GRAPH-BASED HIERARCHICAL CONCEPTUAL CLUSTERING

ISTVAN JONYER, LAWRENCE B. HOLDER, and DIANE J. COOK

University of Texas at Arlington
Department of Computer Science and Engineering
Box 19015 (416 Yates S. Room 300)
Arlington, TX 76019-0015
{jonyer, holder, cook}@cse.uta.edu

Received
Revised

Hierarchicad conceptual clustering has proven to be a useful, although greatly under-explored data
mining technique. A graph-based representation of structural information combined with a substructure
discovery technique has been shown to be successul in knowledge discovery. The SUBDUE
substructure discovery system provides the advantages of both approaches. This work presents
SUBDUE and the development of its clustering functionalities. Several examples are used to illustrate
the validity of the approach both in structured and urstructured domains, as well as compare SUBDUE
to earlier clustering algorithms. Results siow that SUBDUE succesdully discovers hierarchica
clusterings in both structured and urstructured data.

Keywords: Clustering, Cluster Analysis, Data Mining, Concept Formation, Knowledge Discovery.

1. Introduction

Data mining has become a prominent reseach areain recant yeas. One of the major
reasons is the ever-increasing amount of information colleded in diverse aess of the
industrial and scientific world. Much of this information contains valued knowledge that
is not diredly stored or accesshle for retrieval. The increasing speed and capadty of
computer technology has made feasible the utili zation of various data mining techniques
to automaticdly extrad knowledge from this information. Such knowledge may take the
form of predictive rules, clusters or hierarchies.

Structural databases provide asignificant source of information for data mining. A
well-publicized example is the human genome projed, which set out to map the entire
human DNA. DNA strands are structural in neture and therefore require a structured
representation in a computer. One of the most prominent ways of representing structural
data in computers is by the use of graphs. Graph-based data mining is therefore becoming
more important. Substructure discovery is a data mining technique that—unlike many
other algorithms—can process sructural data, which contains not only descriptions of

individual instances in a database, but relationships among these instances as well. The
graph-based substructure discovery approach implemented in the SUBDUE system has
been the subjead of research for a number of yeas and has been shown to be dfedive for
a wide range of applicaions.’ Recent examples include the gplication of SUBDUE to
eathquake adivity, chemicd toxicity domains, and human and other DNA sequences.?**

Cluster analysis—or simply clustering—is a data mining technique often used to
identify various groupings or taxonomies in red-world databases. Most existing methods
for clustering apply only to unstructured data. This reseach focuses on herarchicd
conceptual clustering in structured, discrete-valued databases.

Thiswork is organized as follows. Sedion 2 discusses conceptual clusteringin greder
depth, giving examples and describing spedfic systems. Sedion 3 provides a discusgon
of structural knowledge discovery and an in-depth description of the SUBDUE knowledge
discovery system. Sedion 4 describes the design and implementation of hierarchicad
conceptual clustering in SUBDUE. Sedion 5 describes the results of applying SUBDUE to
examples from various domains and evaluates SUBDUE's success as a clustering todl.
Conclusions and future work are discussed in sedion 6.

2. Conceptual Clustering

2.1. Introduction and definition

Conceptua clustering has been studied and developed in many areas for awide variety of
applicaions. Among these ae model fitting, hypothesis generation, hypothesis testing,
data exploration, prediction based on groups, data reduction and finding true topdogies.®
Clustering techniques have been applied in as diverse fields as analyticd chemistry,
image analysis, geology, biology, zodogy and archeology. Many names have been gven
to this technique, including cluster analysis, Q-analysis, typology, grouping, clumping,
clasdfication, numericd taxonomy, mode separation and unsupervised pattern
recogniti on, which further signifies the importance of clustering techniques.®

The purpose of applying clustering to a database is to gain a better understanding of
the data, in many cases through reveding herarchicd topdogies. An example is the
classfication of vehicles into groups uch as cars, trucks, motorcycles, tricycles, and so
on, which are then further subdivided into small er groups based on observed traits.

Michalski defined conceptual clustering to be amachine leaning task.” A clustering
system takes a set of objed descriptions as input and creaes a dassficaion scheme®
This classficaion scheme can be aset of digoint clusters, or a set of clusters organized
into a hierarchy. Each cluster is asociated with a generalized conceptual description of
the objeds within the cluster. Hierarchicd clusterings are often described as
clasgficdion trees.

2.2. Overview and Related Work

Numerous clustering techniques have been devised, among which are satisticd,
syntadic, neural and hierarchicd approaches. In al cases, clustering is inherently an
unsupervised leaning problem, since it consists of identifying valuable groupings of
concepts, or fads, which hopefully reved previousy unkrmown information. Most
techniqgues have some intrinsic disadvantages, however. Statisticd and syntadic
approaches have trouble expresdng structural information, and neural approaches are
grealy limited in representing semantic information.’

Nevertheless many relatively successul clustering systems have been constructed.
An example of an incremental approach is COBWEB, which successvely considers a set
of objed descriptions, while mnstructing a dassfication tree® This g/stem was creaed
with red-time data clledion in mind, where auseful clustering might be needed at any
moment. COBWEB’s sach algorithm is driven by the cadegory utility heuristic which
refleds intra-class $milarity and inter-class disgmilarity using conditional probabiliti es.
Instances are introduced into the dassfication tree & the top, and are moved down either
by credaing a new class or by merging it with an existing class Other existing classes
might also be merged or split to acommodate better definiti ons of classs.

Labyrinth, an extension to COBWEB, can represent structured oljeds using a
probabili stic model.™® COBWEB creaes a knowledge structure based on some initial set
of instances. Labyrinth is applied one step before COBWEB, resulting in a structure
whose formal definition is exadly the same @ that produced by COBWEB. Finaly,
COBWERB is used, employing bath structures to refine the domain knowledge.

AutoClass is an example of a Bayesian clasdficaion system, which has a
probabili stic dassassgnment scheme.** AutoClass can processred, discrete, or missng
values. Another algorithm, cdled Snob, uses the Minimum Messge Length (MML)
principle to domixture modeling—another synonym for clustering.*?

There dso exist hierarchicd approaches that target databases containing data in
Euclidean space Among these ae gggomerative gproades that merge dusters urtil an
optimal separation of clusters is achieved based on intra- and inter-cluster distances.
Divisive gproadces lit existing clusters urtil an optimal clustering is found. These
approaches usually have the disadvantage of being applicable only to metric data, which
excludes discrete-valued and structured databases. Examples of these ae Chameleon™
and Cure.*

Examining the mgjor differences among the @ove mentioned systems, we cal see
that dichotomies exist between continuous and discrete databases and between structured
and unstructured databases. COBWEB can handle discrete, unstructured databases.
Labyrinth can work with discrete, structural databases. AutoClass can handle discrete or
continuous unstructured databases. Chameleon and Cure work with continuous-valued,
unstructured data.

Few existing systems address the problem of clustering in discrete-valued, structural
databases. Labyrinth is one of them. SUBDUE is another approach, described in detail in

subsequent sections. Our approach centers on discrete-valued, structural databases that
are represented as graphs. Clustering is performed iteratively by looking for common
patterns in the data. The search is driven by the minimum description length heuristic.

3. Structural Knowledge Discovery

3.1. Terminology

There are terms associated with structural knowledge discovery which are worth
clarifying before proceeding. Sructured data includes relationships among object
descriptions in contrast to unstructured data that only includes unrelated object
descriptions. Many databases currently exhibit structural properties.

Graphs provide a versatile representation of structural data. A graph consists of a set
of vertices that may be connected by edges. Both vertices and edges are labeled. Edges
may be directed or undirected, which may express different types of relationships. A
subgraph is a subset of the graph, also referred to as a substructure.

Data mining tools may be incremental, which means that data is considered one
element at atime. A given element is classified in the context of the currently known set
of data. Thisis in contrast to iterative methods that require the entire data set before the
algorithm can run. These techniques iteratively reconsider and reclassify data until the
best result is achieved.

Knowledge discovery by search is a common concept. Most data mining algorithms
use some type of search algorithm. Most of these use computational constraints to keep
the search within tolerable time limits. The search progresses from one search state to
another. Search states can be thought of as lists of partial hypotheses waiting for
expansion. A common method of constraining the search is to order this list and only
extend the most promising partial hypotheses.

Search agorithms are driven by evaluation metrics that assign numeric values to the
usefulness of partial hypotheses. In knowledge discovery, these metrics often find their
roots in statistics and information theory.

3.2. SUBDUE

This section describes SUBDUE, a structural knowledge discovery system that forms the
basis of our research. First we discuss the data representation used by SUBDUE, and then
describe the search algorithm in detail. The heuristic used to drive the search and the
inexact graph matching used by SUBDUE are also presented. The Susbue source code is
available at http://cygnus.uta.edu/subdue.

3.21. Datarepresentation

SUBDUE is a knowledge discovery system that can dea with structured data—an
important feature for many applications. SUBDUE expects a graph as its input, hence a

Fig. 1. Graph representation of an animal description.

database needs to be represented as a graph before passng it to SUBDUE. This graph
representation includes vertex and edge labels, as well as direaed and undireced edges,
where objeds and attribute values usually map to vertices, and attributes and
relationships between objeds map to edges (seeFig. 1 for an example).

The input graph need not be mnneded, asis the cae when representing urstructured
databases. In those caes the instance descriptions can be represented as a olledion of
small, star-like, conneded graphs. An example of the representation of an instance from
the animal domain is gown in Fig. 1. Intuitively, one might map the “main” attribute—
Name in this case—to the ceter node and all other attributes would be mnneded to this
central vertex with a singe elge. This would follow from the semantics of most
databases where objeds and their attributes are listed. In our experience, however, amore
general representation yields better results. In this representation the center node (animal
in our example), becomes a very general description of the example. Note that the Name
attribute becomes just a regular attribute. In the most general case, the canter node could
be named entity, or object, since the designation is quite irrelevant to the discovery
process—the purpose is good structural representation.

3.2.2. Searchalgorithm

SUBDUE uses a variant of bean seach for its main search algorithm (see Fig. 2). The
goa of the seach is to find the substructure that best compresses the input graph. A
substructure in SUBDUE consists of a substructure definition and all its occurrencesin the
graph. The initial state of the search is the set of substructures representing one uniquely
labeled vertex and its instances. The only seach operator is the Extend-Substructure
operator. As its name suggests, Extend-Substructure extends the instances of a
substructure in all possble ways by asinge edge and a vertex, or by asinge alge if both
vertices are dready in the substructure. The Minimum Description Length (MDL)
principle is used to evaluate the substructures.

The seach progreses by applying the Extend-Substructure operator to ead
substructure in the aurrent search frontier, which is an ordered list of previousy
discovered substructures. The resulting frontier, however, does not contain al the
substructures generated by the Extend-Substructure operator. The substructures are stored

Subdue (graph G int Beam int Limt)
queue Q= { v | v has a unique label in G}
best Sub = first substructure in Q
r epeat

newQ = {}
for each Sin Q
newSubs = S extended by an adjacent edge from G
in all possible ways
newQ = newQ U newSubs
Limt =Limt - 1
eval uat e substructures in newQ by conpression of G
Q = substructures in newQ with top Beam val ues
i f best substructure in Q better than best Sub
then best Sub = best substructure in Q
until Qis enpty or Limt =0

return best Sub

Fig. 2. SUBDUE' sdiscovery algorithm.

on aqueue and are ordered based on their ability to compress the graph. The length of the
gueue is partidly limited by the user. The user chooses how many substructures of
different value—in terms of compression—are to be kept on the queue. Severa
substructures, however, might have the same ability to compress the graph, therefore the
actual queue length can vary. The search terminates upon reaching a user specified limit
on the number of substructures extended, or upon exhaustion of the search space.

Once the search terminates and returns the list of best substructures, the graph can be
compressed using the best substructure. The compression procedure replaces all instances
of the substructure in the input graph by a single vertex, which represents the
substructure. Incoming and outgoing edges to and from the replaced substructure will
point to, or originate from, the new vertex that represents the substructure. In our
implementation, we do not maintain information on how vertices in each instance were
connected to the rest of the graph. This means that we cannot accurately restore the
information after compression. This type of compression is referred to as lossy
compression, in contrast to lossless compression where the origina data can be restored
exactly. Since the goal of substructure discovery is interpretation of the database,
maintai ning information to reverse the compression is unnecessary.

The SUBDUE agorithm can be called again on this compressed graph. This procedure
can be repeated a user-specified number of times, and is referred to as an iteration. The
maximum number of iterations that can be performed on a graph cannot be
predetermined; however, a graph that has been compressed into a single vertex cannot be
compressed further.

3.2.3. Minimum description length principle

SUBDUFE's sach is guided by the Minimum Description Length (MDL) principle,
originally developed by Rissanen.’ In the next sedion we describe how to cdculate the
description length of a graph as the number of bits needed to represent the graph.
According to the MDL heuristic, the best substructure is the one that minimizes the
description length of the graph when compressd by the substructure.*® This compresson

iscdculated as
DL(S)+DL(G|S) (1)

Compression =
DL(G)

where DL(G) is the description length of the input graph, DL(S) is the description length
of the substructure, and DL(G|S) is the description length of the input graph compressd
by the substructure. The seach algorithm is looking to maximize the Value of the
substructure, which is $mply the inverse of the Compression.

3.23.1 Calculation of description length

The description length of a graph is based on its adjacency matrix representation. A graph
having v vertices, numbered from 0 to v — 1, hasav x v adjacency matrix. The aljacency
matrix A can have only two types of entries, 0 or 1, where A[i,j]=0 represents no edges
between verticesi and j, and A[i,j]=1 indicates at least one elge (passbly more) between
vertices i and j. Undireded edges are represented by a single direded edge with the
directed flag bit set to O.

The vertex and edge labels are stored in two separate tables, which contain |, unique
vertex labels, and I, unique elge labels. These tables might deaeese in Size & vertices
and edges are compressed away, and the table of vertex labels might grow with new
vertex labels that stand for substructures that are compressed away. The encoding of a
graph is the sum of the vhits, rbits and ebits, which are cdculated as foll ows.

vhits is the number of bits needed to encode the vertex labels of the graph. Each
vertex in the graph has a label, and the vertices are @aaumed to be encoded in the order
they appea in the adjacency matrix. First we spedfy the number of vertices in the graph,
which can be done in (Ig v) bits. Then, the v labels can be represented in (v Ig) bits, as
expressed by Eq. 2.

vhits=Igv+ vigl, 2

rbits is the number of bits needed to encode the rows of the adjacency matrix A. To do
this, we gply a variant of the excoding scheme used by Quinlan and Rivest.!” This
scheme is based on the observation that most graph representations of red-world damains
are sparse. In other words, most vertices in the graph are mwnneded to only a small
number of other vertices. Therefore, atypicd row in the aljacency matrix will have much
fewer 1s than 0s. We define k; to be the number of 1sin row i of adjacency matrix A, and
b = maxi(k;) (that is, the most 1sin any row). An entry of 0 in A means that there ae no
edges from vertex i to vertex j, and an entry of 1 means that there is at least one alge

between verticesi and j. Undireded edges are recorded in only one diredion (that is, just
like direded edges). SUBDUE's heuristic is that if there is an undireded edge between
nodesi and j such that i <j, then the edge isrecorded in entry A[i,j] and omitted in entry
Alj,i]. A flag is used to signal if an edge is direded or undireced, which is acounted for
in ebits. rbitsis cdculated as foll ows.

Given that k; 1s occur in the i row's bit string of length v, only C(v,k) strings of Os
and 1s are possble, where C(n,k) is the number of combinations of n choose k. Since dl
of these strings have equal probability of occurrence 1gC(v,k;) bits are needed to spedfy
which combination is equivalent to row i. The value of v is known from the vertex
encoding, but the value of k; neals to be excoded for ead row. This can be done in
Ig(b+1) bits.

To be ale to read the mrred number of bits for ead row, we encode the maximum
number of 1s any given row in A can have. This number is b, but sinceit is posgble to
have ze&o 1s, the number of different values is b+1. We neead Ig(b+1) bits to represent
thisvalue. Therefore,

v
rbits = Z [lg(b+1) +1g C(v, k)] +Ig(b +1) ©)
1= v
=(v+Dlg(b+1)+ » 1gC(v, k)
=
ehits is the number of bits needed to encode the alges represented by A[i j]=1. The
number of bits needed to encode asinge entry Afi j] is (Ig m) + e(i,j)[1 + Ig ||, where
e(i,j)) is the number of edges between the vertices i and j in the graph and
m = max;; &(i,j)—the maximum number of edges between any two verticesi and j in the
graph. The (Ig m) bits are nealed to encode the maximum number of edges between
verticesi and j. For ead edge we need (Ig m) bits to spedfy the adual number of edges,
and [1 + Ig I] bits are needed per edge to encode the alge label and the directed flag
(1 bit). Therefore,

ebits = Ig m-+ Z i[A{i, jl(lg m)+ei, jH[1+1gl.]] (4)
=lgm+e(1+lgle)+iiA[i, iJigm

=edl+lIgl,)+(K+2)Igm

where e is the number of edges in the graph and K is the number of 1sin the aljacency
matrix A.

The total encoding of the graph is DL(G) = vbits + rbits + ebits. The following
subsedion gves aworked example on how the mmpresson is cdculated.

Fig. 3. Exampleinput graph (a) along with the discovered substructure (b) and the
resulting compressed graph (c).

3.23.2 Anlllustrative Example

In this section an illustrative example of computing the description length of the input
graph, a substructure, and the input graph compressed by the substructure is worked ouit.
Finally, the computation of the compression and substructure value is shown.

Fig. 3a shows the input graph, Fig. 3b shows the best substructure S found after the
first iteration, and Fig. 3c shows the input graph compressed with the two instances of
substructure S. For the purposes of demonstration the input graph has directed edges,
undirected edges and multiple edges between a pair of nodes. The undirected edges are
represented as directed edges, as mentioned before, and in all three cases they originate in
the vertices labeled D.

The table of vertex labels has the following entries: A, B, C, D, E, F and S. Therefore,
I, = 7. The table of edge labels consists of a, b, ¢, d, e, f and g, making | = 7. These two
tables are considered global, therefore these values are used for the calculation of all
three graphs. Calculating the description length of the input graph proceeds as follows:

vhits: Number of verticesv = 10.
vbits=Igv+vigl,=1g10+10* g7 =31.39

rbits: b=max(k) =5
rbits = (10+1)1g(6 +1) +IgC(10,5) +1gC(10,4)
=30.88+1g15120+1g 210
=51.67

The value of b is 5, not 6 as one might think. Even though there are two edges
between vertices D and E, there is only a single 1 standing for them in the adjacency
matrix. The two separate edges will be accounted for in ebits.

ehits: m=2
K=9
e=1
ebits =10(1+1g7) +(9+1)1g2
=48.07

o

Therefore DL(G) = vhits + rbits + ebits = 31.39 + 51.67 + 48.07 = 131.13.
The description length of the substructure is calculated as follows.

vhits; vhits=1g4+4*1g7=13.23

rbits: b =max(k) =3
rbits=(4+1)1g(3+1) +1gC(4,3)
=10+1g4=12.00

ebits: m=1
K=3
e=3

ebits = 3(1+1g7) +(3+1)gl
=11.42

Therefore DL(S) = vhits + rhits + ebits = 13.23 + 12.00 + 11.42 = 36.65.

The description length of the input graph compressed by the best substructure is
calculated as follows.

vhits: vbits=1g4+4*1g7=13.23

rbits: b = max(k) =2
rbits=(4+1)Ig(2+1) +1gC(4,2) +1gC(4,1)
=7.92+Ig6+Ig4=1251

ebits: m=2
K=3
=4

e
ebits = 4(L+1g7) + (3+1)1g2
=19.23

Therefore DL(G|S) = vbits + rbits + ebits = 13.23 + 1251 + 19.23 = 44.97. Following the
compresson formula given ealier, we get

DL(S) + DL(G|S) _ 36.65+4497
DL(G) 13113

Compression = =0.62

The Value is the inverse of the Compression, whichis 1.61.

3.2.4. Variationsof MDL

The eicoding scheme described works well in most cases. It has been suggested,
however, that it might not be minimal in all cases. The MDL used by SUBDUE uses a
row-wise encoding. If the mlumn-wise version of the same encoding scheme is used, the
result might slightly differ, one offering a shorter description than the other. Also, it has
been observed that this encoding offers false wmpresson in some caes when only a
singe-instance substructure is compressed away in the input graph. When looking at the
equation to cdculate the cmpresdgon, it can be seen that this sould not be the cae.
When compressng the input graph with a single-instance substructure the sum of the
description length of the substructure DL(S) and the description length of the graph
compressed by the substructure DL(GIS) should not be lessthan the description length of
the input graph DL(G) givinga mmpresson of at least 1.0.

A variation of the MDL described here avoids this problem. In the original version the
description length of the substructure and the input graph compressed by the substructure
are cdculated separately, based on their own adjacency matrix. If these two adjacency
matrices are combined into one ad the description length is cdculated based on this
adjacency matrix, the @ove-mentioned false cmpresson will not happen. This
variation is used for the resultsin Sedion 5.

3.3. Inexact graph matching

When applying the Extend-Substructure operator, SUBDUE finds all instances of the
resulting substructure in the input graph. A fedure in SUBDUE, cdled inexad graph
matching, allows these instances to dffer from ead other. This fedure is optional and
the user must enable it as well as pedfy the degree of maximum dissmilarity all owed
between substructures. The wmmand line agument to be spedfied is —threshold
Number, where Number is between 0 and 1 inclusive, 0 meaning ro dssmilarities
allowed, and 1 meaning all graphs are aonsidered the same. Spedfying 1 for —threshold is
not particularly useful in pradice A valuet between 0 and 1 means that one graph can
differ from another by no more than t times the size of the larger graph.

The dissmilarity of two graphs is determined by the number of transformations
needed to transform one graph to another. The transformations are to add a delete an
edge, add a delete avertex, change alabel on either an edge or a vertex, and reverse the
diredion of an edge. All of these transformations are defined to have a ©st of 1.

Inexact graph matching works by the method of Bunke and Allerman.’® The algorithm
constructs an optimal mapping of the vertices and edges between the two graphs by
searching the space of al possible mappings employing a branch-and-bound search. This
algorithm has an exponential running time. The implementation in SUBDUE, however,
congtrains the running time to polynomial by resorting to hill-climbing when the number
of search nodes exceeds a polynomial function of the size of the substructures. Thisis a
tradeoff between an acceptable running time and an optimal match cost, but in practice,
the mapping found is at or near optimal (lowest cost).

3.4. Improving the search algorithm

In earlier versions of SUBDUE the length of the queue on which the best substructures are
held was fixed. Consider the following. Suppose that a substructure S that best
compresses the graph has 10 vertices, 9 edges, and 50 instances scattered throughout the
input graph. This means that any substructure s of S will have at least 50 instances as
well, and will offer the best compression thus far in the search space even when it has
only a few vertices. There are 120 substructures having 3 vertices that are substructures
of Sif Shas 10 vertices and is fully connected. Most substructures however are not fully
connected, but if substructure S has 10 vertices arranged in a star-like manner having 9
edges connecting them, there can still be 72 distinct substructures having 3 vertices and 2
edges. All these 72 substructures will have the same compression, since they occur the
same number of times in the graph and have the same size. Therefore, al these have
equal right to be at the head of the queue. If the queue length is chosen to be 4, for
example, then the queue will retain only 4 of these 72 substructures, arbitrarily keeping
the 4 that happen to be at the top. In the next step only these four will be extended.

The solution is to use a value-based queue, which retains not a fixed number of
substructures, but a number of classes of substructures, each substructure in the same
class offering the same compression. In the above example all 72 substructures having
the same compression might comprise the first class, leaving room for another three
classes—assuming the queue length is four. The value-based queue therefore permits the
exploration of amuch larger search space.

The problem with the value-based queue is that the membership in each class
explodes very quickly. For instance, if al the 72 substructures in the above example are
in one class, and extended by applying the Extend-Substructure operator, the resulting
number of substructures will be in the several hundreds. Since these are still substructures
of S they will offer the same compression, and will (most of them) be in the same class.
This new class will have hundreds of members, which, when further extended, will result
in thousands of substructures. In only a few steps, classes will have grown to an
enormous size. lronically, most of these substructures are headed towards the same
substructure S.

Fortunately, there is a way to prevent the above phenomenon from happening. An
important observation is that the operator Extend-Substructure is applied to a single
substructure at a time, and that substructure is extended by only one vertex at a time.

These substructures can be kept on a local value-based queue by the operator. The
substructures that offer the same compression can be suspected of being the substructure
of the same larger substructure. To test this we check to see if either of these
substructures can be extended with the vertex the other substructure was just extended by.
If so, one of them can be eliminated from further consideration and be removed from the
local queue. Finally the local queue is returned by the operator, as usual. This one step
look-ahead procedure is referred to as purging, because it cleans the local queue by
removing substructures that would introduce redundancy in the search process.

An example of purging is demonstrated in Fig. 4. Suppose that substructure S, shown
in Fig. 4a occurs in the input graph 20 times. After expanding vertex A in al possible
ways, the substructures shown in Fig. 4b, 4c, and 4d result. Since these are substructures
of substructure S,, they occur at least 20 times. For the sake of argument, suppose that
these three substructures do not occur anywhere else in the input graph, and therefore
they too have 20 occurrences. Hence, these three substructures would offer the same
amount of compression, since all three of them have two vertices and one edge, and all of
them occur the same number of times. The purging algorithm would check if substructure
S, can be extended with vertex C of S, and that substructure S. can be extended with
vertex B of S,. Since this is the case, substructure S would be eliminated from the queue.
Next this check is performed on substructure S, (which is still on the queue), and
substructure S;. The result is similar, and S is aso eliminated from further expansion.
This leaves the queue with one substructure instead of three. Since further extensions of
substructure S, results in substructures that would result from the extensions of
substructures S and S, the same search space is explored using fewer extensions.

The value-based queue and purging together enable searching a wider search space
while examining potentially fewer substructures when compared to the fixed length
gueue. The savings offered by purging has been observed to be substantial since the case
described above arises aimost every time a substructure is extended. The actual savings
depend on particular graphs, the main factor being the connectivity of the graph. The
more connected the graph, the more savings purging offers.

3.5. Newfeaturesin SUBDUE
Throughout this research a number of improvements have been prompted either by the

D e @
RN o

@ (b) © (d

Fig. 4. Purging substructures from the queue; (a) best substructure S; (b) substructure of S; (c)
substructure of S; (d) substructure of S.

reseach subjed diredly, or by ease of use or other reasons. This dion describes me
of these improvements.

New command line aguments that are related to cluster analysis are —cluster,
—truelabel and —exhaust. Another option, —savesub, and an extra output level were dso
added to fadlit ate dustering, but those can also be used separately from clustering.

The option —cluster turns on cluster analysis in SUBDUE. Cluster analysis is described
in detal in sedion 4. This option produces a dasdficaion lattice in the file
“inputFileName.dat” that can be viewed with the GRAPHVIZ graph visuaizaion
padkage.’® The option —truelabel will print the duster definition into ead node of the
classfication lattice when viewed with Dotty, part of the GRAPHVIZ padkage. The
option —exhaust will prevent SUBDUE from stopping after discovering all substructures
that can compressthe graph, and have it continue urtil the input graph is compressed into
a single vertex. To help evaluate the quality of clusterings the —savesub option was
introduced. This option saves the definition and all the instances of the best substructure
in al of the iterations. When clustering is enabled, it also saves the dassficaion lattice
hierarchy that can be used to recnstruct it. These files may be used with atod speaally
written for evaluating clusterings. An extra output level was also added to display only
the essntial information concerned with clustering during the discovery process The
new output level islevel 1, increasing the previous output levels by 1, making the default
output level 2. All of these options are discussed in more detail in sedion 4.

There ae dso a few new command line aguments that are not concerned with
clustering. The option —plot fileName saves information about the discovery processin
the file cdled fileName that can later be plotted using any spreadshed software, like
Microsoft Excd. The information saved includes the iteration number, a number assgned
to ead substructure evaluated in ead iteration, the number of vertices the particular
substructure has, the description length of the input graph compressed with the
substructure, and the compresson offered by the substructure. In addition, if timing is
enabled, it will also save various timings taken during the discovery process

The option —prune2 number keeps tradk of locd minima. The parameter number
spedfies how many more extensions are to be done dter identifying a loca minimum.
This option is sleded by default for clustering with the agument 2. Its benefits are
described in more detail i n sedion 4, in the context of clustering.

The option —oldeval enables the origina MDL computation over the newer one. The
original evaluation has the disadvantage of false compresson, discussed ealier.

Another change is the remova of the cmmand line agument —nominencode, which
enabled the computation of the cmpresson based solely on the size of the graph
measured by adding up the number of edges and vertices. This option was observed to
make SUBDUE run faster, but less siccesSully. With the introduction of the value-based
gueue and purging, however, this had to be removed since it was mostly incompatible
with those feaures. Also, these feaures made SUBDUE run much faster, which, in turn,
made this option lessuseful.

3.6. Other features

SUBDUE supports biasing the discovery process. Predefined substructures can be
provided to SUBDUE, which will try to find and expand these substructures, this way
"jump-starting” the discovery. The inclusion of background knowledge proved to be of
great benefit.®® SUBDUE also supports supervised learning, where positive and negative
examples are provided to the system. Substructures found that are similar to positive
examples are given a higher value, while substructures similar to the negative example
graphs are penalized. This way of influencing the discovery process has proven
successful, an example of which is the application of SUBDUE to the chemical toxicity
domain.?

4. Hierarchical Conceptual Clustering of Structural Data

Section 3.2 describe the SUBDUE structural knowledge discovery system in detail. The
main goal of the work described here was to extend the system to include cluster analysis
functionalities. This section describes our approach to conceptual clustering of structural
data and its implementation in SUBDUE.

Cluster analysis with SUBDUE uses the main SUBDUE algorithm to discover
clusters. These are then used to build a hierarchy of clusters to describe the input graph.
The following subsections describe the theoretical background and inner workings of
SUBDUE's clustering fun ctionality.

4.1. ldentifying clusters

The SUBDUE algorithm takes one iteration to find a substructure that compresses the
input graph the best. The definition of the best substructure after a single iteration yields
the definition of a cluster. The membership of the cluster is all the instances of the
substructure in the input graph.

Within a single iteration SUBDUE has several ways to decide when to stop. SUBDUE
always has a single best substructure at the head of the queue, so in effect it could stop at
any point. SUBDUE has a limit which tells it how many substructures to consider at most
in asingle iteration. By default, the limit is set to the sum of the number of vertices and
edges, divided by two. This number has been observed to be sufficiently large to alow
the discovery of the best substructure. The trick, of course, is to stop the discovery
process right after the best substructure is discovered during the iteration. A new feature,
—prune2, attempts to do just that. This option keeps track of minima, and when one is
found, it lets SUBDUE continue for a limited number of substructure extensions. If a new
minimum is found during this time, the count is reset and SUBDUE is allowed to go a
little further. This assures that each iteration of SUBDUE returns the substructure that is
responsible for the first local minimum. As discussed later, thisis just what the clustering
algorithm needs. Since prune2 will stop the discovery, setting a limit is not necessary
when prune? is used. Thisisthe default for cluster analysis.

4.2. Creating hierarchies of clusters

After each iteration SUBDUE can be instructed to physically replace each occurrence of
the best substructure by a single vertex, this way compressing the graph. The resulting
compressed graph can then be used as the new input graph and be given to SUBDUE to
discover a substructure that compresses this graph the best.

This iterative approach to clustering imposes more and more hierarchy on the
database with each successive iteration. Using the fact that each new substructure
discovered—in successive iterations—may be defined in terms of previoudly discovered
substructures, a hierarchy of clusters can be constructed. Since by default the number of
iterations SUBDUE performs is one, when clustering is enabled the number of iterationsis
set to indefinite. This means that SUBDUE iterates until the best substructure in the last
iteration does not compress the graph. If the —exhaust option is enabled, SUBDUE iterates
until the input graph is compressed into a single vertex. This default behavior may be
overridden by explicitly specifying the number of iterations to be done, in essence
specifying the number of clusters to be discovered.

Hierarchies are usually pictured as various forms of atree, as found in many previous
works on hierarchical clustering. This research found, however, that in structured
domains a strict tree representation is indeed inadeguate. In those cases a lattice-like
structure emerges instead of atree. Therefore, newly discovered clusters are used to build
aclassification lattice.

The classification lattice is the consequence of the previously mentioned fact that any
cluster definition—except for the very first one—may contain previously defined
clusters. If a cluster definition does not contain any other clusters, it is inserted as the
child of the root. If it contains one or more instances of another cluster it isinserted asthe
child of that cluster, the number of branches indicating the number of times the cluster is
in the definition of the child cluster. If the cluster definition includes more than one other
cluster, then it isinserted as the child for al of those clusters.

To provide an example of the explanation above, the generation of the hierarchical
conceptual clustering for the artificial domain (shown in Fig. 11) is demonstrated here.
SUBDUE in the first iteration discovers the substructure that describes the pentagon
pattern in the input graph. This comprises the first cluster C,. This cluster isinserted as a
child for the root node. The resulting classification lattice is shown in Fig. 5a. In
iterations 2 and 3 the square shape (cluster Cy) and the triangle shape (cluster C,) are
discovered, respectively. These are inserted at the root as well, since Cs does not contain
G, in its definition, and C; does not contain either C, or C,. The resulting clustering is
shown in Fig. 5b.

All of the basic shapes (pentagon, square and triangle) appear four times in the input
graph. So why is it that they are discovered in the order described above? Since al of
them have the same number of instances in the graph, the size of the substructure will
decide how much they are capable of compressing the input graph. The substructure
describing the pentagon has five vertices and five edges, that of the sguare has four

@ (b)

Fig. 5. Clustering of the artificial domain after oneiteration (a) and after three iterations (b).

vertices and four edges, and that of the triangle has three vertices and three edges. Given
the same number of instances, the bigger substructure will compress the input graph
better.

In the fourth iteration SUBDUE deems the substructure the best that describes two
pentagon shapes connected by a single edge. There are two of these formations in the
graph, not four, as one might think, since no overlapping of instances are permitted. This
cluster is inserted into the classification lattice as the child of the cluster describing the
pentagon, since that cluster appears in its definition. The resulting classification lattice is
shown in Fig. 6. There are two links connecting this new cluster to its parent, because the
parent cluster definition appears twice.

Initeration 5 a substructure is discovered that contains a pair of squares connected by
an edge, a pair of triangles connected by an edge, and these two pair are connected by a
single edge. This substructure has two instances in the input graph. This cluster is

Fig. 6. Clustering of the artificial domain after four iterations.

/
S

Fig. 7. Clustering of the artificial domain after fiveiterations.

inserted as a child of two clusters in the first level of the lattice, which appear in the
definition of this new cluster. The new lattice is depicted in Fig. 7. Since both parent
cluster definitions appear twice in the new cluster, there are two links from each of those
parents to the new node.

4.3. First minimum heuristic

SUBDUE searches the hypothesis space of classification lattices. During each iteration of
the search process (that is, while searching for each cluster), numerous local minima are
encountered. The global minimum, however, tends to be one of the first few minima. For
clustering purposes the first local minimum is used as the best cluster definition. The
reason for this is easy to see. SUBDUE starts with all the single-vertex instances of all
unique substructures, and iteratively expands the best ones by a single edge. The local
minimum encountered first is therefore caused by a smaller substructure with more
instances than the next local minimum, which must be larger, and have fewer instances.
A smaller substructure is more general than a larger one, and should be a parent node in
the classification lattice for any more specific clusters.

A good example is shown in Fig. 8. The horizontal axis of the plot shows the number
of the substructure being evaluated, and the vertical axis shows the compression offered
by the substructures. Fig. 8 has only one minimum, appearing at substructure number 37.
The iteration appears to have several minima during the first portion of the iteration.
Those minima, however, are caused by the dissimilarities in compression among the
substructures on the queue in each search state. For instance, if the maximum queue
length is set to be four, then there will be approximately four substructures in the queue
after each extension. These four substructures will offer different compressions, the first

1.05

) N a—
wl b S

0.8

Compression

0.75

T T T T T T
< MO N d O @ 0 N~
© r~ 0 O © O +

L B e |

- O O O I~
- = N ™M

136
145
154
163]
172
181
190
199

©
< w0

Sibstructure

Fig. 8. Compression of substructures as considered during one iteration of SUBDUE.

in the queue offering the most, the last in the queue offering the least. Thisis reflected in
Fig. 8. The staircase-like formation at the beginning of the iteration shows quite similar
substructures in the queue. Each step of the staircase represents the compression values of
the queue at each search state from left to right, the leftmost value representing the
substructure at the head of the queue. As the iteration moves along we can see that the
head of the queue offers more and more compression than the tail, resulting in local
minima. The prune2 feature, however, does not consider fluctuations within each search
state, but rather between states. In other words, minima are determined by looking at the
best substructure in each search state in successive iterations. The first local minimum
therefore occurs at substructure number 37. This minimum turns out to be the global
minimum as well for thisiteration.

As a different example, Fig. 9 shows the compression of substructures as discovered
by SUBDUE in an aircraft safety database. The details of the database are not important
here. The search depicted in Fig. 9 features numerous loca minima, the first one
occurring at substructure number 46. This is not the global minimum, but for clustering
purposes this one will be used as the best substructure—for reasons described earlier.

11
1.05

0.95 1 /

5 0.9
¢ \ S
5 0.85 S
gog M
O 2
0.75
0.7
0.65
OO MN-—EWOO MMN-SGLW OoOOMOIMNCHL OOMINHLl O M
N < MM ON < O 0O A © 0O MO oMW oo N 1
T 4 4 N AN N NOO OO M I I 0 0 W
Substructure

Fig. 9. Compresson of substructures as considered by SUBDUE during one iteration on an aircraft safety
database.

Even though it is posshle to use the global minimum as the best substructure, we
found that if the global minimum is not the first locd minimum, it may produce
overlapping clusters. Overlapping clusters are those that include the same information.
For example, in a particular clustering of the vehicles domain two clusters may include
the information “number of wheds: 4”. This suggests that perhaps a better clustering may
be mnstructed in which thisinformation is part of a duster at a higher level.

4.4. Implementation

This ®dion discusses the implementation detail s for cluster analysis in SUBDUE. Most
of the dustering functionaliti es center around huil ding, printing and finally destroying the
classfication lattice We will also describe the Dotty visuali zation padkage with emphasis
on interpreting the dassfication latticedisplayed by Dotty.

A clasdfication lattice describes a hierarchicd conceptua clustering of a database.
Each node in the lattice represents a duster. The dasdficaion lattice is a treelike data
structure that has the speda property that one node may have several parents. One
obvious exception is the roat node that does not have any parents. Information stored in a
node includes pointers to children, number of children, number of parents, the
substructure label, a descriptive label and a shape flag. Some of these need explanation.

The substructure label is the vertex label assgned to the substructure that represents
the duster. This label is assgned to the substructure when compressng the input graph,
and repladng ead occurrence of the substructure with a single vertex. This information
isuseful for identifying the parents of a duster.

Al_LAB_G

e Csw_afs) \ Sub_3[1]

/ desk near: chair \ Al_LAB has: wall
| computer nea: desk Al_LAB has; wall
\\momtor on: desk / Al_LAB has: wall

- < Al _LAB has: wall

Al_LAB has: celing

Sub_2[2] N [1]
_ sub_1d d: Joe
Sub_1b poc: Pl Sub_1dof: Joe
Sub_1b rand: GW Sub_1d poc: K6

Fig. 10. Example of a dassfication lattice produced by SUBDUE and visualized by dotty.

The descriptive label holds information about the duster definition in an easy-to-read
format. This has sgnificance when displaying the lattice with Dotty. The label is
generated when the —truelabel option is %t by taking all pairs of vertices conneded by an
edge, and printing in the format “sourceVertex edge: targetVertex.'

For example, if a cetain substructure mntains the two vertices labeled car and red,
conneded by an edge labeled color, the descriptive label would read car color: red. The
information in the descriptive label reads well for many domains.

The shape flag determines the shape of the duster when displayed by Dotty. The
shape of the duster is just another visual aid in interpreting the dustering. By defaullt, all
clusters are displayed having an oval shape. When the —exhaust option is t, however,
SUBDUE is instructed to form clusters out of substructures that do not compressthe input
graph further, and these dusters are given aredanguar shape. In this caseit isniceto be
ableto distingush the mmpresdng clusters from the non-compressng ones.

4.5. Visualization

For a more sophisticated appeaance the GRAPHVIZ graph visualization padage is
used.® When clustering is enabled in SUBDUE, a file with the .dot extension is creaed.
Thisfile can be used by the program dot to creae aPostScript file, or by dotty to view it
interadively. From dotty one can diredly print the lattice to a printer or afile. Dotty also

allows the rearrangement of clusters, and changing cluster parameters. Fig. 10 shows a
portion of a classification lattice that is suitable to use as an example.

The root node contains the file name of the input graph, slightly modified. Characters
like comma, period, colon, semicolon, slash and backslash are replaced by the underline
character, since dotty cannot handle those characters. The root node does not contain any
other information.

Nodes other than the root node contain the sub-label of the substructure that defines
the cluster, the number of instances the substructure has in the input graph (shown in
brackets), and a series of descriptive labels. Each line, except for the first one has a
descriptive label.

Clusters on the same level have the same color. In some cases the lattice can become
highly interconnected, and loses the shape of a tree. The colors help to identify levelsin
those cases.

5. Resaults

This section describes the results of cluster analysis using SUBDUE. First the algorithm's
proper behavior is established using an artificially generated database as the test domain.
Next the algorithm is compared to existing systems. Other applications of the algorithm
are also discussed.

5.1. Validation in an artificial domain

An artificial domain will serve as an example to demonstrate SUBDUE's ability to
generate valid clusterings in structured databases. This artificial domain is depicted in its
graph form in Fig. 11, where only edges are shown. Vertices are at the meeting points of
the edges. This graph demonstrates regular and irregular patterns found in structured
databases. Smaller, clearly recognizable shapes—triangles, squares and pentagons—are
embedded in the graph. They are organized into rings, and some edges are added between
some of the triangles and squares to somewhat disturb the regularity. The vertices in the

Fig. 11. Artificial domain.

A

(o

Fig. 12. Hierarchical clustering of the artificial domain.

graph are labeled as a, b, ¢, and so on, for each primitive shape. Edge labels are as
follows: for each primitive object the sides are labeled as T_side, S side and P_side, for
triangle, square and pentagon, respectively. The edges connecting these primitive objects
are labeled as T_link, S link and P_link. Edges connecting different shapes are labeled
TS (for triangle-square link).

SUBDUE was invoked using the command

Subdue -cluster -truelabel -prune2 1 artif-tsp2.g

where -cluster enables clustering, -truelabel enables the descriptive labels, and -prune2 1
overrides the default option for clustering, -prune2 2. This results in increased sensitivity
to local minima, which is more desirable in smaller databases like this one. We have
observed that in general the larger and more complex the database, the more clearly
defined the local minima

The classification lattice generated by SUBDUE is shown in Fig. 12. For clarity, the
substructures are shown that define the clusters rather than the textual description
extracted from the graph representation (asin Fig. 10).

The lattice closely resembles a tree, with the exception that a node (bottom-right) has
two parents. As the figure shows, smaller, more commonly occurring structures are found
first that compose the first level of the lattice. These account for most of the graph,
therefore, they are the most general clusters. Subsequently identified clusters are based on
these smaller clusters that are either combined with each other, or with other vertices or
edges to form new, more specific clusters. This can clearly be seen in the second level of
the lattice where two pentagons and a connecting edge comprise a new cluster (bottom-
left), and a pair of triangles and a pair of squares comprise another cluster along with

three alditional conneding edges. Both of the dusters in the second level have two
instances.

The second level nodes in the dassficaion lattice ae mnneded with two branches
from their parents. This means that there ae two pentagons used in the bottom-left
cluster, and two triangles and two squares are used in the bottom right cluster. This is
simply avisual aid that helps the researcher.

SUBDUE performs as expeded on this artificial domain. It was able to find the most
commonly embedded structures, and construct the expeded classficaion lattice To
further suppartt the dgorithm’s validity, the following sedion compares SUBDUE to an
existing herarchicd clustering system.

5.2. Comparison to other systems

A small experiment devised by Fisher® can serve & a basis for comparison of SUBDUE
and COBWEB. This example will aso demonstrate SUBDUE's performance on
unstructured data.

The database used for the experiment is given in Table 1. The aiima domain is
represented in SUBDUE as a graph, where dtribute names (like Name and BodyCover)
were mapped to labeled edges, and attribute values (like mammal and hair) were mapped
to labeled vertices, as suggested in sedion 3.1. An example of the representation was
givenin Fig. 1, where the mammal instanceis depicted in graph form.

Table1. Animal Descriptions.

Name Body Cover Heart Body Temp. Fertilization
Chamber

mammal hair four regulated internal

bird feahers four regulated internal

reptile cornified-skin | imperfed-four unregulated internal

amphibian moist-skin three unregulated external

fish scdes two unregulated external

COBWEB produces the dassfication tree shown in Fig. 13, as reported by Fisher.®
SUBDUE generated the hierarchicd clustering shown in Fig. 14.

SUBDUE's result is Smilar to that of COBWEB'’s. The “ mammal/bird” branch is
clealy the same. Amphibians and fish are grouped in the same duster based on their
external fertili zation, which is done the same way by COBWEB. SUBDUE, however,
incorporates reptiles with amphibians and fish, based on their commonality in
unregulated body temperature. This clustering of the animal domain seems better, since
SUBDUE €eliminated the overlap between the two clusters (reptile and amphibian/fish) by

mammal/bird amphibian/fish

mammal bird fish amphibian

Fig. 13. Hierarchical clustering over animal descriptions by COBWEB.

creating a common parent for them that describes this common trait. This example

HeartChamber: four
BodyTemp: regulated
Fertilization: internal

Name: mammal
BodyCover: hair

BodyTemp: unregulated

Fertilization: external

Name: reptile
Name: bird BodyCover: cornified-skin
BodyCover: feather HeartChamber: imperfect-four
Fertilization: internal
Name: amphibian
BodyCover: moist-skin
HeartChamber: three

Name: fish
BodyCover: scales
HeartChamber: two

Fig. 14. Hierarchical clustering over animal descriptions by SUBDUE.

demonstrates that SUBDUE is capable of dealing with unstructured domains successfully.

5.3. Applications

Another array of practical applications can be found in the field of chemistry. SUBDUE
(not using the clustering functionality) has been used to find potential gene regulatory
sequences in DNA,* to identify structural regularities in proteins,?® and to predict the
carcinogenecity of various chemical compounds.®

Clustering with SUBDUE might also be useful in chemistry. In the following example
a portion of a DNA sequence is described by clustering. This portion of the DNA is
shown in Fig. 15. To represent the DNA as a graph, atoms and small molecules (like
CH,) are mapped to vertices, and bonds are represented by undirected edges. The edges

Ko /(j
adenine /0 LQ ?—‘Z thymine

O_P\ OH 0\
o HO—P=0
\ /
cH [
. ¥ =" /(j
guanine QT H WA cytosine
N CH
S oy ?
Y N 0"H Yoo
0=P " OH M AN
\ HO—P=0
o\ /

thymine /_<

Fig. 15. Portion of a DNA sequence.

are labeled according to the type of bond, single or double. A portion of the classification
lattice generated by SUBDUE is shown in Fig. 16. As with the artificial domain, the
chemical compounds defined by the clusters are shown, rather than the textual
description extracted from the graph representation of the DNA.

The lattice property of the classification lattice is apparent in Fig. 16, where the

Fig. 16. Partia hierarchical clustering of the DNA sequence.

bottom-left nodes have multiple parents. This lattice describes 71% of the DNA sequence
shown in Fig. 15. As the figure shows, smaller, more commonly occurring compounds
are found first that compose the first level of the lattice. These account for more than
61% of the DNA. Subsequently identified clusters are based on these smaller clusters that
are either combined with each other, or with other atoms or molecules to form a new
cluster. The second level of the lattice extends the conceptual clustering description such
that an additional 7% of the DNA is covered.

5.4. Evaluation

The previous sections have shown that SUBDUE's clustering functionality is appealing in
many respects. SUBDUE has performed according to expectations in an artificial
structured domain, has paralleled an existing system in an unstructured domain, and has
discovered clusterings in real-world domains. The arguments made towards SUBDUE's
success, however, have been based purely on human observers opinion.

Evaluation of clustering systems has always been anecdotal, lacking the existence of
an objective evaluation measure. We are developing such an objective measure which
will be the subject of a subsequent publication. Until then, however, let us review some
of the properties of good clusterings.

The best clustering is usually the one that has the minimum number of clusters, with
minimum overlap between clusters, such that the entire data set is described. Too many
clusters can arise if the clustering algorithm fails to generalize enough in the upper levels
of the hierarchy, in which case the classification lattice may become shallow with a high
branching factor from the root, and a greater amount of overlap. On the other extreme, if
the algorithm fails to account for the most specific cases, the classification lattice may not
describe the data entirely. Experimental results indicate that SUBDUE finds clusterings
that effectively trade off these extremes.

6. Discussion and Conclusions

This work set out to explore the mostly uncharted territory of hierarchical conceptual
clustering in discrete-valued structural databases. There have been numerous attempts at
clustering. Most of these, however, were applicable only in unstructured domains that
simply enlist object descriptions. SUBDUE overcomes this restriction by representing
databases using graphs, which allows for the representation of a large number of
relationships between objects.

The technique of cluster analysis is of unquestionable importance. This is
demonstrated by the wide variety of fields in which this technique is used, and the
different names by which it has been referred to. Many rea world domains are
unstructured, like alisting of animals and their traits, but many are structured, like a DNA
strand. Cluster analysis is equally applicable to both types of databases. A modern data
mining system must be able to handle these different types of data, and operate on them
successfully. In fact, many unstructured data sets may be made structured by a simple
preprocessing algorithm. An example of this might be the establishment of relationships

among books with the same author in the domain of book listings, or the creation of near
and far relationships, both spatial and temporal, between events in alog of earthquakes.
In doing so a data set can be made more valuable from a data mining point of view.

SUBDUE has been demonstrated to be a successful multipurpose data mining tool in
the most diverse of domains. Since clustering can be applied to any data set that SUBDUE
can handle, clustering is a very important addition in functionality to SUBDUE as has
been demonstrated using various examples.

One of the major contributions of this work is the synthesis of the classification
lattice. Previous work in clustering suggested classification trees, which are inadequate in
structured domains. On the other hand, a classification lattice in unstructured domains
reduces to a tree, which suggests that classification trees are a proper subset of
classification lattices.

Future work on SUBDUE includes defining hierarchical clusterings of other real-world
domains, and comparisons to other clustering systems. As mentioned earlier, we are
developing an objective quality measure for hierarchical, conceptual, structural
clusterings. Such a measure will alow a better technique for comparison of results
between systems and may eventually serve as a heuristic to guide SUBDUE' s search for
the best clustering.

Acknowledgements

This research was supported by National Science Foundation grant IRI-9615272 and the
State of Texas Higher Education Coordinating Board Advanced Technology Program
grant 003656-45.

Refer ences

[1] L. B. Holder and D. J. Cook, Discovery of Inexact Concepts from Sructural Data, IEEE
Transactions on Knowledge and Data Engineering 5:6 (1993) 992-994.

[2] J. A. Gonzalez, L. B. Holder, and D. J. Cook, Structural Knowledge Discovery Used to
Analyze Earthquake Activity, Proceedings of the Thirteenth Annual Florida Al Research
Symposium (2000).

[3] R. Chittimoori, L. B. Holder, and D. J. Cook, Applying the Subdue Substructure Discovery
Systemto the Chemical Toxicity Domain, Proceedings of the Twelfth International Florida Al
Research Society Conference (1999) 90-94.

[4] R.Maglothin, Data Mining In DNA: Using The Subdue Knowledge Discovery System To Find
Potential Gene Regulatory Sequences, Masters Thesis, Department of Computer Science and
Engineering, UTA (1999).

[5] G. H. Badl, Classification Analysis, Stanford Research Institute SRI Project 5533 (1971).

[6] B.S. Everitt, Cluster Analysis, Wiley & Sons, New Y ork (1980).

[71 R. S. Michaski, Knowledge acquisition through conceptual clustering: A theoretical
framework and algorithm for partitioning data into conjunctive concepts, International Journal
of Policy Analysis and Information Systems 4 (1980) 219-243.

[8] D. H. Fisher, Knowledge Acquisition Via Incremental Conceptual Clustering, Machine
Learning 2 (1987) 139-172.

[9] R. Schalkoff, Pattern Recognition. Wiley & Sons, New Y ork (1992).

[10] K. Thompson and P. Langley, Concept formation in structured domains, In D. H. Fisher and
M. Pazzani (Eds.), Concept Formation: Knowledge and Experience in Unsupervised Learning,
Chap. 5. Morgan Kaufmann Publishers, Inc. (1991) 127-161.

[11] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman, AutoClass: A Bayesian
classification system, Proceedings of the Fifth International Workshop on Machine Learning
(1988) 54-64.

[12] C. S. Wadllace, and D. M. Boulton, An Information Measure for Classification, Computer
Journal, 11 :2 (1968) 185-194.

[13] G. Karypis, E. Han and V. Kumar, Chameleon: Hierarchical Clustering Using Dynamic
Modeling, Computer, (1999) 68-75.

[14] S. Guha, R. Rastogi and K. Shim, CURE: An Efficient Clustering Algorithm for Large
Databases, ACM SIGMOD International Conference on Management of Data (1998).

[15] J. Rissanen, Sochastic Complexity in Satistical Inquiry, World Scientific Company (1989).

[16] D. J. Cook and L. B. Holder, Substructure Discovery Using Minimum Description Length and
Background Knowledge, Journal of Artificia Intelligence Research 1 (1994) 231-255.

[17] J. R. Quinlan and R. L. Rivest, Inferring decision trees using the minimum decription length
principle, Information and Computation 80 (1980) 227—-248.

[18] H. Bunke and G. Allerman, Inexact graph matching for structural pattern recognition, Pattern
Recognition Letters 1(4) (1983) 245-253.

[191E. Koutsofios and S. C. North, Graphviz - graph drawing software.
www.research.att.com/sw/tools/graphviz (1999).

[20] S. Djoko, D. J. Cook and L. B. Holder, An Empirical Sudy of Domain Knowledge and Its
Benefits to Substructure Discovery, |EEE Transactions on Knowledge and Data Engineering,
9:4 (1997) 575-586.

[21] 1. Jonyer, L. B. Holder and D. J. Cook, Graph-Based Hierarchical Conceptual Clustering,
Proceedings of the Thirteenth Annual Florida Al Research Symposium (2000).

[22] S. Su, Applications Of Knowledge Discovery To Molecular Biology: Identifying Structural
Regularities In Proteins. Masters Thesis, University of Texas at Arlington (1998).

