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ABSTRACT
Graph-based relational learning (GBRL) differs from logic-
based relational learning, as addressed by inductive logic
programming techniques, and differs from frequent subgraph
discovery, as addressed by many graph-based data mining
techniques. Learning from graphs, rather than logic, presents
representational issues both in input data preparation and
output pattern language. While a form of graph-based data
mining, GBRL focuses on identifying novel, not necessarily
most frequent, patterns in a graph-theoretic representation
of data. This approach to graph-based data mining provides
both simplifications and challenges over frequency-based ap-
proaches. In this paper we discuss these issues and future
directions of graph-based relational learning.
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1. INTRODUCTION
Graph-based relational learning (GBRL) is the task of find-
ing novel, useful, and understandable graph-theoretic pat-
terns in a graph representation of data. While data mining
approaches in general address the same task, most graph-
based data mining approaches focus only on the frequency
of the pattern. Therefore, we view GBRL as a subfield of
graph-based data mining (GBDM), because the novelty of
a pattern typically involves more than just the frequency
of the pattern in the data. This distinguishes GBRL from
the many GBDM approaches focused on finding frequent
subgraphs [7; 10; 17], i.e., all subgraphs in the data whose
number of instances above some minimum support.

We also distinguish GBRL from inductive logic program-
ming (ILP) approaches to relation learning. Obviously, the
underlying representations (graphs vs. logic) are the pri-
mary distinction. While graphs are extremely flexible in
terms of the data they can encode, the semantics are not
well defined. Conceptual graphs (CGs) [16] represent a body
of work aimed at defining a graph semantics similar to that
of first-order logic. CGs attach a semantics to the graph by

distinguishing between relations and entities or attributes.
This semantics allow conversion between CGs and restricted
forms of first-order logic. For this reason CG equivalents of
logic provide a reasonably unbiased mechanism for compar-
ing graph-based and logic-based relational learners.

These equivalencies between graphs and logic raise the ques-
tion of whether GBRL and ILP are performing basically
the same type of relational learning, i.e., searching equiv-
alent spaces. This is not true for two reasons. First, and
we view this as an advantage for GBRL, ILP approaches
rely on the prior identification of the predicate or predicates
to be defined by the learned pattern. GBRL approaches
are more data-driven, identifying any portion of the graph
that is able to distinguish between classes. Second, and
we view this as an advantage for ILP, the logic-based rep-
resentation allows the expression of more complicated pat-
terns involving, e.g., recursion, variables, and constraints
among variables. Graphically speaking, variables and vari-
able constraints would imply that a portion of a graphical
pattern matches any arbitrary subgraph or that two parts of
the graphical pattern must be identical without specifying
the parts’ structure. These representational limitations of
graphs can be overcome, but at a computational cost.

2. GBRL
Only a few GBRL approaches have been developed to date.
Two specific approaches, Subdue [2] and GBI [18], take a
greedy approach to finding subgraphs maximizing an infor-
mation theoretic measure. Subdue searches the space of sub-
graphs by extending candidate subgraphs by one edge. Each
candidate is evaluated using a minimum description length
metric [15], which measures how well the subgraph com-
presses the input graph if each instance of the subgraph were
replaced by a single vertex. GBI continually compresses the
input graph by identifying frequent triples of vertices, some
of which may represent previously-compressed portions of
the input graph. Candidate triples are evaluated using a
measure similar to information gain. Kernel-based methods
have also been used for supervised GBRL [9].

We describe two extensions to the basic GBRL approach
that take particular advantage of an information theoretic
evaluation measure combined with an iterative application.
These extensions are supervised learning and graph grammar
induction. We describe these extensions in the context of the
Subdue GBRL system, but they can be implemented fairly
easily with similar GBRL approaches.
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Figure 1: Graph-based supervised learning example with (a)
four positive and four negative examples, (b) one possible
graph concept, and (c) another possible graph concept.

2.1 Supervised Learning
Extending a GBRL approach to perform supervised learning
involves, of course, the need to handle negative examples
(focusing on the two-class scenario). In the case of a graph
the negative information can come in three forms. First,
the data may be in the form of numerous small graphs, or
graph transactions, each labeled either positive or negative.
Second, data may be composed of two large graphs: one
positive and one negative. Third, the data may be one large
graph in which the positive and negative labeling occurs
throughout. We will consider the third scenario in section 3.

The first scenario is closest to the standard supervised learn-
ing problem in that we have a set of clearly defined examples.
Figure 1a depicts a simple set of positive and negative exam-
ples. Let G+ represent the set of positive graphs, and G−

represent the set of negative graphs. Then, one approach
to supervised learning is to find a subgraph that appears
often in the positive graphs, but not in the negative graphs.
This amounts to replacing the information-theoretic mea-
sure with simply an error-based measure. For example, we
would find a subgraph S that minimizes

|{g ∈ G+|S 6⊆ g}|+ |g ∈ G−|S ⊆ g}|

|G+|+ |G−|
,

where S ⊆ g means S is isomorphic to a subgraph of g. The
first term of the numerator is the number of false negatives,
and the second term is the number of false positives.

This approach will lead the search toward a small subgraph
that discriminates well, e.g., the subgraph in Figure 1b.
However, such a subgraph does not necessarily compress
well, nor represent a characteristic description of the tar-
get concept. We can bias the search toward a more charac-
teristic description by using the information-theoretic mea-
sure to look for a subgraph that compresses the positive
examples, but not the negative examples. If I(G) repre-
sents the description length (in bits) of the graph G, and
I(G|S) represents the description length of graph G com-
pressed by subgraph S, then we can look for an S that
minimizes I(G+|S) + I(S) + I(G−) − I(G−|S), where the

last two terms represent the portion of the negative graph
incorrectly compressed by the subgraph. This approach will
lead the search toward a larger subgraph that characterizes
the positive examples, but not the negative examples, e.g.,
the subgraph in Figure 1c.

Finally, this process can be iterated in a set-covering ap-
proach to learn a disjunctive hypothesis. If using the error
measure, then any positive example containing the learned
subgraph would be removed from subsequent iterations. If
using the information-theoretic measure, then instances of
the learned subgraph in both the positive and negative ex-
amples (even multiple instances per example) are compressed
to a single vertex. We should note that the compression is
a lossy one, i.e, we do not keep enough information in the
compressed graph to know how the instance was connected
to the rest of the graph. This approach is consistent with
our goal of learning general patterns, rather than mere com-
pression. For more information on graph-based supervised
learning, see [6].

2.2 Graph Grammar Induction
As mentioned earlier, two of the advantages of an ILP ap-
proach to relational learning are the ability to learn recur-
sive hypotheses and constraints among variables. Graph
grammars offer the ability to represent recursive graphi-
cal hypotheses [5]. Graph grammars are similar to string
grammars except that terminals can be arbitrary graphs
rather than symbols from an alphabet. Graph grammars
can be divided into two types: node-replacement grammars
and hyperedge-replacement grammars. Node-replacement
grammars allow non-terminals on vertices, and hyperedge-
replacement grammars allow non-terminals on edges. Fig-
ure 2b shows an example of a context-free, node-replacement
graph grammar. Recent research has begun to develop tech-
niques for learning graph grammars [8; 4].

A variant of graph grammars called stochastic graph gram-
mars [11] has been developed to represent uncertainty. Each
production has an associated probability such that all the
productions involving a particular non-terminal on the left-
hand side sum to one. This induces a distribution over the
graphs in the language accepted by the graph grammar. A
related ILP formalism is stochastic logic programs (SLPs)
[13], although SLPs achieve Turing equivalence, while stochas-
tic graph grammars are limited to context-free languages.

A GBRL approach can be extended to consider graph gram-
mar productions by analyzing the instances of a subgraph to
see how they relate to each other. If two or more instances
are connected to each other by an edge, then a recursive
production rule generating an infinite sequence of such con-
nected subgraphs can be constructed. A slight modification
to the information-theoretic measure taking into account the
extra information needed to describe the recursive compo-
nent of the production is all that is needed to allow such a
hypothesis to compete along side simple subgraphs (i.e., ter-
minal productions) for maximizing compression. The above
constraint that the subgraphs be connected by a single edge
limits the grammar to be context free. More than one con-
nection between subgraph instances can be considered, and
would allow learning context-sensitive grammars, but the
algorithm is exponential in the number of connections.

Figure 2b shows an example of a recursive, node-replacement
graph grammar production rule learned from the graph in
Figure 2a. These productions can be disjunctive, as in
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Figure 2: Graph grammar learning example with (a) the
input graph, (b) the first grammar rule learned, and (c) the
second and third grammar rules learned.

Figure 2c, which represents the final production learned
from Figure 2a using this approach. The disjunctive rule is
learned by looking for similar, but not identical, extensions
to the instances of a subgraph. A new rule is constructed
that captures the variability of the extensions, and is in-
cluded in the pool of production rules competing based on
their ability to compress the input graph. With a proper
encoding of this disjunction information, the MDL criterion
will tradeoff the complexity of the rule with the amount of
compression it affords in the input graph.

An alternative to defining these disjunctive non-terminals is
to construct a variable whose range consists of the different
values of the production. In this way we can introduce con-
straints among variables contained in a subgraph by adding
a constraint edge to the subgraph. For example, if the four
instances of the triangle structure in Figure 2a each had an-
other edge to a c, d, e and f vertex respectively, then we could
propose a new subgraph, where these two vertices are repre-
sented by variables, and an equality constraint is introduced
between them. If the range of the variable is numeric, then
we can also consider inequality constraints between variables
and other vertices or variables in the subgraph pattern.

A form of relational grammar induction takes place in ILP
approaches, in that the learned theory can be viewed as a
grammar for generating positive examples. In fact, the Duce
system [12] used six transformation operators to search the
space of propositional logic grammars guided by a simplic-
ity measure. However, the transformations were not data
driven as in the above graph grammar induction, and recur-
sive productions were not learned. As we mentioned earlier,
the starting symbol of an ILP theory is fixed by the input
predicate to be learned. The graph grammar approach is
not restricted to include a particular relation, but essen-
tially invents relations that compress the relational data.
Some earlier ILP systems did achieve this ability to invent
relations in the context of learning a particular predicate
theory. CIGOL [14] invented predicates using inverse reso-
lution. These predicates were also evaluated based on their
ability to compress the learned theory.

3. FUTURE DIRECTIONS
The need for practical GBRL algorithms is growing fast.
Therefore, we need to address several challenging scalabil-
ity issues, including incremental learning in dynamic graphs.
Another issue regarding practical applications involves the
blurring of positive and negative examples in a supervised
learning task, that is, the graph has many positive and neg-
ative parts, not easily separated, and with varying degrees
of class membership. We discuss these issues below.

3.1 Scalability
Scaling GBRL approaches to very large graphs, graphs too
big to fit in main memory, is an ever-growing challenge.
We have investigated two approaches to address this chal-
lenge. One approach involves partitioning the graph into
smaller graphs that can be processed in parallel [3]. A sec-
ond approach involves implementing GBRL within a rela-
tional database management system, taking advantage of
user-defined functions and the optimized storage capabili-
ties of the RDBMS. These approaches have shown promise
in allowing GBRL systems such as Subdue to process arbi-
trarily large graphs.

A newer issue regarding scalability is what we call dynamic
graphs. With the advent of real-time streaming data, many
data mining systems must mine incrementally, rather than
off-line from scratch. The same is true for GBRL systems.
Many of the domains we wish to mine in graph form are
dynamic domains, e.g., spatio-temporal NASA remote sens-
ing data. We do not have the time to periodically rebuild
graphs of all the data to date and run a GBRL system from
scratch. We must develop methods to incrementally update
the graph and the patterns currently prevalent in the graph.
The approach we are currently investigating is similar to the
graph partitioning approach for distributed processing. New
data can be stored in an increasing number of partitions.
Information within partitions can be exchanged, or a repar-
titioning can be performed if the information loss exceeds
some threshold. GBRL can be used to search the new par-
titions, suggesting new subgraph patterns as they evaluate
highly in new and old partitions.

Similar approaches have been developed to scale ILP sys-
tems. For example, the learning from interpretations ap-
proach [1] takes advantage of the typical disconnected nature
of examples, even in relational domains, to make tractable
the relational learning and accompanying coverage testing.
Comparison of these GBRL and ILP techniques for scalabil-
ity is a fruitful area of future work.

3.2 Supervised Graphs
Most graph-based data mining approaches (and data mining
approaches in general) assume the input data is in the form
of transactions, i.e., a set of small, disconnected graphs. At
the other extreme is the assumption that the input is one
large interconnected graph. The transactional representa-
tion allows reduced matching complexity and more straight-
forward assignment of graphs to classes for supervised learn-
ing. However, some data is more naturally represented as
one large graph, where the class assignments are made through-
out the graph and possibly to varying degrees. We call such
a graph a supervised graph, in that the graph as a whole
contains class information, but is not easily divided into
individual classified components. For example, consider a
social network in which we seek to find relational patterns



distinguishing various income levels. Individuals of a partic-
ular income level can appear anywhere in the graph, and we
cannot easily partition the graph into transactions without
potentially severing the target relationships. Also, some en-
tities in the graph may have memberships in multiple classes.
Such a scenario presents a difficult challenge for future work
in graph-based relational learning.

We are investigating two approaches to this task. The first
involves modifying the MDL encoding to take into account
the amount of information necessary to describe the class
membership of compressed portions of the graph. The sec-
ond approach involves treating the class membership of a
vertex or edge as a cost, which can vary from -1 for clearly
negative members to +1 for clearly positive members. The
information-theoretic value of the subgraph patterns can be
weighted by the costs of the instances of the pattern. The
ability to learn from supervised graphs will also allow the
user more flexibility in indicating class membership where
known, and to varying degrees, without having to clearly
separate the graph into disjoint examples.

4. CONCLUSIONS
Graph-based relational learning is a fast-growing field of
data mining due to the increasing interest in mining the rela-
tional aspects of graph-oriented data. GBRL is distinct from
frequent subgraph mining approaches, because it attempts
to identify a small number of subgraph patterns that max-
imize an information-theoretic metric, rather than finding
all subgraphs appearing in a certain percentage of the input
graph. GBRL methods differ from ILP methods by lever-
aging properties unique to graphs versus logic. With over
ten years of development, our Subdue approach has become
an effective method for learning from graphs. Recent ad-
vances in supervised learning and graph-grammar induction
have given Subdue capabilities seen in ILP and other GBRL
approaches.

However, much work in GBRL remains to be done. Be-
cause many of the graph-theoretic operations inherent in
GBRL are NP-complete or definitely not in P, scalability is
a constant challenge. With the increased need for mining
streaming data, the development of new methods for incre-
mental learning from dynamic graphs is important. Also,
the blurring of example boundaries in a supervised learning
scenario gives rise to a supervised graph, where the class
membership of even nearby vertices and edges can vary con-
siderably. We need to develop better methods for learning
in these scenarios.

As more and more domains realize the increased predictive
power of patterns involving relationships between entities,
rather than just attributes of entities, graph-based relational
learning and data mining will become foundational to our
ability to better understand the ever-increasing amount of
data in our world.
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