Int'l Conf. Atrtificial Intelligence | ICAI'18 |

237

Toward a General-Purpose Artificial Intelligence Test by
Combining Diverse Tests

C. Pereyda, L. Holder
School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA

Abstract— Deciding whether an Al system is intelligent has
been a challenge since the creation of computing machines.
The standard method for determining intelligence utilizes the
Turing Test. This test has fallen out of favor due to the rapid
development of Al systems and its subjectivity. With so many
robust systems currently in use today, researchers need a
more objective method for determining the intelligence and
performance of an Al system. We attempt to begin solving
this problem by creating a simple, yet generalizable test.
This test is constructed using several well known tests. We
examine the results of applying this test on Al systems and
discuss how each sub-test can be validated for efficient and
effective use in this test.

Keywords: Evaluation, General intelligence, Combined test, Pat-
tern recognition

1. Introduction

The purpose of this paper is to explore a novel method
for evaluating Al systems and measuring the tests used
in the evaluation process. We believe this work can be
further extended to create a generalized Al system testing
framework. There is not yet a standard framework or testing
system that has been widely adopted by researchers in the
field of AL With so many new and varying Al systems
being created, there is a strong need for a unified testing
framework that is compatible with a multitude of approaches.
This framework would need to be general enough to allow
the wide spectrum of applications that Al can be applied to,
such as problem-solving, inference, learning and perception.

Measuring the performance of an Al system using a well-
defined problem is a simple task. These problems are often
not generalizable and the implemented Al systems are often
not usable for different problems. At the other extreme, we
could use every feasible test to measure the performance
of an AI system. This idea was examined by Herndndez-
Orallo [3], who proposed using the set of all possible tests
and laid the theoretical foundation for an implementation.
This however is not practical due to the set of possible tests
being infinite. To solve this, we attempt to create a test that
is formed from a combination of already defined tests.

Using this combination test we explore how an agent
performs when given diverse challenges. We measure the
consistency of a sub-test by applying handicaps to the Al
systems. The verifiability of each sub-test is then evaluated

by varying the amount of training an Al system uses to
solve the test. These test properties can then be used to
evaluate future sub-tests for inclusion to a more generalized
combinational testing framework.

The rest of the paper is outlined as follows. We will
explore the idea of intelligence in section 2. Section 3
formally defines our problem. Sections 4 and 5 explain the
two individual tests that comprise our combined test: the
Raven’s Progressive Matrices test and the OpenAl Gym
Cart-Pole test. Section 6 examines mixing of both RPM
and OpenAl Gym. Section 7 explains how we trained and
evaluated our Al systems on the proposed tests. In section 8
we explore novel methods for verifying our tests. Section 9
discusses the experimental results. Finally in Section 10 we
conclude our work and give some ideas on further directions.

2. Intelligence

The standard method for determining human intelligence
is an IQ test. The most notable IQ tests are the Stanford-
Binet and the Wechsler Adult Intelligence Scale [7]. 1Q tests
allow for the evaluation of problem-solving skills. This is
often considered to be an important aspect of intelligence.
Other tests allow for the evaluation of some prior knowledge.
A classic example of a prior knowledge test is the Scholastic
Assessment Test (S.A.T.), where a large portion requires the
knowledge of English vocabulary. These tests are very rigid
and do not easily allow for adaptability. They can also rely
very heavily on an understanding of a certain language. This
is a problem for most Al systems as they do not generally
possess the ability to understand a language, which is a
challenge for many Al systems. This aspect eliminates many
1Q tests from being usable for testing Al systems.

The previously held gold-standard for determining an Al
system’s intelligence has been the Turing Test [11]. An
Al system can pass this test if it can trick human judges
that it is human. This evaluation method has fallen out of
favor due to the subjective nature of the test [3]. With the
development of highly sophisticated Al systems, we need
a more objective form of measurement. Ideally this test
would measure an absolute intelligence of the Al system.
For the measurement to be absolute, we need to remove
the fundamental relativism that is currently used to describe
intelligence. This measurement of intelligence would include
its ability to learn information and apply the information it
has already learned.

ISBN: 1-60132-480-4, CSREA Press ©

238

Within this field, there is no universal definition of in-
telligence. Legg and Hutter examined how intelligence is
defined in the field of psychology and AI research, as
well as various other fields [6]. They ultimately came to
the informal definition, “Intelligence measures an agent’s
ability to achieve goals in a wide range of environments.”
This definition stemmed from the most common features
attributed to intelligence. Intelligence is something that is
found by examining the interaction of an agent and the
environment it is in, how well the agent can achieve some
goal in the environment, and how well the agent can adapt
to new environments and goals.

Herndndez-Orallo and Dowe expanded on this idea by
laying the theoretical foundation for a general method for
evaluating intelligence [4]. They propose that the particular
environment used for evaluation does not matter, but rather
the environment’s complexity. The intelligence of an agent
can be found by evaluating the average performance of the
agent over many different environments where the perfor-
mance is scaled by complexity. A well-defined implementa-
tion of one environment using this theory was developed by
Javier [5]. The work done by Javier precisely follows from
the work of Herndndez-Orallo and Dowe. He evaluated a
few different Al systems on a single problem and found how
each performed compared to each other as the complexity
was changed. His work has led us to further explore the idea
of creating a methodology for implementing the underlying
theory. The strength of this theory lies in how well it
is defined. Determining the difficulty of an environment
relies heavily on Algorithmic Information Theory, which
was formally developed by Solomonoff [10]. The difficulty
is mainly determined by how hard it is to create the envi-
ronment. The complexity of an environment can generally
be found through Kolmogorov-complexity approximations
[12] or Minimum Message Length [4]. These ideas were
developed from the field of information theory and are usable
for most environments.

3. Problem Definition

Herndndez-Orallo and Dowe [4] formally defined how
to find the intelligence of an agent from a finite number
of interactions over a finite set of environments. In their
work they used Kolmogorov-complexity [12] to objectively
determine the difficulty of an environment. They then used
this complexity to weight the score of each environment. In
our work we have empirically found the difficulty of each
environment and we will denote this value d. This difficulty
is then normalized against the others environments’ difficul-
ties to generate a weight w. We then find the agent’s score
in the environment by averaging the interactions between
the agent and the environment (An interaction could be one
test question or one game). This score will be denoted V.
Following Herndndez-Orallo and Dowe’s notation, we will
denote a given agent as 7, an environment as u, and an

Int'l Conf. Atrtificial Intelligence | ICAI'18 |

interaction between the agent and the environment as 7.
We will define the set of used tests as 7. We can find
the weight associated with an environment w,, by using its
corresponding difficulty d,,.

wy, =

= ey
Z/.AGT d#

Thus the average score an agent 7 receives over N
interactions on a given environment /4 is:

1 N
VJ = ‘Z—VZTf’ﬂ
i=1

Where /" is the score the agent ; receives on an
environment 7 for some interaction ¢. Using this value we
can then find the general intelligence of the agent over the
set of possible tests T:

@)

T(r) =Y V7w, A3)

pneT

We are attempting to determine the intelligence of an
Al system through the use of testing. The specific test
that we will use is a combination of two already existing
tests: Raven’s Progressive Matrices [8] and OpenAl Gym’s
CartPole environment [1]. The score from both of these
environments will be used to determine the final result for
the agent. This is not intended to show that we can create
a general intelligence, but that this method of evaluation is
valid and can be further scaled to evaluate a proposed general
intelligence.

Our test consists of two sub-tests. During the evaluation,
the agent will be given a random sub-test and asked to find
the solution. The two tests were chosen because they are
both deterministic and fully-observable. They are also tests
that a human could easily solve given enough time. The two
tests are also distinct enough that the agent should not be
able to use the exact same logic to solve both of them, thus
requiring a more general agent to achieve better results. We
will evaluate several differently trained agents using this test
and compare their performance. One agent will be trained
only on the RPM task and another trained only on the
OpenAl Gym environment. We will then introduce a new
agent that has been trained on the combination test.

These two sub-tests will form the basis of a testing frame-
work. In this work we attempt to justify the effectiveness
of this framework as a tool for measuring the intelligence
of an AI system. This justification will come from the
performance measures of our baseline system across two
validation methods. The first validation method examines
how the agent performs when handicapped. The method will
be valid if a linear decline in score is observed when an
agent is incrementally and linearly handicapped. The second
method examines how an agent performs when the amount

ISBN: 1-60132-480-4, CSREA Press ©

Int'l Conf. Atrtificial Intelligence | ICAI'18 |

of training is varied. The method will be valid if we observe
a steady linear increase in score as the amount of training
increases linearly. If both of these methods show to be valid,
then this framework has merit for measuring the intelligence
of an Al system.

The test is designed to be a black box for the agent and
ideally for AI designers. This is to prevent Al designers
from gaming the system by creating idiot savants. One such
example of this was done by Sanghi and Dowe [9], who
showed it was easy to create a specialized Al system for
IQ tests. This AI system was created in 960 lines of Perl
code and was able to achieve an average IQ of 96 (across
various tests). This result is very impressive and shows how
a simple system can fool a test. Creating highly specialized
Al systems is very effective for singular purposes, but will
not serve to help the problem of generalizability.

4. Raven’s Progressive Matrices

A well known method for measuring intelligence is
through the use of Raven’s Progressive Matrices (RPM) [8].
This test is ultimately a pattern recognition test that was
designed to be simple to administer and easy to interpret.
A RPM generally consists of 8 sample images setup in a
3x3 grid with one space from that grid missing. The goal
is to find the most correct solution from a list of possible
choices. Each image shows various characteristics that can
be used to determine a pattern and find the answer. These
characteristics can be anything that is discernible inside of
the image, such as color, shape, orientation and so on. An
example RPM can be seen in Figure 1; the correct solution
for the missing image is a small green circle or [2,2,0].

For our test, we created a simple RPM generator to train
and evaluate our agents. The generator creates a random
RPM with N characteristics for each object. Each character-
istic may be changed either across the rows or the columns,
but not both. Each characteristic is limited to /N possibilities
for simplicity. Each characteristic starts at some random
value and is then randomly changed to an unused value as the
row or column changes. More difficult RPMs can have more
characteristics with more unique progressions. The generator
creates the whole N x N RPM and then separates out the
N2 — 1 sample data and the solution data for use with our
agents.

The score of an agent on this environment is determined
from the number of correct characteristics guessed. For a V-
RPM problem the score is scaled to be the total number of
correct guesses, maximum NV, divided by N. This maintains
a constant maximal score of 1 and a minimal score of 0
across all N-RPM problems. In general a correct guess in
a RPM problem is only achieved when all characteristics
are guessed correctly from the set of possible choices. To
allow for easier training methods, we chose to have the Al
system generate the solution rather than compare potential
solutions.

239

L12 | Lou | 11,20 A [.
[0,1,2] [0,0,1] [0,2,0 <> A B .
212 | 201 ? A B ?

Fig. 1: An example of the Raven’s Progressive Matrices
test. The right side is the visual representation (color, size,
shape) presented to a human. The left side is the machine-
readable equivalent of the test, where each cell is presented
as "[color,size,shape]".

5. OpenAl Gym

A popular method for developing Al systems is Reinforce-
ment Learning. This method uses the standard model of an
agent interacting with the environment to affect it and receive
some positive or negative reward as a result. OpenAl Gym
[1] is a testing framework that is designed for reinforcement
learning techniques. This framework specializes in testing an
Al system’s ability to adapt to new situations. It consists of
many individual environments with unique characteristics.

Reinforcement Learning environments provide a unique
method for testing intelligence, because the environments
make no assumptions of prior knowledge. The point of the
environment is to train the agent based on whether it is doing
good or bad with respect to the environment. This allows us
to test for the adaptability aspect of intelligence. While it
does provide a valid and reliable test for adaptability, it can-
not test well for prior knowledge (across RL environments).

In our work we used the CartPole environment. This
environment simulates a cart with a free-rotating pole on it.
The goal of the agent is to keep the pole upright. The agent
receives four input values, the cart’s position and velocity
and the pole’s angle and angular velocity. Using these inputs
the agent can output whether to move the cart left or
right in an attempt to keep the pole balanced. CartPole is
substantially different from the RPM environment, because
CartPole runs over many consecutive iterations. This requires
our agent to discover a form of cause and effect relation that
would be completely missed in RPM. To score the CartPole
environment, we use the duration of how long the agent
is able to keep the pole balanced as its score. This time
is not based in the physical world, but it is handled by
the CartPole simulator. The maximum possible score for an
agent in CartPole is 200; this value is a limit set by CartPole
environment.

6. Mixed Environment

Using the 3-RPM environment and the CartPole envi-
ronment, we then created a combination environment. This

ISBN: 1-60132-480-4, CSREA Press ©

240

environment runs several iterations of both 3-RPM and Cart-
Pole for training and testing. The score from this combined
environment is determined by the weighted scores of both of
its sub-environments. The weights were found by averaging
the minimum number of environment interactions our agents
took to achieve a certain score threshold. The environment
interaction for the CartPole environment is one attempt in the
OpenAl Gym simulator. This simulator runs for a variable
amount of time, depending on how long the agent can
balance the pole or until a maximum duration is reached.
The duration is ignored and instead we only examine each
action taken in the simulator. For the 3-RPM environment,
the action taken is one 3-RPM question.

For 3-RPM this threshold was an accuracy of 0.95 and
for CartPole, a minimum score of 190. These values were
chosen because they are high values to achieve with respect
to the maximum possible values for 3-RPM and CartPole
(1.0 and 200 respectively). The high values force an agent to
learn how to perform well in their respective environments.
The choice of 0.95 of the maximum possible value, outside
of it being a large value, was chosen arbitrarily. The average
minimum values were found by using the same baseline
agent, a neural network topology, for each environment. That
is, we trained several random neural networks, with the same
topology, until it reached the respective minimum threshold.
Using this method we found that our baseline system takes
383 epochs to reach the threshold in CartPole and 118 in
3-RPM. Using Equation (1) and the empirically determined
values, the weights for these tests can be found. For each
environment x4 we plug in the corresponding value and sum
of the values over the set of all tests, which in this case is
the sum of our two values. From this method, the weight on
the CartPole environment is 0.76 and 0.24 for the 3-RPM
environment. These values will then be used to scale the
final score for the mixed environment.

7. Trained Al systems

We trained four unique agents, one for each of the envi-
ronments (3-RPM, 6-RPM, CartPole, Mixed). The 3-RPM
agent was trained for 1000 epochs over 90% of the 3-RPM
problem set, approximately 1500 tests. We similarly trained
the 6-RPM agent for 1000 epochs over 90% of the 6-RPM
problem set, 9000 tests. The CartPole-agent was trained over
2000 interactions in the CartPole simulator. The mixed-agent
was trained for 1000 epochs over one interaction in CartPole,
3-RPM, and 6-RPM, in that order. We can see from Figure
6 these are adequate choices for the number of epochs to
use in training our agents.

Each agent was given unlimited training time to meet
the epoch amounts. In the future, it may be worthwhile
to measure the amount of training time, either physical or
simulated, which can used as a metric for intelligence. A
more intelligent system would require less time than another
system but achieve similar performance. This characteristic

Int'l Conf. Atrtificial Intelligence | ICAI'18 |

would then be used in creating a more rigorously defined
baseline system to evaluate the sub-tests used in this testing
framework.

We decided to utilize artificial neural networks as the
basis for all of our agents. This type of agent was chosen
because neural networks are easy to implement and to use for
solving a large class of diverse problems. The structure of the
network is 48 input nodes, 4 fully connected hidden layers of
16 nodes each and an output layer of 6 nodes. For tests not
including the 6-RPM environment, we changed the network
structure to have 24 input nodes and 3 output nodes. Each
layer is dense and implements the ReLU activation function.
This topology was not tuned for any of our problems and
was arbitrarily chosen. The agents were created using the
Keras package [2]. This package runs on top of TensorFlow
to allow for simple neural network creation.

We ran the trained agents on each of the environments. To
allow for maximum compatibility between the environments,
we set the input and output dimensions to the maximums
found in the three environments. When the agents did not
receive a full set of inputs, the rest of its inputs were
padded with zeros. Similarly if the agent outputs too many
results, the excess results were ignored. The raw scores for
the 3-RPM and CartPole environments were scaled by the
maximum possible value. The mixed environment score was
scaled by weighting the scores of its sub-environments in
terms of the difficulty of the environment and then adding
that value to the final score. This was done to take the
difficulty of the environment into consideration; a harder
environment should be weighted more heavily.

8. Test Verification

We have proposed utilizing two diverse tests as a basis
for our examination on combining tests. Here, we attempt to
justify the claim that these tests evaluate the fundamentals
of intelligence. Based on the performance of an agent in
an environment. If we can objectively determine that these
environments measure the key aspects of intelligence, we
can assert that these environments are useful for creating
a generalized intelligence test as well as having a verified
method for choosing future environments.

Our first method involves handicapping our agents. That
is, we compare our baseline agent to agents that have
reduced neural network topologies. A reasonable assumption
is that larger networks are able to achieve greater results
when compared to smaller networks. If these varying agents
demonstrate this characteristic in these fixed environments,
we can assert that the environments are measuring the agents
capacity to learn and extrapolate information from training.

We trained both our CartPole and 3-RPM agents using a
fixed number of environment interactions (2000 for CartPole
and 1000 for 3-RPM). This was done to prevent smaller
networks from taking advantage of longer training periods
which could lead to an increased score. We then handicapped

ISBN: 1-60132-480-4, CSREA Press ©

Int'l Conf. Atrtificial Intelligence | ICAI'18 |

SHHH

- | 3

Score

= 3-RPM

e CartPole

0.2

0 0.2 0.4 0.6 0.8 1
Handicap Amount

Fig. 2: The effects of handicapping agents. The score of
an agent is plotted against the number of nodes removed
in both the 3-RPM and CartPole environments. The blue
squares show the score in the 3-RPM environment while
the red circles show the score in CartPole. The agents were
handicapped by removing nodes from their hidden layers
until only one node remained in each layer. Error bars shown
are for one standard deviation.

our agents by removing a node from each hidden layer until
the number of nodes in each layer reached just one. For each
of these varying handicapped agents, we took the average of
20 agents to produce our final scores in the environments.
The results can be seen in Figure 2. From the data, we can
see there is no noticeable change from no handicap to a
handicap of 12 (80%) nodes removed. However, there is a
very sharp drop off when we increase the handicap from
12 to 13. This seems to be a critical point for both of the
agents in which their ability to train and process information
is significantly reduced.

Another similar method is to vary the amount of training
data used. The amount of training data used was varied from
0 to 13% (200 tests out of 1500 possible) of the total set
of our 3-RPM problems. The results for this can be seen in
Figure 3. From these results we can confidently determine
that this test is not very hard to generalize. The agent needs
to train on only 10% of the total set in order to perform well
on the entire set. We also tested the agent for all percentages
up to 100%. This was done to see if the agent would ever
become over fit and thus would not generalize to the rest of
the set. The agent never became over fit because it achieved
a near perfect score for all percentages greater than 10%.

We wanted to examine if the number of epochs could be
potentially over fitting our agent. To test for this, we varied
the number of epochs used to evaluate our agent. The data
used in this experiment was fixed with a training percentage
of 90% and a testing percentage of 10%. From these results
we found there is a very sharp increase in performance over
50 epochs. Beyond 50 epochs there is no indication of over
fitting the agent for to the environment. We tested up to 1000
epochs with no significant variance at any point.

241

Score

-

o 2 4 6 8 10 12 14
Percentage of Dataset

Fig. 3: The baseline agent’s performance as the amount of
training data from the 3-RPM environment was varied. The
training data varies from O to 13% (200 tests) of the possible
tests from the 3-RPM problem set. A logarithmic trend-line
is used to visualize the agent’s increase in performance as
the number of training samples increased.

o 2 4 6 8 10 12 14
Percentage of Dataset

Fig. 4: The baseline agent’s performance as the amount of
training data was varied. The training data varies from 0
to 14% (1400 tests) of the possible tests from the 6-RPM
problem set. From this we can see that the agent requires
many more tests to be able to achieve the same score as in
the simpler 3-RPM test.

In all of these methods for evaluating the 3-RPM problem,
we have determined that the problem is too simple. To
correct this we have created a harder version of the 3-RPM
problem called 6-RPM. We repeated the same experiment
using the 6-RPM environment. Still following the 10%
holdout and 90% training data as before, we re-evaluated
the environment using the same handicapping measure as
before. The results can be seen in Figure 5. From the graph
we can see a much more linear decrease in score as the
handicapping amount was increased.

9. Results

The results of running this testing framework on the
trained systems are shown in Table 1 and Table 2. The

ISBN: 1-60132-480-4, CSREA Press ©

242

Score

04 } }

0 0.2 0.4 0.6 08 1
Handicap Amount

Fig. 5: The effect of handicapping an agent on the 6-RPM
test. This is identical to the previous handicapping example,
but with a new test. The handicap starts at O and progresses
by removing a single node from the agent’s hidden layers
until only one node remains. When this value is reached the
agent is maximally handicapped.

difference between these two tables is that Table 2 includes
the 6-RPM as another sub-test and that a different baseline
system was used to generate the results for the tables. The
results from these two tables are similar in that each agent
achieved the best score in each of its specific environment.
The Mixed and Random agents also performed similarly
with the addition of the 6-RPM environment. This shows
that our testing framework is consistent even if another sub-
test is added to the combined test.

Using our previously defined notation, we can get the
intelligence of an agent T by examining the Mixed score
in Table 2. This value represents the absolute intelligence
of the agent with regards to these sub-tests. Ultimately,
the combined test will include more sub-tests in order to
increase the scope of intelligence that we are measuring.
The intelligence being measured now is just the system’s
ability to perform on RPM and CartPole. But these initial
results show that such a combined test is a valid framework
for evaluating the intelligence of Al systems.

The CartPole agent performed the best in the mixed envi-
ronment. This is due in part to the weights that are attached
to each environment. Since the CartPole environment is
weighted significantly more than the 3-RPM environment,
we would expect good CartPole players to receive a greater
score in the mixed environment. Another significant factor
is that there were no other good CartPole players among our
agents. While the 3-RPM agent and mixed agent performed
significantly better than our random agent, they did not
achieve high enough scores to beat the CartPole agent.
Our mixed agent scored as well as the random agent for
3-RPM but did manage to achieve a significantly better
CartPole score. This result is odd as our environments
seem to be associated with each other. They are associated
because training an agent on one environment will result

Int'l Conf. Artificial Intelligence | ICAI'18 |

in a higher score on the other environment. Yet, training
an agent on both environments will lead to a decrease in
both environment’s scores. We expected the environments
to be different enough that the specialized agents would
achieve a minimum score on the other environment or that
the environments were similar enough that the mixed agent
could learn both well. This result shows that there is a
need to measure the similarity between tests. If two tests
are dissimilar, then the Al system should be given a higher
intelligence score for performing well on both of them.

We examined the convergence of each agents’ weights
(the weights used in the neural network) to determine
whether the mixed agent was reaching a solution. From
Figure 6, we can see that both the 3-RPM agent and the
CartPole agent are converging on an optimal solution, but
this is not true for the mixed agent. We think that training the
two different environments on one agent may be causing this
lack of convergence. Since our mixed agent is not reaching
an optimal solution, we should not expect it to be able to
score nearly as well as the agents that reach a solution.

A significant difference between the two tables is the
decrease in score in the CartPole environment. This uniform
decrease is shown across all of our agents except for the
random agent which maintained a similar score. We believe
this was due to the changing of our baseline system to
allow for the much larger 6-RPM problem to be used. This
result shows that the baseline system chosen can largely
affect the results of these environments. It is necessary to
compare environments using a single baseline system and
making comparisons based off of multiple systems can lead
to skewed data.

|| Trained Agents ” 3-RPM Score | CartPole Score | Mixed Score ||

3-RPM Agent 0.820 0.448 0.536
CartPole Agent 0.437 0.703 0.633
Mixed Agent 0.332 0.314 0.321
Random Agent 0.333 0.048 0.114

Table 1: The score of each trained agent on each of the
available environments.

|| Trained Agents ” 3-RPM | 6-RPM | CartPole | Mixed ”
3-RPM Agent 0.976 0.213 0.078 0.245
6-RPM Agent 0.944 0.853 0.119 0.433
CartPole Agent 0.525 0.168 0.225 0.194
Mixed Agent 0.750 0.167 0.180 0.220
Random Agent 0.333 0.162 0.049 0.177

Table 2: The score of each trained agent on each of the avail-
able environments. The 6-RPM environment was included
for the mixed test; as a result the baseline model used to
evaluate each environment was changed.

ISBN: 1-60132-480-4, CSREA Press ©

Int'l Conf. Atrtificial Intelligence | ICAI'18 |

0.8

°
o

- =Mixed

2 e R CartPole
04 |
=——3-RPM

Change in network weights

0.2

Epochs

Fig. 6: The convergence of an agent’s weights as the number
of epochs increases. The lines shown are the trend lines
of the change in weights. Each data set was scaled by the
maximum value in the set to allow for a better comparison
between the agents. The solid line is the 3-RPM agent, the
dashed line is the mixed agent, and the dotted line is the
CartPole agent.

10. Conclusion

A framework which incorporates all the best aspects of
these tests is needed before we can evaluate an Al system
for general intelligence. Not only would we be able to
evaluate for general intelligence, but we would also be able
to measure performance across a wide breadth of possible
environments. This could lead to more sophisticated Al
systems being created since there would be a standardized
comparison measure. The framework would need to allow
for a variety of Al implementations to be measured and
compared.

From these results it can be seen that adding another sub-
test to the combined test does not appear to make significant
changes to the results. This shows that the framework can
be used to generalize testing to include more sub-tests that
can further measure the general intelligence of a system.
Results also show that a single baseline system must be used
to evaluate the environments to prevent skewed data. Once a
single baseline system is determined the consistency of the
sub-tests can be found.

Ideally, the speed of the Al system’s solution would also
be used as a performance measure, where faster results are
given better scores compared to slower results. While this
work did not explore the aspects of time-based performance
measures, they are certainly needed to fully measure an Al
system. These time dependent tests would be independent of
the hardware the system is running. To find out the hardware
speed, several speed tests would need to be administered
before the performance could be measured. If we then
multiply the time it took for the Al system to complete the
test by the inverse of the hardware speed, we should obtain
a hardware-independent time measurement. This idea is

addressed in depth by [4]. Alternatively, we could constrain
the test environment to a specific hardware configuration so
that all competing systems are on a level playing field in
terms of computational resources.

We have shown a few novel methods for verifying tests
used in the evaluation of AI systems. An ideal test would
have a linear increase in difficulty for an agent that is
handicapped linearly. Additionally a reliable test would
require an agent to learn from many examples. To verify
future tests using these same metrics, we need to expand
our definition of a standard agent as one that can respond
to a more diverse set of tests while still being a system we
can handicap and vary the amount of training data.

References

[1] Greg Brockman et al. “OpenAl Gym.” In: CoRR
abs/1606.01540 (2016).

Frangois Chollet et al. Keras. https://github.
com/keras—team/keras. 2015.

José Hernandez-Orallo. “Beyond the Turing Test.” In:
Journal of Logic, Language and Information 9.4 (Oct.
2000), pp. 447-466. 1SSN: 1572-9583.

José Hernandez-Orallo and David L. Dowe. “Measur-
ing universal intelligence: Towards an anytime intel-
ligence test.” In: Artificial Intelligence 174.18 (2010),
pp. 1508-1539. 1SSN: 0004-3702.

Javier Insa-Cabrera, David L. Dowe, and
José Herndndez-Orallo. “Evaluating a Reinforcement
Learning Algorithm with a General Intelligence Test.”
In: Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 1-11. ISBN: 978-3-642-25274-7.

Shane Legg and Marcus Hutter. “A Collection of Def-
initions of Intelligence.” In: Amsterdam, The Nether-
lands, The Netherlands: IOS Press, 2007, pp. 17-24.
Shane Legg and Marcus Hutter. “Universal Intelli-
gence: A Definition of Machine Intelligence.” In:
Minds and Machines 17.4 (Dec. 2007), pp. 391-444.
ISSN: 1572-8641.

John Raven. “The Raven’s Progressive Matrices:
Change and Stability over Culture and Time.” In:
Cognitive Psychology 41.1 (2000), pp. 1-48.

Pritika Sanghi and David L Dowe. “A computer
program capable of passing 1.Q. tests.” In: 4¢h Inter-
national Conference of Cognitive Science (2003).

(2]
(3]

[10] R.J. Solomonoff. “A formal theory of inductive infer-
ence. Part 1.” In: Information and Control 7.1 (1964),
pp. 1-22. 1SSN: 0019-9958.

[11] Alan Turing. “Computing Machinery and Intelli-
gence.” In: Mind LIX.236 (1950), pp. 433-460.

[12] C. S. Wallace and D. L. Dowe. “Minimum Message

Length and Kolmogorov Complexity.” In: The Com-
puter Journal 42.4 (1999), pp. 270-283.

ISBN: 1-60132-480-4, CSREA Press ©

243

