
A Learning Architecture for Automating the Intelligent Environment

G. Michael Youngblood, Diane J. Cook, and Lawrence B. Holder
Department of Computer Science & Engineering

The University of Texas at Arlington
Arlington, Texas 76019-0015

{youngbld, cook, holder}@cse.uta.edu

Abstract

Developing technologies and systems for perception
and perspicacious automated control of home and work-
place environments is a challenging problem. We
present a complete agent architecture for learning to au-
tomate the intelligent environment and discuss the de-
velopment, deployment, and techniques utilized in our
working intelligent environments. Empirical evaluation
of our approach has proven its effectiveness at reducing
inhabitant interactions by 72.2%.

Introduction
Since the beginning, people have lived in places that pro-
vide shelter and basic comfort and support, but as society
and technology advance there is a growing interest in im-
proving the intelligence of the environments in which we
live and work. These new intelligent environments need to
go beyond the basics and assist us in our everyday journey
through life. The MavHome Project (Managing and Adap-
tive Versatile Home) is focused on conducting just such re-
search in the smart home technologies of tomorrow. We take
the viewpoint of treating an environment as an intelligent
agent (Das et al. 2002). We seek to develop and integrate
components that will enable these intelligent environments
of the future where the goals of these environments are to
maximize the comfort of the inhabitants, minimize the con-
sumption of resources, and maintain safety and security.

Our work goes beyond the home and office environments
and encompasses all environments in which observations
can be perceived through sensors, those observations can be
reasoned about by the system, and actions can be taken to
automate features of that environment. We conduct research
in the MavLab, our workplace research lab at UTA, and an
on-campus apartment called the MavPad which hosts a full-
time student resident.

There are many intelligent environment projects produc-
ing valuable research. The Georgia Tech Aware Home
(AHRI 2003; Salber, Dey, & Abowd 1999; Abowd, Battes-
tini, & O’Connell 2002), the AIRE group at the MIT AI Lab
(AIRE Group 2004), the Interactive Workspaces project at
Stanford University (Stanford Interactivity Lab 2003), and

Copyright © 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

the Gaia project at UIUC (Gaia Project 2004) all focus on
areas of infrastructure, localization, context-aware comput-
ing, and HCI work for intelligent home and workplaces. The
Adaptive Home at UC-Boulder utilizes reinforcement learn-
ing and neural networsk to control the lighting, HVAC, and
water temperature in a manner that minimizes operating cost
(Mozer 1999). The field of intelligent environment research
has many niches. The MavHome Project is unique in that it
focuses on the entire environment management and not just
a single area of control, it utilizes advanced AI techniques in
novel ways (e.g., seeding HHMMs with Data Mining tech-
niques), and is designed for long term usage and growth with
the inhabitants.

Work in intelligent environments is an important step in
the forward progress of technology. As computing becomes
more pervasive and people’s lives become busier, advances
in intelligent environments can aid by automating the simple
things (e.g., lighting and HVAC control), work to actively
conserve resources (reducing cost), and improve safety and
security. Homes that can increase their own self-sufficiency
over time can augment busy or aging inhabitants allowing
people to live in their homes longer (potentially alleviating
some health care system burdens) and free time to allow peo-
ple to focus on other aspects of their lives.

The goal of this paper is to present one possible en-
gineered approach to developing intelligent environments.
We present the MavHome architecture, some of the lessons
learned, some of our initial experimental results, and discuss
on-going case studies.

Architecture
The MavHome architecture is designed of modular compo-
nents and open source software. Modularity is chosen over
a monolithic system to promote ease of maintenance and re-
placement. The architecture is designed to allow compo-
nents to be swappable, potentially even hot-swappable, in
order to create a robust and adaptive system. We present the
architecture first in a functional abstract view and then in a
detailed concrete form.

The MavHome abstract architecture consists of four co-
operating layers. Starting at the bottom, the Physical layer
contains the hardware within the environment. This includes
all physical components such as sensors, actuators, network
equipment, and computers. The Communication layer lies

IAAI-05 / 1576



available to all layers to facilitate communication, process
mobility, and service discovery between components. The
communication layer includes the operating system, device
drivers, low-level component interfaces, device proxies, and
middleware. The Information layer gathers, stores, and gen-
erates knowledge useful for decision making. The informa-
tion layer contains prediction components, databases, user
interfaces, data mining components, and high-level aggre-
gators of low-level interfaces (e.g., combined sensor or ac-
tuator interfaces). The Decision layer takes in information,
learns from stored information, makes decisions on actions
to automate in the environment, and develops policies while
checking for safety and security.

Perception is a bottom-up process. Sensors monitor the
environment and make information available through the
communication layer to information layer components. The
database stores this information while other information
components process the raw information into more useful
knowledge (e.g., predictions, abstractions). New informa-
tion is presented to the decision layer components upon re-
quest or arrangement. The decision layer uses learned ex-
perience, observations, and derived knowledge to select an
action (which may be vacuous). The decision is checked
for safety and security concerns and, if allowed, signals the
beginning of action execution. Action execution flows top-
down. The decision action is communicated to the informa-
tion layer which records the action and communicates it to
the physical layer. The physical layer performs the action,
thus changing the state of the world and triggering a new
perception. The process repeats ad infinitum with periodic
retraining of the decision layer components, policy develop-
ment, database archiving, and component maintenance.

The abstract layers of the MavHome architecture are re-
alized through a set of concrete functional layers. These
concrete layers are shown with some example components
in Figure 1. The base layer is the Physical Components
layer which consists of all real devices utilized in the sys-
tem. These devices include powerline control interface hard-
ware, input devices, and so forth, with the exception of the
computer with which equipment is interfaced. The physi-
cal computer(s) and associated network this system resides
on is considered the host of all layers above the physical.
The Computer Interface layer contains the hardware inter-
faces to physical devices (e.g., PCI card interfaces, USB,
firewire), device drivers to utilize the hardware, the operat-
ing system of the computer, and all software interfaces that
provide services or APIs for hardware access. It should be
noted that since all components of above layers reside and
utilize operating system services, these services are shown to
extend to all layers. In the Logical Interface layer, the hard-
ware device services and APIs are utilized to create simple,
light-weight programs that create a series of atomic services
around each sensor and effector in the system. These logi-
cal proxies provide information and control via socket and
shared memory based interfaces in a modular design. All of
the lower layers are based on simple single application com-
ponents, but in higher layers the components become more
complex. The Middleware layer provides valuable services
to the upper layers of the architecture to facilitate commu-

nication and service discovery. The Services layer utilizes
the middleware layer to gather information from lower lay-
ers and provide information to system applications above.
Services either store information, generate knowledge, ag-
gregate lower level components, or provide some value-
added non-decision making computational function or fea-
ture (e.g., user interfaces). The Applications layer is where
learning and decision-making components operate.

Figure 1: MavHome concrete architecture.

Implementation and Deployment
The MavHome architecture has been developed and de-
ployed over the last 3 years in the MavLab and over the last
year and a half in the MavPad.

Lighting control is the largest effector in most intelligent
environments. We currently use X10-based devices in the
form of lamp and appliance modules to control all lights and
appliances. The CM-11A interface is used to connect com-
puters to the power system to control the devices. Radio-
frequency based transmitters (in remote control form factor)
and receivers are also used for device interaction. X10 was
chosen because of its availability and low price. Many home
users also utilize X10 technology, so immediate benefits to
the current home user are possible.

Perception through light, humidity, temperature, smoke,
gas, motion, and switches is performed through a sensor
network we developed. The Argus network system is a
PIC16F877-based system comprised of a master board that

IAAI-05 / 1577



Figure 2: MavPad sensors.

interfaces to the computer via a serial interface and con-
nects up to 100 slave boards that host up to 64 sensors each,
ganged in groups of 4 on a sensor dongle. Special masters
have also been developed for high speed digital and mixed
digital/analog sensing applications. A stepper-motor mas-
ter has also been developed to control up to 4 mini-blinds.
Figure 2 shows the MavPad sensor layout.

A key element in perception is inhabitant localization.
The Argus Digital Master is used in conjunction with pas-
sive infrared (PIR) sensors placed on the ceiling in traffic
areas to detect motion. The sensors have a 60° field of view
and are placed 10 feet from the ground. In order to reduce
the sensing area, tubes were placed over the sensors to re-
duce the floor footprint to a 4 foot sensing circle. Tests in
the MavLab show a consistent single inhabitant location de-
tection rate of 95% or better accuracy. Multiple inhabitant
studies will require augmenting technology, so our focus is
on single inhabitants.

The logical interfaces for all X10 and Argus based com-
ponents have been written as light-weight configurable mod-
ules. The proxies maintain the current state of each device
and provide a mechanism for reading and, if applicable, con-
trol. The communication protocols for X10 devices and Ar-

gus components are well defined and interface availability is
advertised through zero configuration (ZeroConf) technol-
ogy.

Components desiring to find X10 or Argus components
merely need to perform a link-local query for devices that
follow the defined MavHome X10 and Argus protocols and
a list of available devices will be presented to the requester.
Contact information is returned to the requester to allow
connection to the logical proxy. Through this mechanism
no configuration is required and the system is very adap-
tive and dynamic. New proxies advertise their availability
and older ones remove theirs’ before they shutdown. We
have had a high level of success using ZeroConf technology
with very few problems once the components are developed.
When we were using a CORBA name server we had close to
a 50% component communication or discovery failure rate
at any given time.

MavHome uses two main middleware packages. Commu-
nication between high level components is performed using
the Common Object Request Broker Architecture (CORBA)
due to the clarity of interface design provided by the Inter-
face Description Language (IDL), ease of integration, ma-
turity and stability of the technology, and object-oriented
design compatible with our C++ implemented components.
Zero configuration technologies for replacing the CORBA
naming service and utilizing service discovery are provided
by the Apple Multicast DNS responder and adherence to the
ZeroConf standard.

Services
Implemented services include a PostgreSQL database that
stores information, user interfaces, prediction components,
data mining components, and logical proxy aggregators
(e.g., the projector screen aggregator that takes simple “up”
or “down” commands to coordinate the efforts of a timed
control of three switches to place the screen in the proper
position). Resource utilization services monitor current util-
ity consumption rates and provide usage estimates and con-
sumption queries.

Figure 3: MavCore architecture.

Prediction An intelligent environment must be able to ac-
quire and apply knowledge about its inhabitants in order
to adapt to the inhabitants and meet the goals of comfort
and efficiency. These capabilities rely upon effective predic-
tion algorithms. Given a prediction of inhabitant activities,

IAAI-05 / 1578



MavHome can decide whether or not to automate the activ-
ity or even find a way to improve the activity to meet the
system goals.

Specifically, the MavHome system needs to predict the in-
habitant’s next action in order to automate selected repetitive
tasks for the inhabitant. The system will need to make this
prediction based only on previously-seen inhabitant interac-
tion with various devices. It is essential that the number of
prediction errors be kept to a minimum–not only would it be
annoying for the inhabitant to reverse system decisions, but
prediction errors can lead to excessive resource consump-
tion. Another desirable characteristic of a prediction algo-
rithm is that predictions be delivered in real time without
resorting to an offline prediction scheme.

Based upon our past investigations, MavHome uses the
Active-LeZi algorithm (Gopalratnam & Cook 2003) to meet
our prediction requirements. By characterizing inhabitant-
device interaction as a Markov chain of events, we utilize a
sequential prediction scheme that has been shown to be op-
timal in terms of predictive accuracy. Active-LeZi is also
inherently an online algorithm, since it is based on the in-
cremental LZ78 data compression algorithm.

In our evaluation and usage of Active-LeZi (ALZ) in the
MavLab, we have achieved 100% predictive accuracy on 30
days of real data (200 events/day, no noise) for single inhab-
itant patterns. The MavHome systems first train the algo-
rithm and then use the predictions in real time. When pre-
dictive accuracy drops below a defined threshold, the predic-
tor is retrained over data from a configurable sliding window
to adapt for concept drift in the changing patterns of inhabi-
tants.

Data Mining The MavHome approach to state space re-
duction from the large number of potential environment ob-
servations is to abstract inhabitant activity to episodes that
represent the current task of involvement. Given the inhab-
itant task episode, observations not related to the task can
be pruned. A difficult problem is how to discover these
episodes. After discovering the episodes, it is also desir-
able to be able to classify streamed observations to episodes
in real time with the same service.

MavHome uses the Episode Discovery (ED) algorithm
(Heierman & Cook 2003) for finding inhabitant episodes in
the collected data and for episode classification of streamed
observations. ED is an input, not transaction, based algo-
rithm that mines device activity streams trying to discover
clusters of interactions that are closely related in time. Sig-
nificance testing is performed on discovered clusters to gen-
erate sets of significant episodes based on the frequency of
occurrence, length, and regularity. Further processing using
the Minimum Description Length (MDL) principle (Rissa-
nen 1989) and greedy selection produces sets of significant
episodes. These are labeled and directly correspond to an
inhabitant task.

When an inhabitant is first introduced to an intelligent en-
vironment no automation should occur for an initial obser-
vation period. This allows the building of a database of po-
tential episodes of normal task activity. This is inhabitant
centric and the observation period duration is determined by

data compressibility which is used to determine the stabil-
ity of the data with relation to episode discovery. A sta-
ble, consistent data compression indicates an end to observa-
tion. Identification of concept drift and shift is performed by
continued monitoring of streaming data and compressibility.
Changes in compressibility indicate a need to reevaluate the
discovered episodes.

Episode discovery, classification, and identification are
utilized to reduce the state space of an intelligent envi-
ronment to a set of inhabitant-centric tasks. Thus, the
MavHome architecture is inhabitant-centric.

Applications
The application layer components learn, make the decisions,
and follow set policies on safety and security. They also
maintain a level of fault detection and correction as well as
providing valuable feedback to the system. The MavCore ar-
chitecture illustrating the main services and application layer
components is shown in Figure 3.

Decision Making Decision making is performed in
the ProPHeT (Providing Partially-observable Hierarchical
(HMM/POMDP) based decision Tasks) component. The
world representation at this level is the Hierarchical Hid-
den Markov Model (HHMM) (Fine, Singer, & Tishby 1998)
based upon a hierarchy of episodes of activity mined from
stored observations. As review, an HHMM is defined as
a set of states S, which include production states (leaves)
that produce observations, abstract states which are hid-
den states (unobservable) representing entire stochastic pro-
cesses, and end (child) states which return control to a parent
node; a horizontal transition matrix T, mapping the probabil-
ity of transition between child nodes of the same parent; a
vertical transition vector Π, that assigns the probability of
transition from an internal node to its child nodes; a set
of observations Z; and a mapping of a distribution proba-
bility set of observations in each product state O. For de-
tailed discussions refer to (Fine, Singer, & Tishby 1998;
Theocharous, Rohanimanesh, & Mahadevan 2001).

From a collection of data that contains many repetitive
patterns, data-mining techniques can automatically discover
these patterns and provide statistical data on pattern permu-
tations within a given set of members and over the entire
data set. This information can be utilized to create abstract
states from the identified patterns and production states from
the pattern sequences.

The vertical transition vector values between abstract
nodes from the root to the episodes is assigned from episode
occurrence information from ED. Horizontal transition ma-
trix data between abstract nodes of the same level is captured
by repeating the episode discovery process on the discov-
ered episodes on each level in order to learn the abstractions
of the next higher level. This can be repeated until no ab-
stractions for a level are found, in which case this is the root
level. Each abstract state is partially represented by the ob-
servation sequences it contains in its child nodes. Due to
overlap in these observation sequences between parent ab-
stract nodes, abstract nodes can be grouped into hierarchies.
After this process a n-tier HHMM is automatically created

IAAI-05 / 1579



from learned data. Hierarchy is data driven and learned.
This technique accounts for the automatic construction of

the HHMM S, T, and Π. Z is the set of all observations in
the unordered set of symbols discovered by ED for any given
episode. From the last paragraph discussion on abstract state
representations of observations, it can be seen how O can be
easily calculated (where O(s, z) → (0, 1): the probability
of observing z in state s). This is a usable HHMM; however,
we desire a framework where we can perform automation
and possibly perform additional learning.

A HPOMDP follows the same base definition as an
HHMM with the addition of a set of actions A that is used
to transition between states, and a reward function R de-
fined on the product states. For detailed discussions refer
to (Theocharous, Rohanimanesh, & Mahadevan 2001).

Due to the distinguishing characteristic of a one-to-one
correspondence between action and observation, the tran-
sition action is merely the action of that observation (e.g.,
if the observation is that the light came on then the action
is to turn the light on). In the intelligent environments do-
main, there are two types of observations: those that have
corresponding actions and those that do not. For example,
we may control lights and appliances, but we cannot control
motion sensing or opening doors (yet). For those transitions
that do not have a corresponding action, the action is to do
nothing. These actions are mutually exclusive; thus, extend-
ing the derived HHMM from the last section to a HPOMDP
is performed first by adding the obvious actions to the state
transitions and then by establishing a reward (or cost) for
transition. This reward can be fixed, heuristic-based, or
function-based (e.g., a function of utility cost changes for
an action).

Usage of this model entails using belief states based on
current environmental observations to map to states in the
HPOMDP. We are using ED in an online, stream mining
role to provide a set of membership belief states. We are
also using ALZ to provide additional belief. From the given
current belief state, the action with the largest reward should
be chosen (Kaelbling, Littman, & Cassandra 1996). In our
work, we look for the nearest automatable action. Addi-
tional learning from feedback or interaction data may be
used to update the transition probabilities of the model with
the goal of improving convergence to the desired model
(Theocharous, Rohanimanesh, & Mahadevan 2001).

Arbitration Before an action is executed it is checked
against the policies in the policy engine, ARBITER (A Rule-
Based InitiaTor of Efficient Resolutions). These policies
contain designed safety and security knowledge and inhab-
itant standing rules. Through the policy engine the system
is prevented from engaging in erroneous actions that may
perform actions such as turning the heater to 120° F or from
violating the inhabitant’s stated wishes (e.g., a standing rule
to never turn off the inhabitant’s night light).

Evaluation
MavHome systems have the goal of maximizing the comfort
of the inhabitants, minimizing the consumption of resources,
and maintaining safety and security. We have established

Figure 4: Learned HHMM from MavPad inhabitant data.

metrics to measure the accomplishment of these goals. In-
habitant comfort is measured by the number of inhabitant
interactions performed with devices that can be automated.
The system should continually strive to reduce the number
of inhabitant initiated interactions. Resource consumption
is measured by the utility metering of the environment. The
utility consumption should decrease if the system is prop-
erly minimizing resource consumption. Safety and security
are measured by the number of safety interventions from the
policy engine. The system should minimize the number of
policy engine interventions.

Experimentation and Results
Our Argus sensor networks have been fully deployed in
the MavLab and MavPad and are stable with over a year
of usage. We have had success in automatically building
HHMMs from synthetic and real-world data using ED and
ProPHeT. ARBITER has been deployed and tested in the
MavPad automating the life of a real inhabitant over this
past summer. The inhabitant indicated that the automation
of their desired rules worked well, most of the time. The ex-
ception being when their rules were not defined well enough
the system would control the home not necessarily as desired
at that time. This indicates that even user-defined rules may
have to be modified over time by the system to learn their
desired meaning. We are working to fully integrate ALZ,
ED, ProPHeT, and ARBITER past the basic research con-
nections and testing into a complete 24-7 real-time system.
Initial work on a fault tolerance engine this summer demon-
strated the feasibility of using the Argus sensor network to
sense X10 changes to determine if executed actions by the
system physically occurred. We are still working on when
to initiate an opportunity for modifying the HHMM struc-
ture to improve resource utilization. The MavPad hosts 178
sensors and is controlled by four networked personal com-
puters. It is very feasible to install the MavHome systems
into an existing environment with minimal impact. Sensor
instability plagued the first couple of months, but those is-
sues have been corrected by software and minor hardware
changes. The biggest problems on the project so far have
been the stability of the power grid and power loss issues in
the stormy seasons, occasional sensor noise, and operating
system stability for programs operating 24-7.

As an illustration of the viability of the architecture, the
techniques described in this paper, and the MavHome sys-
tem deployed in the MavPad, we have evaluated a typical
day in the inhabitant’s life with the goal of reducing the
inhabitant’s interactions with the lighting in the MavPad.

IAAI-05 / 1580



The data was restricted to just motion and lighting interac-
tions which account for an average of 10,310 events per day.
There are on average 18 lighting device interactions a day
with the remainder being motion information. Using our Re-
siSim (Residentual Simulator) tool which exactly replicates
the real MavPad, we trained ALZ and ED on real data and
then repeated a typical MavPad inhabitant day in the sim-
ulator to determine if the system could automate the lights
throughout the day in real-time.

ALZ processed the data and converged to 99.99% accu-
racy on test data from the data set. When the system was run
with automation decisions being made by ALZ alone, it was
able to reduce interactions by one event as shown in Figure
5. ALZ performance on streaming data maintained between
40-60% accuracy.

ED processed the data and found 10 interesting episodes
that correspond to automatable actions. This was abstracted
through ED to three abstract nodes. A HHMM was con-
structed in ProPHeT. Figure 4 shows this model without the
production nodes (it is difficult to show the full models be-
cause even the simple models when printed take over seven
feet of paper in order to be legible). This system was able to
reduce interactions by 72.2% to five interactions. As a com-
parison, the HHMM produced was flattened and the abstract
nodes removed to produce a flat HMM. This HMM was still
able to reduce interactions by 33.3% to 12. Comparative
results are shown in Figure 5.

Figure 5: Interaction reduction.

The additional abstractions in the hierarchy coupled with
a next state produced by ALZ and a probability of mem-
bership from ED to provide input to the belief state create
a system that improves automation performance over a flat
model or prediction alone. Problems in the automation de-
cisions appear around interactions that occur within a short
time-frame and are currently under investigation.

Future Work
Current experimentation continues in the MavPad and
MavLab. Our goal is to strengthen our two main contri-
butions of this work: the data-driven automated construc-

tion of a HHMM and the dynamic incremental updating
of the structure through learning and additional data-driven
changes for the intelligent environment to continually adapt
and learn with the inhabitants. We are continuing to refine
our work by evaluating increasingly complex patterns, im-
proving automation usage, expanding the sensor resolution,
and are investigating reinforcement learning techniques in
order to improve and adapt our systems automatically over
time.

Acknowledgements
This work was supported by National Science Foundation
grants IIS-0121297 and EIA-9820440.

References
Abowd, G. D.; Battestini, A.; and O’Connell, T. 2002.
The Location Service: A Framework for Handling Multiple
Location Sensing Technologies.

AHRI. 2003. [AHRI] - Aware Home Research Initiative.

AIRE Group. 2004. MIT Project AIRE – About Us.

Das, S. K.; Cook, D. J.; Bhattacharya, A.; III, E. O. H.;
and Lin, T.-Y. 2002. The Role of Prediction Algorithms in
the MavHome Smart Home Architecture. IEEE Wireless
Communications Special Issue on Smart Homes 9(6):77–
84.

Fine, S.; Singer, Y.; and Tishby, N. 1998. The Hierar-
chical Hidden Markov Model: Analysis and Applications.
Machine Learning 32(1):41–62.

Gaia Project. 2004. Gaia homepage.
http://gaia.cs.uiuc.edu.

Gopalratnam, K., and Cook, D. J. 2003. Active LeZi: An
Incremental Parsing Algorithm for Device Usage Predic-
tion in the Smart Home. In Proceedings of the Florida
Artificial Intelligence Research Symposium, 38–42.

Heierman, E., and Cook, D. J. 2003. Improving Home Au-
tomation by Discovering Regularly Occurring Device Us-
age Patterns. In Proceedings of the International Confer-
ence on Data Mining.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1996. Planning and Acting in Partially Observable
Stochastic Domains. Technical Report CS-96-08, Brown
University, Providence, RI.

Mozer, M. 1999. An Intelligent Environment must be
Adaptive. IEEE Intelligent Systems 14(2):11–13.

Rissanen, J. 1989. Stochastic Complexity in Statistical
inquiry. World Scientific Publishing Company.

Salber, D.; Dey, A. K.; and Abowd, G. D. 1999. The
context toolkit: Aiding the development of context-enabled
applications. In CHI, 434–441.

Stanford Interactivity Lab. 2003. Interactive Workspaces.

Theocharous, G.; Rohanimanesh, K.; and Mahadevan, S.
2001. Learning Hierarchical Partially Observable Markov
Decision Processes for Robot Navigation. IEEE Confer-
ence on Robotics and Automation.

IAAI-05 / 1581


