings
also provides an increase in the number of activity recognition opportunities; thus,
post-novelty performance could potentially exceed pre-novelty performance.

Data that we analyze in our experiments are drawn from real-world datasets. How-
ever, we need to give the novelty agent data for an arbitrary number of episodes (days).
To meet this need, we employ SynSys a smart home synthetic data generator [45].
SynSys learns a model from the real sensor data, then generates an arbitrary amount
of realistic synthetic data. This method demonstrated successful generation of realistic
sensor sequences for a collection of 10 smart home datasets [45].
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4 OTACON: A Novelty Aware Agent

OTACON offers a bolt-on framework for adding novelty handling to existing agents
(see Figure 3). OTACON uses a probabilistic model to evaluate the surprisal of data as
they are streamed to a task agent, as well as the surprisal of task agent outputs (such as
label probabilities) and other meta-quantities (such as task performance). OTACON
uses online change point detection to identify systematic changes in surprisal over
time, which indicate changes in the data generating process, which indicates novelty.
Once novelty is detected, OTACON triggers adaptation, which, for the CASAS agent,
means replacing the training data with that experienced post-novelty and re-training.
Algorithm 1 and the following discussion provide a more-detailed description of the
OTACON agent.

Environment Agent PCC
Change point 

detection

Fig. 3: OTACON architecture. The environment provides data
to the task agent and to the probabilistic cross-
categorization (PCC) engine. The agent provides infor-
mation to PCC, which interfaces with the task agent
via adaptation. PCC sends quantities to change point
detectors which detect novelty as systematic changes in
PCC outputs. Change point detectors trigger novelty
adaptation in PCC and the task agent by way of PCC.

4.1 A statistical definition of novelty

Open world novelty can be formalized as a change in the data generating process.
An agent is trained on data from process A, and at some future point, the process
A changes into a distinct process B, potentially invalidating the agent trained on A.
Detecting novelty is then a problem of detecting when the data-generating distribution
has changed from streaming data. OTACON exploits the fact that the likelihoods of
all observations X = {x1, . . . , xn} are identical under two models A and B if and only
if A and B are identical. That is, p(x|A) = p(x|B) ∀x =⇒ A = B.
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4.2 Modeling open worlds

OTACON uses probabilistic cross-categorization (PCC; [46]) to create an approx-
imation of A, Â from the agent training data. PCC is a hierarchical Bayesian
non-parametric model for tabular data. Given a table with n rows and m columns,
PCC uses a Dirichlet process to group the m columns into 1, . . . ,m views in partition
z, where zv is the set of columns in view v; and within each view, uses another Dirichlet
process, with concentration parameter α ∈ R+, to group rows into 1, . . . , n categories
in partition c, where cv,k is the set of rows assigned to category k in view v. Bayesian
non-parametrics are a natural way to describe open world learning because they do
not assume a specific parameterization of the world. Dirichlet processes, in particular,
elegantly handle novel observations by considering the probability that observations
were generated from unseen categories. While changing the number of activity cate-
gories is not one of the novelties we test, the developers of OTACON did not know
that. OTACON was designed to handle such novelties, which could show up in other
real-world settings.

The PCC joint distribution is

p(x, z, c, ϕ, α) = p(z|α)
|z|∏
v=1

p(cv|α)
∏
j∈zv

|cv|∏
k=1

p({xi,j : cv,i = k}|ϕj), (1)

where ϕj is the prior on the component models of column j.

4.3 Detecting novelty

In OTACON, PCC sits beside a task agent, which in this case is a re-implementation
of the baseline agent above. As pre-processed data, x, stream to the task agent, OTA-
CON evaluates the surprisal of each observation, −logp(x|Â). The resulting surprisal
stream is passed to online change point detection. For this work we use a Gaussian-
Process-based detector [47], implemented in the change point rust crate3, which, is
often more successful at detecting gradual changes than Bayesian online change point
detection [48]. The change point detector is explicitly looking for changes in the sur-
prisal distribution over time. A change in the surprisal distribution indicates a change
in the data generating process, which indicates that novelty has occurred.

4.4 Adapting to novelty

Once OTACON has inferred that novelty has been introduced at some point, it uses the
runlength probabilities from the change point detector to infer at what specific time
point the novelty was introduced. The runlength probabilities measure the probability
distribution P (rt|s1:t) over the runlength rt, which is the number of episodes since
the last change point at time/episode t [48], given the sequence of suprisals si since
the first episode in the trial. The number of episodes back in time where the novelty
is likely to have been first introduced can be estimated as the maximal value of the
runlength distribution.

3Available at https://crates.io/crates/changepoint/
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The main while loop in Algorithm 1 iterates over each instance xi from the envi-
ronment, computes the surprisal value si, and feeds the surprisal value into the change
point detector C using C.observe(si). The change point detector updates the run-
length probabilities and returns the probability that a change has occurred. If that
probability is high enough, then OTACON transitions to “adapting” mode and the
classifier model F is retrained. The classifier is then used to label the new instance,
and the label is returned to the environment for evaluation.

To avoid performance loss due to nuisance novelties (novelties that do not affect
task performance), adaptation is triggered only if the agent performance has been
negatively affected by the novelty. Adaptation occurs by replacing data in the train-
ing set with post-novelty data and periodically re-training the task agent. Once in
“adapting” mode, retraining is triggered each time the agent has encountered τ addi-
tional training examples. The τ threshold is trained based on a set of mock novelties
designed by the OTACON team.

The task agent is a re-implementation of the random forest classifier, as in the
baseline agent, but more tightly integrated with the OTACON system. The OTACON
classifier was initially trained on the same data as the baseline agent, but additional
parameter tuning was performed to optimize the classifier for this data. This is why
the OTACON system outperforms the baseline agent pre-novelty in some cases.

5 Novelty Evaluation

The evaluation of novelty-aware agents is provided by the publicly-available Smart
Environment Novelty Generator (SmartEnvNG [49]. To evaluate a novelty-aware
agent, we present a sequence of episodes to the agent. Each episode represents one day
in the smart home, and the sequence of episodes represent contiguous days. The first
few episodes contain no novelty. When novelty is introduced, all generated episodes
contain one type of novelty. Evaluating an agent’s ability to handle multiple types of
novelty in a single episode is an interesting next step, but is left for future work.

The main performance measure that the agent is trying to maximize is the activity
recognition accuracy over the instances in an episode. In our experiments, we included
200 episodes in each trial, and novelty is introduced at a uniform random point between
episodes 30 and 50. The agent does not know if the episodes contain novelty or not.
For each novelty type, the agent is evaluated on 90 trials, 30 for each of the three
difficulty levels (easy, medium, hard). Performance is reported as an average over these
trials. While the performance plots represent an average over the trials, the individual
performance curves are first aligned so that the episode of novelty introduction is
at the same point on the x-axis. This is why episode numbers are not indicated on
the x-axes of our performance plots. The data to reproduce the trials used in these
experiments is available from the SmartEnvNG repository [49].

5.1 Performance metrics

Evaluating an agent’s performance in the presence of novelty requires more than the
standard activity recognition metrics like precision, recall, accuracy, and AUC. Specif-
ically, we want to evaluate an agent’s ability to both detect and react to novelty and
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Algorithm 1 OTACON

Input: Training data, xtrain, processed for agent F . A stream, xnew, of processed
episode data. A novelty threshold, ϵ ∈ [0, 1]. The number of steps, τ , between post-
novelty agent updates.

Yields: A generator of outputs from the task agent

C ← new change point detector
Â← A|xtrain ▷ PCC Model trained on xtrain

F̂ ← F |xtrain ▷ Task Model trained on xtrain

adapting← False
x∗ ← [ ] ▷ Post-novelty data
while xi ← next(xnew) do ▷ Read the data stream

append xi to x∗

if not adapting then
si = − log p(xi|Â) ▷ Surprisal of xi under PCC model
pchange ← C.observe(si) ▷ Probability a change has occurred
if pchange > ϵ then

j ← index of change point inferred by C
x∗ ← x∗[j :] ▷ remove all pre-novelty data from x∗

adapting← True
end if

else
n∗ ← |x∗|
if n∗ > τ and n∗ mod τ = 0 then

F̂ ← F |x∗ ▷ Update/Retrain the task agent
end if

end if
yield F̂ (xi) ▷ Produce output given xi

end while

do so quickly. The SAIL-ON program developed several metrics to capture the dif-
ferent aspects of performance, which are described in Table 2. The first three metrics
evaluate an agent’s ability to detect novelty. One aspect of detection is the concept
of a correctly detected trial (CDT), which means that the agent detected novelty after
novelty was introduced and not before. The CDT metric in Table 2 measures the frac-
tion of trials that are CDTs. The FN-CDT metric measures the number of episodes
that elapsed after novelty was introduced before the agent detected novelty, but only
for trials in which the agent eventually detects novelty. The third metric (FP) mea-
sures the fraction of trials in which the agent detects novelty before it was actually
introduced. So, the first three detection metrics measure both how accurately and
how quickly the agent detects novelty. A successful agent should achieve a high CDT,
while maintaining low FN-CDT and FP.

An agent may achieve a high CDT and low FP by prolonging detection in order
to maximize the chance of detection after novelty introduction. However, this will
result in a poor (high) FN-CDT score. Also, the agent typically does not know when,
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or if, novelty is coming, so even a prolonged wait may still result in a premature
detection. In the experiments, and supported by the SmartEnvNG system, feedback
on whether the classifier is correct is only provided after the agent detects novelty. So,
artificially prolonging detection to improve detection scores will result in poor reaction
performance due to lack of feedback about the novelty.

The remaining five metrics measure how well the agent reacts to novelty in terms
of performance in the environment, which in this case is activity recognition accuracy.
One unique aspect of these metrics is that the novelty-aware agent’s performance is
measured relative to the performance of a state-of-the-art (SOTA), non-novelty-aware
agent. The idea is that the novelty-aware agent needs to perform at least as well as
the SOTA agent before novelty is introduced. After novelty is introduced, performance
for both the SOTA and novelty-aware agents will likely decrease, but ideally, the
novelty-aware agent will eventually recover and exceed the performance of the non-
novelty-aware SOTA agent. The ONRP and INRP metrics measure this by computing
the novelty reaction performance (NRP) of the agent, which is defined as the ratio
performance of the agent after novelty is introduced, or post-novelty, to the SOTA
agent’s performance before novelty is introduced, or pre-novelty. Thus,

NRP =
Pα
post

P β
pre

where α represents the novelty-aware agent, and β represents the baseline SOTA agent.
ONRP measures this ratio based on the overall post-novelty performance, and INRP
measures this ratio based only on the initial first few post-novelty episodes. In our
experiments, we used 10% (or 20) episodes to measure this initial NRP.

The OPTI, IPTI, and APTI metrics capture the performance task improvement
(PTI) due to the novelty-aware agent compared to the baseline SOTA agent. While
NRP compares post-novelty performance to pre-novelty performance, PTI is focused
only on post-novelty performance. PTI is computed as the ratio of the novelty-aware
agent’s performance to the sum of the novelty-aware agent’s performance and the
SOTA agent’s performance. Thus,

PTI =
Pα
post

Pα
post + P β

post

i.e., the fraction of post-novelty performance due to the novelty-aware agent α. We
measure this for the overall post-novelty performance (OPTI), the initial 10% of
episodes post-novelty (IPTI), and the final or asymptotic 10% of episodes post-novelty
(APTI).

The SmartEnvNG system computes all the metrics in Table 2 and several addi-
tional metrics (performance before and after novelty, significance of performance drop,
and the percentage of pre-novelty true negatives) to provide a complete picture of an
agent’s performance. Many of these performance metrics are computed relative to a
baseline agent, so the SmartEnvNG provides baseline agents for both activity recog-
nition and novelty detection. In addition to the metrics, the SmartEnvNG system
produces plots of the agent’s performance relative to a baseline agent’s performance,
similar to those in Figures 4 and 5.
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Metric Description
FN-CDT ↓ False negatives (FN) for correctly detected trials (CDTs)

CDT Fraction of CDTs
FP ↓ Fraction of trials with at least one false positive (FP)
ONRP Overall novelty reaction performance (NRP) as a fraction of baseline pre-novelty

performance
INRP NRP for the first 10% of episodes after novelty introduction
OPTI Overall performance task improvement (PTI) for all episodes after novelty intro-

duction
IPTI Initial PTI based on first 10% of episodes after novelty introduction
APTI Asymptotic PTI based on last 10% of episodes in a trial

Table 2: Performance metrics used to evaluated novelty detection (FN-CDT, CDT,
DP) and reaction (ONRP, INRP, OPTI, IPTI, APTI). For FN-CDT and
FP, smaller is better (↓).

5.2 Baseline activity recognition

The baseline agent is implemented using the random forest classifier [50], which con-
tinues to perform among the best approaches in the smart home domain when there
are numerous complex activities [6, 18]. We used the random forest classifier from the
Scikit Learn Python package version 1.5.1 with default parameters except for setting
the criterion to “entropy”, class weight to “balanced”, and min samples split to 20.
These parameters were found to work well across several smart home datasets. The
baseline agent uses a fixed-length sliding window to label activities. The agent moves
a window of fixed size (we use a window of size 30 in our experiments) over the sensor
readings. Once a vector of features is extracted from the window, the feature vector
is fed to the random forest classifier. The classifier generates an activity label, which
is assigned to the last reading in the window. Finally, the window advances by one
sensor reading and the process repeats.

Type Feature Description

time
day of week 0 . . . 7
hour of day 0 . . . 23

seconds past midnight 0 . . . 86, 399

window

window duration seconds from first to last reading
last sensor sensor identifier

dominant sensor identity of most frequent sensor in current window
previous dominant sensor identity of most frequent sensor in previous window

last location room location of last sensor in window
window complexity entropy calculation of readings in window
activity level change difference in duration between

first and second half of window
transitions number of location changes in window

sensors
reading count number of readings for each sensor in window
quiet time elapsed time since previous reading for each sensor

Table 3: Features that are extracted from each window of smart home data.

Table 3 lists the features that are used by the baseline activity recognition algo-
rithm. Because these sensors generate readings when there is a detected change in
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state, rather than at regular time intervals, the timing of events within each window
is insightful. A higher frequency of readings (equivalently, a shorter window duration)
indicates a higher activity level in the home. Similarly, the amount of time that has
elapsed since a sensor last generated a reading provides important context. For exam-
ple, long delays between motion sensor readings in the bedroom may indicate deep
sleep, as opposed to fitful sleep or reading in bed.

The baseline agent was trained on non-novel data sampled from the datasets for
each of the four smart home environments shown in Figure 2. The performance of
the baseline agent is shown in the performance plots as the “SOTA” agent along side
the OTACON agent in Figures 4 and 5. The OTACON agent was also trained on
non-novel data, but random initial conditions resulted in slightly different pre-novelty
performance as seen in the performance plots. The baseline agent also has no novelty
awareness and is not retrained at any point during the experiment. Thus, the baseline
agent’s performance does not recover post-novelty.

5.3 Additional Baselines

As discussed in the Related Work section, typical approaches to novelty detection
involve concept drift detection or data drift detection. A popular approach for concept
drift detection is the Drift Detection Method (DDM) [51]. This method looks for
significant changes in the performance of a classifier. We show results using DDM
for novelty detection in the next section, but as a preview, due to the high variance
in classifier performance across trials, the DDM was prone to earlier detection. A
popular approach for data drift detection is the Incremental Kolmogorov-Smirnov
test (IncKS) [52]. This test looks for significant changes in the features (see Table 3.
While IncKS is designed to look for drift in each feature individually, this also led to
early detection in most trials. But if the test is extended to require data drift in a
significant percentage of features, the novelty detection is more robust. OTACON still
outperforms these methods due to its focus on the joint distribution across features,
rather than individual features.

We also tested an ideal adaptation approach, called IDEAL, that retrains the
random forest classifier after each episode, regardless of whether novelty is present or
detected. IDEAL is trained on about 50,000 examples for each smarthome testbed,
same as OTACON and the SOTA baseline. But IDEAL is allowed to accumulate
additional examples, up to 100,000 per testbed, and retrains on the latest 100,000 after
each episode. This results in an advantage over the OTACON system, since OTACON
only receives the correct classification, after it detects novelty. Both approaches receive
the correct answer as feedback according to a budget that is set to 50%, but is variable
with the SmartEnvNG system. The number of classifications generated per episode
varies from a few hundred to over 1,000. The IDEAL approach shows the best possible
adaptation, and the results show that OTACON achieves this level on most tasks.

These additional baselines (DDM, IncKS, IDEAL) are available for use within
the SmartEnvNG system. The DDM and IncKS methods are implemented using the
Frouros drift detection package [53], which includes many more methods that can be
utilized within a novelty-aware agent evaluated using the SmartEnvNG system.
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(a) Novelty Type 1 (b) Novelty Type 2

(c) Novelty Type 3 (d) Novelty Type 4

Fig. 4: Performance across novelty types 1-4. Performance is
measured as the activity recognition accuracy over the
instances in an episode, or single day, in the life of the
smart home.

6 Experimental Results

This section shows the main experimental results for the OTACON system on the eight
novelty levels from our smart home testbeds. For comparison, we also show results
from the additional baselines (DDM, IncKS, IDEAL).

6.1 OTACON Results

Figures 4 and 5 show the plots of OTACON’s performance, relative to the SOTA non-
novelty-aware baseline, over the course of a trial for each novelty type. As mentioned
earlier, each trial consists of 200 episodes, and novelty is introduced at a randomly-
selected point between episodes 30-50. Once novelty is introduced, all post-novelty
episodes contain the novelty. The plots are aligned so that the episode where novelty
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(a) Novelty Type 5 (b) Novelty Type 6

(c) Novelty Type 7 (d) Novelty Type 8

Fig. 5: Performance across novelty types 5-8. Performance is
measured as the activity recognition accuracy over the
instances in an episode, or single day, in the life of the
smart home.

is introduced is at the same point along the x-axis. The plots represent an average
over 90 trials for each novelty type, which consists of 30 trials for each of the three
difficulty levels (easy, medium, hard). Table 4 shows the values of the eight metrics
described in Section 5, and Figure 7 charts these values. Again, we emphasize that
the agents receive no information about the presence of novelty during a trial, and
the novelty descriptions were not revealed to the agent development team until after
these experiments were completed.

In the pre-novelty phase the performance of OTACON and SOTA are close, but
generally OTACON outperforms SOTA pre-novelty, except for novelty type 2. The
main reason for this difference is that the random forest classifier in OTACON is a
re-implementation of the classifier in SOTA, not the exact same implementation. The
OTACON classifier was initially trained on the same data as the SOTA agent, but
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additional parameter tuning was performed to optimize the classifier for this data. So,
the OTACON system can outperform the SOTA agent in pre-novelty in some cases.

Overall, the plots show good reaction performance to the novelties. For novelty
types 1 and 4, and to some extent novelty type 8, there is little impact on perfor-
mance due to these novelties. This is reflected in the high FN-CDT values for these
novelties in Table 4 and Figure 7, because without a drop in performance, there is
not much impetus for an agent to detect or adapt to novelty. This type of novelty has
been referred to previously as nuisance novelty [54]. Novelty types 1 and 4 deal with
the addition or removal of sensors from the sensor vector provided to the agent. The
lack of performance drop indicates that the agent was resilient to these types of nov-
elty. Novelty 8 is not fundamentally changing the behavior in the environment, but
just compressing the behavior into a shorter time. While we see some initial drop in
performance, the agent quickly recovers, and even exceeds pre-novelty performance, as
indicated by an IPTI > 1.0 for novelty 8. When the novelty provides additional recog-
nition opportunities, as in novelty type 8, especially for activities that the agent is
better at recognizing, the agent’s post-novelty performance can exceed its pre-novelty
performance.

Results for the other novelty types (2, 3, 5, 6, 7) show a consistent ability for the
agent to detect and react to novelty. FN-CDT and FP values are relatively low meaning
that the agent detects novelty quickly and rarely detects novelty early. The detection
performance for novelty type 6 is not as good as the other four novelty types, showing
11% false positive detections (FP=0.111), correct detection on only 57% of the trials
(CDT=0.567), and about 36 post-novelty episodes needed before the detection is made
(FN-CDT=36.5). Novelty type 6 involves an increase in temperature, which results in
motion sensors being triggered more often without a change in inhabitant behavior.
A systematic increase across all motion sensors is harder to detect than a change in
inhabitant behavior that would most likely impact only a subset of sensors. Overall,
the agent has good reaction performance on these five novelties. This is best reflected
in the OPTI values ranging from 0.525 to 0.602. An OPTI value above 0.5 indicates
that the increased in performance post-novelty is due to the improved performance of
the novelty-aware agent. And that this performance is increasing as the agent has more
experience with the novelty is indicated by the fact that IPTI < OPTI and APTI >
OPTI. So, while these novelties resulted in a significant initial decrease in performance,
the agent was able to recover its performance, and in some cases (3, 6, 7) exceed its
pre-novelty performance. The latter phenomenon due to the increase in recognition
opportunities provided by increased inhabitant behavior (type 3), increased sensor
events (type 6), and increased frequency of leave-home events (type 7).

The results thus far have been averaged over all three difficulty levels. Results for
different difficulty levels are typically as expected, i.e., the initial performance decrease
is larger as difficulty increases. For example, Figure 6 shows the performance of the
agent averaged over the 30 trials each for easy, medium and hard difficulty levels for
novelty type 7. The results show that the initial post-novelty decline in performance
increases with difficulty. Unexpectedly, the number of episodes before performance
recovery decreases with difficulty. This is likely due to the increase in the fictitious
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(a) Difficulty: Easy (b) Difficulty: Medium (c) Difficulty: Hard

Fig. 6: Performance across different difficulty levels for novelty
type 7. Performance is measured as the activity recogni-
tion accuracy over the instances in an episode, or single
day, in the life of the smart home.

leave home and enter home activities at higher difficulty levels, giving the agent more
instances with which to retrain and adapt their activity recognition approach.

Novelty Type
Metric 1 2 3 4 5 6 7 8

FN-CDT ↓ 103.0 13.5 6.5 95.2 0.9 36.5 18.7 48.2
CDT 0.167 0.944 0.900 0.167 0.911 0.567 0.867 0.222
FP ↓ 0.000 0.033 0.022 0.011 0.089 0.111 0.000 0.000
ONRP 1.037 0.938 1.177 1.045 0.915 1.158 1.108 1.058
INRP 1.032 0.823 0.787 1.041 0.809 0.982 0.911 1.026
OPTI 0.506 0.534 0.590 0.507 0.602 0.525 0.539 0.515
IPTI 0.505 0.512 0.520 0.507 0.576 0.499 0.507 0.511
APTI 0.506 0.543 0.615 0.509 0.608 0.540 0.556 0.517

Table 4: Performance metrics across all novelty types. For FN-CDT
and FP, smaller is better (↓).

6.2 Results from Additional Baselines

As described in the Related Work section, methods for novelty detection and adapta-
tion already exist, in particular, concept and data drift detection as well as incremental
learning. In this section, we compare OTACON to such methods. We should point out
that the particular scenario we are addressing in this work is when the novelty is sud-
den, as opposed to a slow drift, and the agent typically does not have to luxury to train
incrementally due to the lack of time to retrain and the cost of collecting additional
examples when quick adaptation is paramount to maintain adequate performance in
the domain. But we can still consider the ideal case in terms of incrementally learning
and see that OTACON meets, or in some cases, exceeds performance compared to the
ideal.
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Fig. 7: Performance metrics across all novelty types. For FN-
CDT and FP, smaller is better. FN-CDT values are
normalized based on the number of episodes in trial to
fit on the same scale as the other metrics.

6.2.1 Concept and Data Drift Detection Methods

We evaluated two drift detection techniques for novelty detection: Drift Detection
Method (DDM) [51] for concept drift and Incremental Kolmogorov-Smirnov (IncKS)
[52] for data drift. The DDM method has three main parameters: warning level,
drift level, and minimum number of instances. The warning level and drift level are
expressed in standard deviations of the error, with default values are 2.0 and 3.0,
respectively, meaning that DDM detects drift if the error exceeds the drift level for
examples collected since exceeding the warning level. This detection process begins
only after a minimum number of instances have been collected; the default value for
this parameter is 30. For the smart home environment, the error has high variance;
Figure 8 shows a single trial for novelty level 5. Therefore, using the default param-
eters, the DDM method detects drift almost immediately, resulting in no correctly
detected trials (CDT=0), false positive detections on every trial (FP=0), and FN-CDT
being undefined. We performed some tuning on the parameters and found that warn-
ing level = 4.0, drift level = 6.0, and minimum number of instances = 10,000 yielded
better results. Table 5 shows the three novelty detection metrics (FN-CDT, CDT,
FP) for the DDM method with these parameter settings. Note that the false positive
detections (FP) are still high, much worse than OTACON. For those few correctly
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Fig. 8: Performance for a single trial from novelty level 5.
Performance is measured as the activity recognition
accuracy over the instances in an episode, or single day,
in the life of the smart home.

detected trials in which DDM detected novelty after it was introduced, the number
of false negatives (FN-CDT) is comparable to OTACON. Given the high variance in
the error, concept drift detection methods are likely to have high false positive rates
without significant tuning.

DDM Novelty Type
Metric 1 2 3 4 5 6 7 8

FN-CDT ↓ 47.6 - 3.5 2.1 0 18.7 1.6 17.5
CDT 0.189 0.000 0.044 0.211 0.022 0.067 0.244 0.211
FP ↓ 0.800 1.000 0.956 0.767 0.978 0.922 0.756 0.767

OTACON
FN-CDT ↓ 103.0 13.5 6.5 95.2 0.9 36.5 18.7 48.2

CDT 0.167 0.944 0.900 0.167 0.911 0.567 0.867 0.222
FP ↓ 0.000 0.033 0.022 0.011 0.089 0.111 0.000 0.000

Table 5: Novelty detection metrics across all novelty types for the
DDM concept drift detection method. For FN-CDT and FP,
smaller is better (↓). OTACON results are repeated here for
reference.

The IncKS method has two main parameters: window size and α. The window
size (default = 10) is the number of instances over which to compute the statistic
as the trial proceeds. The α parameter (default = 0.001) is the threshold on the p-
value of the KS statistic such that if the p-value < α, then drift is detected. The
IncKS method is applied to each feature independently, and so the chance that one
feature would meet the drift detection threshold is high, which, like the concept drift
detection method, resulted in early detection in almost every trial. So, we introduced a
third parameter, percent features (default = 50%) such that at least this percentage of
features had to trigger drift detection at some point in the past. Even with this added
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constraint, the IncKS method always detected early, which indicates that change in
feature values is also highly variable for this domain, even before the introduction of
novelty. With additional tuning, we were able to find parameter values (window size =
100, α = 0.0001, percent features = 60%) that resulted in reasonable detection results
(see Table 6, in particular, lower FN-CDT, but at the expense of significant false alarms
(i.e., low CDT and high FP). So, overall, OTACON shows superior performance to
traditional concept and data drift detection methods.

IncKS Novelty Type
Metric 1 2 3 4 5 6 7 8

FN-CDT ↓ 9.3 5.1 6.7 6.2 16.2 29.7 1.9 7.0
CDT 0.222 0.122 0.889 0.367 0.865 0.900 0.278 0.289
FP ↓ 0.778 0.878 0.111 0.633 0.144 0.089 0.722 0.711

OTACON
FN-CDT ↓ 103.0 13.5 6.5 95.2 0.9 36.5 18.7 48.2

CDT 0.167 0.944 0.900 0.167 0.911 0.567 0.867 0.222
FP ↓ 0.000 0.033 0.022 0.011 0.089 0.111 0.000 0.000

Table 6: Novelty detection metrics across all novelty types for the
IncKS data drift detection method. For FN-CDT and FP,
smaller is better (↓). OTACON results are repeated here for
reference.

6.2.2 Incremental Learning for Adaptation

The typical machine learning approach for adapting to changes in the environment is
to learn incrementally over time. This can be triggered only when novelty is detected,
as is done in OTACON, or applied continuously. As pointed out earlier, the scenario
investigated here further constrains the learner with the assumption that additional
training examples and retraining time are limited, and quick adaptation is rewarded.
Still, we can evaluate the scenario without these constraints to see how a continuous,
incremental learner can perform in the ideal case and compare this to OTACON’s
adaptation performance.

For this evaluation, we ran the same trials on what we call the IDEAL method,
which accumulates examples over time, keeping the 100,000 most recent examples, and
retraining the random forest classifier, same one used in the SOTA method, after each
episode of a trial, including the initial non-novel episodes. A similar set of plots, as
show in Figures 4 and 5, are provided in the Appendix that show the performance of
the IDEAL method (see Figures 9 and 10). The results show that the IDEAL method
adapts quickly to the novelty, and OTACON achieves similar results. There are some
novelties in which OTACON does not quite achieve ideal (levels 4, 6, 8), but OTACON
actually exceeds the ideal performance in one case (level 3). In the case of level 3,
where the novelty is the inclusion of data from a new inhabitant, the IDEAL method
likely overfits to one inhabitant or the other, while OTACON achieves a more general
model.
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So, even an ideal approach that assumes plenty of examples post-novelty and plenty
of time to retrain does not greatly outperform the OTACON approach. Furthermore,
the experimental scenario used here provides additional training examples only once
OTACON detects novelty; whereas, the ideal scenario provided additional training
from the start of the trial, before novelty, which is more of a quixotic scenario com-
pared to the real-world setting in which these novelty-aware AI agents are expected
to perform.

7 Discussion and Conclusions

Smart homes provide a unique and challenging environment in terms of requiring the
recognition of complex activities based on sensor data in the presence of open-world
novelty. The collection of large amounts of real-world data has facilitated the creation
of our smart home novelty generator, which can generate multiple types of novelties
and evaluate AI systems in terms of their ability to detect and react to novelty using
several new metrics. We use the novelty generator to evaluate the OTACON approach,
which adds novelty-adaptive capabilities to existing activity recognition methods.

The results presented in Section 6 demonstrate that OTACON is able to detect and
adapt to novelty, and in some instances is able to surpass pre-novelty performance.
Compared to traditional approaches for drift detection and incremental learning,
again, OTACON was found to be superior both in terms of robust novelty detection
and near-ideal adaptation. We can attribute much of OTACON’s performance to two
advances during its development. First is the monitoring on task agent outputs and
performance. Monitoring task agent labels through PCC allows OTACON to quan-
tify whether the agent is labeling as expected, and agent performance gives OTACON
a way to validate its conclusions. Second, using a deque-like structure for the task
agent data for the purpose of adaptation allowed OTACON to maintain better-than-
chance performance at the moment of novelty while adapting quickly. Initially, we
found that complete retraining using only novel data leads to poor performance and
slower adaptation.

The experimental results show that some novelties are more difficult to detect,
and some are more difficult to adapt to. OTACON observes the world through the
lens of the task agent. In this case, the task agent is a random forest model trained
on engineered features; it is not a causal model of how the activity of one or more
occupants produces sensor activity, thus OTACON did not adapt as well to novelties
that add new dimensions to the task. For example, adding multiple agents, as in novelty
type 5, requires that the task agent identifies the target occupant as well as their
activity. Additionally, novelties that can cause inconsistencies in feature processing
present a challenge. For example, if the features are built using a temporal sliding
window, a novelty that causes inconsistencies and errors in the timestamp could result
in near random data, which would require adaptation in the data pipeline, which is
outside OTACON’s scope.

In future work, we would like to endow OTACON with the ability to propose latent
variables to help adapt in scenarios that increase the scope of the task agent. For
example, in novelty type five, once OTACON detects stagnation in adaptation below
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the baseline level, it could propose a latent feature along side the original features. The
latent feature would be conditioned on all other features and on how well it predicts
the correct label. The task agent could be expanded to include the new latent feature,
or PCC could attempt to learn a function to correct errors in the task agent.

The smart home novelty generator [49] could be improved along three fronts. First,
the inclusion of human activity recognition datasets beyond those collected by the
CASAS project (e.g., mobility-focused datasets [55], video [56]) would enhance the
generality of the evaluation. Second, improvements to the ability to augment real data
with similar synthetic data (e.g., using generative adversarial networks [57]) would
allow for larger and longer-term experimentation. And third, additional novelty types
(e.g., new activities, introduction of interventions to assist inhabitant [58]) would also
enhance the generality of the novelty generator and provide a more challenging task
to novelty-aware agents.
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[21] Wydmuch, M., Kempka, M., Jaśkowski, W.: Vizdoom competitions: Playing
doom from pixels. IEEE Transactions on Games 11(3), 248–259 (2019) https:
//doi.org/10.1109/TG.2018.2877047

[22] Gamage, C., Pinto, V., Xue, C., Stephenson, M., Zhang, P., Renz, J.: Novelty gen-
eration framework for ai agents in angry birds style physics games. In: 2021 IEEE
Conference on Games (CoG), pp. 1–8 (2021). https://doi.org/10.1109/CoG52621.
2021.9619160

[23] Goss, S.A., Steininger, R.J., Narayanan, D., Olivença, D.V., Sun, Y., Qiu, P.,
Amato, J., Voit, E.O., Voit, W.E., Kildebeck, E.J.: Polycraft World AI Lab (PAL):
An Extensible Platform for Evaluating Artificial Intelligence Agents (2023). https:
//arxiv.org/abs/2301.11891

[24] Kejriwal, M., Thomas, S.: A multi-agent simulator for generating novelty in
monopoly. Simulation Modelling Practice and Theory 112, 102364 (2021) https:
//doi.org/10.1016/j.simpat.2021.102364

[25] Rambhatla, S.S., Chellappa, R., Shrivastava, A.: The Pursuit of Knowledge:
Discovering and Localizing Novel Categories using Dual Memory . In: 2021
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9133–
9143. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/
10.1109/ICCV48922.2021.00902

29

https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1016/j.knosys.2022.108632
https://doi.org/10.3389/frai.2024.1330257
https://doi.org/10.3389/frai.2024.1330257
https://doi.org/10.1016/j.pmcj.2019.01.004
https://doi.org/10.1016/j.pmcj.2019.01.004
https://doi.org/10.1007/s42524-025-4109-z
https://doi.org/10.3390/a15100381
https://doi.org/10.1109/TG.2018.2877047
https://doi.org/10.1109/TG.2018.2877047
https://doi.org/10.1109/CoG52621.2021.9619160
https://doi.org/10.1109/CoG52621.2021.9619160
https://arxiv.org/abs/2301.11891
https://arxiv.org/abs/2301.11891
https://doi.org/10.1016/j.simpat.2021.102364
https://doi.org/10.1016/j.simpat.2021.102364
https://doi.org/10.1109/ICCV48922.2021.00902
https://doi.org/10.1109/ICCV48922.2021.00902


[26] Moon, W., Park, J., Seong, H.S., Cho, C.-H., Heo, J.-P.: Difficulty-aware sim-
ulator for open set recognition. In: Computer Vision – ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXV, pp. 365–381. Springer, Berlin, Heidelberg (2022). https://doi.org/10.1007/
978-3-031-19806-9 21 . https://doi.org/10.1007/978-3-031-19806-9 21

[27] Alaghbari, K.A., Md. Saad, M.H., Hussain, A., Alam, M.R.: Activities recogni-
tion, anomaly detection and next activity prediction based on neural networks
in smart homes. IEEE Access 10, 28219–28232 (2022) https://doi.org/10.1109/
ACCESS.2022.3157726

[28] Dahmen, J., Cook, D.J.: Indirectly supervised anomaly detection of clinically
meaningful health events from smart home data. ACM Trans. Intell. Syst.
Technol. 12(2) (2021) https://doi.org/10.1145/3439870

[29] Chatterjee, A., Ahmed, B.S.: Iot anomaly detection methods and applications: A
survey. Internet of Things 19, 100568 (2022) https://doi.org/10.1016/j.iot.2022.
100568

[30] Bianchi, V., Bassoli, M., Lombardo, G., Fornacciari, P., Mordonini, M.,
De Munari, I.: IoT wearable sensor and deep learning: An integrated approach
for personalized human activity recognition in a smart home environment. IEEE
Internet of Things Journal 6(5), 8553–8562 (2019) https://doi.org/10.1109/JIOT.
2019.2920283

[31] Sprint, G., Cook, D.J., Fritz, R.S., Schmitter-Edgecombe, M.: Using smart homes
to detect and analyze health events. Computer 49(11), 29–37 (2016) https://doi.
org/10.1109/MC.2016.338
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A Ideal Incremental Learning Results

Figures 9 and 10 show the results of OTACON compared to the IDEAL incremen-
tal learning approach that provides additional training examples and retraining time
after each episode of a trial; whereas OTACON only receives examples after detecting
novelty. Still in this limited scenario, OTACON achieves ideal performance for most
novelty levels and even exceeds ideal performance in one level. See the main text for
more discussion of these results.

(a) Novelty Type 1 (b) Novelty Type 2

(c) Novelty Type 3 (d) Novelty Type 4

Fig. 9: Performance of OTACON and IDEAL across novelty
types 1-4. Performance is measured as the activity recog-
nition accuracy over the instances in an episode, or single
day, in the life of the smart home.
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(a) Novelty Type 5 (b) Novelty Type 6

(c) Novelty Type 7 (d) Novelty Type 8

Fig. 10: Performance for OTACON and IDEAL across nov-
elty types 5-8. Performance is measured as the activity
recognition accuracy over the instances in an episode,
or single day, in the life of the smart home.
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