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We present an algorithm for the inference of context-free graph grammars from examples. The algorithm
builds on an earlier system for frequent substructure discovery, and is biased toward grammars that
minimize description length. Grammar features include recursion, variables and relationships. We present
an illustrative example, demonstrate the algorithm’s ability to learn in the presence of noise, and show
real-world examples.
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i. Introduction

Acquisition of grammatical knowledge is an important machine learning task with
applications in pattern recognition, data mining and computational linguistics. In this
research we are concerned with the induction of graph grammars due to the increased
expressive power of graphs over the textual representations typically used for grammar
induction. We describe an algorithm for the inference of context-free graph grammars—a
set of grammar production rules that describe a graph-based database.

Although textual grammars are useful, they are limited to describing databases that
can be represented as a sequence. An example of such a database is a DNA sequence.
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Most databases, however, have a non-sequential structure, and many have significant
structural components. Relational and object-oriented databases are generally good
examples, but even more complex information can be represented using graphs.
Examples include circuit diagrams and the world-wide web. Graph grammars can still
represent the simpler feature vector type databases as well as sequential databases.

Grammar induction has a long history. Recent work includes learning string
grammars with a bias toward those that minimize description length' inferring
compositional hierarchies from strings in the Sequitur system?®, and learning search
control from successful parses’. Only a few algorithms exist for the inference of graph
grammars, however. An enumerative method for inferring a limited class of context-
sensitive graph grammars is due to Bartsch-Sporl*. Other algorithms utilize a merging
technique for hyperedge replacement grammars’® and regular tree grammars®. Our
approach is based on a method for discovering frequent substructures in graphs driven by
the MDL heuristic’.

The next section defines the class of context-free graph grammars we are attempting
to learn. Next, we describe the graph grammar learning algorithm and give an example.
We then present experiments demonstrating the effectiveness of the algorithm on
artificial and real-world data. The last section presents conclusions and future work.

2. Context-Free Graph Grammars

When learning a grammar in general, one has to decide the intended use of the grammar.
Grammars come in two flavors: those that parse and those that generate languages. Parser
grammars are optimized for fast parsing, sacrificing some accuracy which results in
grammars that over-accept. That is, they accept sentences that are not in the language.
Generator grammars trade accuracy for speed as well. As expected, they are not able to
generate the entire language. Grammars that can generate and parse the same language
exactly are very hard to design and are usually too big and slow to be practical. In our
work, we are proposing a third use: knowledge discovery. Here, we do not generate
grammars to be used in practical and efficient parser or generator algorithms. Instead, we
are simply interested in exploiting the fact that grammars are able to generalize beyond
the examples used to infer them.

In this research we are addressing the problem of inferring graph grammars from
examples. In other words, we seek to design a machine learning algorithm in which the
learned hypothesis is a graph grammar.

Machine learning algorithms in general attempt to learn theories that generalize
beyond the seen examples, such that new, unseen data can be accurately categorized.
Translated to grammar terms, we would like to learn grammars that accept more than just
the training language. Therefore, we would like to learn parser grammars, which have the
power to express more general concepts than the sum of the positive examples.

We are concerned with graph grammars of the set-theoretic approach, or expression
approach®, Here a graph is a pair of sets G = (V, E) where V is the set of vertices or
nodes, and E ¢ V' x Vis the set of edges. Production rules are of the form S — P, where
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S and P are graphs. When such a rule is applied to a graph, an isomorphic copy of S is
removed from the graph along with all its incident edges, and is replaced with a copy of
P, together with edges that connect P to the graph. The new edges are given new labels to
reflect their connection to the instance of S replaced in the graph. We are interested in
learning parse grammars, which applies the production rules in reverse, i.e., replacing an
instance of P with S.

A special case of the set-theoretic approach is the node-label controlled grammar, in
which S consists of a single, labeled node’. This is the type of grammar we are focusing
on. In our case, S is always a non-terminal, but P can be any graph, and can contain both
terminals and non-terminals. (Terminal vertices are those with actual vertices and edges,
while non-terminals are like variables.) Since we are going to learn grammars to be used
for parsing, the embedding function is trivial: external edges that are incident on a vertex
in the subgraph being replaced (P) always get reconnected to the single vertex S.

Recursive productions are of the form S — P S. The non-terminal S is on both sides
of the production, and P is linked to S via a single edge. The complexity of the algorithm
is exponential in the number of edges considered between recursive instances, so we limit
the algorithm to one for now.

Alternative productions are of the form S — P; | P,| ... | P,, where S is a non-terminal
and the P; are graphs. The non-terminal S can be thought of as a variable having possible
values Py, Py, ..., P,. We will refer to such an S as a variable non-terminal, or simply
variable. If P; are single vertices, then S is synonymous with a regular non-graph discrete
variable. It is also possible to generalize such a production to numeric variables by
representing possible values via a numeric range: S — [Puin «-+ Prmax]-

Relationship edges are logical components of the production, in contrast to the
structural components: nodes and edges. Therefore, they cannot be a part of the input, but
can be part of grammar productions. Relationship edges describe relationships between
nodes, such as ‘equal to’, and in case of numeric-valued nodes ‘/ess than or equal to’.
See figures 3 and 5 for examples of graph grammar production rules.

3.  Graph Grammar Induction

Our approach to graph grammar induction, called SubdueGL, is based on the Subdue
approach’ for discovering common substructures in graphs. SubdueGL takes data sets in
a graph format. The graph representation includes the standard features of graphs: labeled
vertices and labeled edges. Edges can be directed or undirected. When converting data to
a graph representation, objects and values are mapped to vertices, and relationships and
attributes are mapped to edges.

3.1.  Algorithm

The SubdueGL algorithm follows a bottom-up approach to graph grammar learning by
performing an iterative search on the input graph such that each iteration results in a
grammar production. When a production is found, the right side of the production is
abstracted away from the input graph by replacing each occurrence of it by the non-
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terminal on the left side. SubdueGL iterates until the entire input graph is abstracted into
a single non-terminal, or a user-defined stopping condition is reached.

In each iteration SubdueGL performs a beam search for the best substructure to be
used in the next production rule. The search starts by finding each uniquely labeled
vertex and all their instances in the input graph. The subgraph definition and all instances
are referred to as a substructure. The ExtendSubstructure search operator is applied to
each of these single-vertex substructures to produce substructures with two vertices and
one edge. This operator extends the instances of a substructure by one edge in all possible
directions to form new instances. Subsets of similar instances are collected to form new
substructures. SubdueGL also considers adding recursion, variables and relations to
substructures. These additions are described in separate sections below.

The resulting substructures are evaluated according to the minimum description
length (MDL) principle, which states that the best theory is the one that minimizes the
description length of the entire data set. The MDL principle was introduced by
Rissanen'’, and applied to graph-based knowledge discovery by Cook and Holder". The
value of a substructure S is calculated by Value(S) = DL(S) + DL(G]S), where DL(S) is
the description length of the substructure, G is the input graph, and DL(G|S) is the
description length of the input graph compressed by the substructure. SubdueGL seeks to
minimize the value. Only substructures deemed the best by the MDL principle are kept
for further extension.

3.1.1.  Recursion

Recursive productions are created by the RecursifySubstructure search operator. It is
applied to each substructure after the ExtendSubstructure operator. RecursifySubstructure
checks each instance of the substructure to see if it is connected to any of its other
instances by an edge. If so, a recursive production is possible. The operator adds the
connecting edge to the substructure and collects all possible chains of instances. If a
recursive production is found to be the best at the end of an iteration, each such chain of
subgraphs is abstracted away and replaced by a single vertex. See figure 3 for an example
of a recursive production.

Since SubdueGL discovers commonly occurring substructures first and then attempts
to make a recursive production, SubdueGL can only make recursive productions out of
lists of substructures that are connected by a single edge, which has to have the same
label between each member substructure of the list. The algorithm is exponential in the
number of edges considered in the recursion, so we limit SubdueGL to single-edge
recursive productions. Therefore, the system cannot yet induce productions such as S —
aSb.

3.12. Variables

The first step towards discovering variables is discovering commonly-occurring
structures, since variability in the data can be detected by surrounding data. If commonly-
occurring structures are connected to vertices with varying labels, these vertices can be
turned into variables. See figure 5 for an example of a variable production (Ss).
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SubdueGL discovers variables inside the ExtendSubstructure search operator. As
mentioned before, SubdueGL extends each instance of a substructure in all possible ways
and groups the new instances that are alike. After this step, it also groups new instances
in a different way. Those that were extended from the same vertex by the same edge in all
instances, regardless of what vertex they point to, are grouped together. Let (v/, e, v2)
represent edge e from vertex v/ to vertex v2, also expressing the direction of the directed
edge e. Vertex v/ is part of the original substructure which was extended by e and v2.
For variable creation, instances are grouped using (v1, ¢, V), where V is a variable (non-
terminal) vertex whose values include the labels of all matching v2’s. The substructure so
created is then evaluated using MDL and competes with others for top placement.

The variable ¥ can have many values. It is possible to create other substructures from
a subset of these values that may evaluate better according to the MDL principle.
Generating all subsets, however, is exponential in the number of unique variable values.
We employ a heuristic based on the number of instances in which each unique variable
value occurs. The MDL principle prefers values that are supported by many instances.
Therefore, new substructures are created by successively removing the value with the
lowest support. All these substructures compete for top placement. If all the values of V
are numeric, then the variable’s range is represented using a minimum and maximum
value. The above heuristic results in a progressive narrowing of this range.

3.1.3.  Relationships

SubdueGL also introduces relationship edges into the grammar. Relationship edges
increase the expressive power of a grammar by identifying vertices with labels that are
equivalent. In the case of numerical labels the less-than-or-equal-to relationship is also
possible via a directed relationship edge.

Relationships are discovered after identifying variables. At least one vertex
participating in a relationship has to be a variable non-terminal, since relationships
between non-variables are trivial. A relationship edge is identified by comparing a newly
discovered variable’s values in each instance to every other vertex. If the same
relationship holds between the variable and another vertex in every instance of the
substructure, a relationship edge is created. Figure 1 shows an example of a production
that contains two relationships. The relationship edges are marked with dotted arrows and
labeled ‘<=" and ‘=’.

Figure 1. Graph grammar production with relationships.

3.14.  Example

In this section we give an example of SubdueGL’s operation. Consider the input graph
shown in figure 2. It is the graph representation of an artificially generated domain. It
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features lists of static structures (square shape), a list of a changing structure (triangle
shape), and some additional random vertices and edges. For a cleaner appearance we

omitted edge labels in the figures. The edge labels within the triangle-looking subgraph
are ‘t’, in the square-looking subgraph ‘s’, and the rest of the edges are labeled ‘next’.

a (3) (3) a
piis
0490000
@O—(@ @O @O—(@ @O

Figure 2. Input graph.

SubdueGL starts out by collecting all the unique vertices in the graph and expanding
them in all possible directions. Let us follow the extension of vertex ‘x’—keeping in
mind that the others are expanded in parallel. When vertex ‘x’ is expanded in all possible
directions, it results in 2-vertex substructures, with edges (X, s, ¥), (X, s, z), (y, next, x),
and (x, next, r). The first two substructures rank higher, since those have four instances
and compress the graph better than the latter two with only 2 and 1 instances respectively.

Applying the ExtendSubstructure operator three more times results in a substructure
having vertices {X, y, z, q} and four edges connecting these four vertices. This
substructure has four instances. Being the biggest and most common substructure, it
ranks on the top. Executing the RecursifySubstructure operator results in the recursive
grammar rule shown in figure 3. The production covers two lists of two instances of the
substructure.

The recursive production was constructed by checking all outgoing edges of each
instance to see if they are connected to any other instance. We can see in figure 2 that the
instance in the lower left is connected to the instance on its right, via vertex ‘y’ being
connected to vertex ‘x’. Same is the situation on the lower right side. Abstracting out
these four instances using the above production results in the graph depicted in figure 4.

©® — o.o S o.o
0@ O—@
Figure 3. First production generated by SubdueGL.
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Figure 4. Input graph, parsed by the first production.




MDL-Based Context-Free Graph Grammar Induction and Applications 71

The next iteration of SubdueGL uses this graph as its input graph to infer the next
grammar rule. Looking at the graph, one can easily see that the most common
substructure now is the triangle-looking subgraph. In fact, SubdueGL finds a portion of
that simply by looking for substructures that are exactly the same. This part is the
substructure having vertices {a, b} and edge (a, t, b). It has four instances. Extending this
structure further by an edge and a vertex adds different vertices to each instance: ‘c’, ‘d’,
‘e’, and ‘f. The resulting single-instance substructures evaluate poorly by the MDL
heuristic.

SubdueGL at this point generates another substructure with four instances, replacing
vertices ‘c’, ‘d’, ‘e’, and ‘" with a non-terminal vertex (S;) in the substructure, thereby
creating a variable. This substructure now has four instances, and stands the best chance
of getting selected for the next production.

After the ExtendSubstructure operation, however, SubdueGL hands the substructure
to RecursifySubstructure to see if any of the instances are connected. Since all four of
them are connected by an edge, a recursive substructure is created which covers even
more of the input graph, having included three additional edges. Also, it is replaced by a
single non-terminal in the input graph, versus four non-terminals when abstracting out the
instances non-recursively, one-by-one.

The new productions generated in this iteration are shown in figure 5. Abstracting.
away these substructures produces the graph shown in figure 6.

In the next iteration, SubdueGL cannot find any recurring substructures that can be
abstracted out to reduce the graph’s description length. The graph in figure 6, therefore
becomes the right side of the last production. When this rule is executed, the graph is
fully parsed.

& —0@ S ©

35 83
o — o|o|e|o T 00—
Figure 5. Second and third productions Figure 6. Input parsed by the
by SubdueGL. second and third productions.

4.  Experimental Results

This section describes the results of experiment ran using the above described algorithm.
Empirical evaluation is described first, followed by real-world examples.
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4.1.  Empirical Evaluation

We devised an experiment to show that SubdueGL does not simply discover arbitrary
grammars, but finds the most relevant grammars. This proof-of-concept experiment
involved using a known graph grammar to generate a graph and having SubdueGL infer
the original graph grammar from the graph at varying levels of noise. The experimental
process included the following steps: (1) Generate graph from known grammar, (2)
Corrupt the graph by noise, (3) Use SubdueGL to infer a grammar from the corrupted
graph, (4) Compute the error by comparing SubdueGL’s output with the original
grammar. Since the right side of each production is a graph, the error is defined as the
number of graph transformations (i.e., insert/delete vertex/edge or change label) needed
to transform the known grammar into the inferred grammar.

The experiments used three graph grammar rules that we will call the friangle, the
star and the complex rules. These are shown in figure 7. The edges in the triangle and star
productions are labeled uniformly, and in the complex production, non-uniformly.

oo

(a) (D
®— ®— @

a) b)

<)

Figure 7. a) Triangle production b) Star production ¢) Complex production

We use these three production rules as the basis for our experiments. They represent
an increasingly complex set of rules that SubdueGL will have to deal with. The triangle
rule is, of course, the simplest one, being a simple closed shape with three vertices and
three edges. With this shape we would like to determine SubdueGL’s ability to find small
patterns.

The star pattern is frequently used in the graph representation of flat (non-relational)
domains, therefore it is important to know how SubdueGL deals with this type of pattern.
The star we use simulates the presence of seven attributes, each corresponding to each
edge of the star.
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The complex shape was designed to include most basic graph features to a certain
complexity. It includes closed triangle shapes, squares with varying edge directions,
pentagons, multiple edges between vertices, and a vertex that is attached to the rest of the
graph with only a single edge.

These basic shapes were extended to include recursion and variables. Recursive edges
were added to each rule, which are used to connect instances after the instances are
generated. These are typically labeled ‘next’. The same way, discrete and continuous
variables were also added. We conducted a large number of experiments using all
combination of the features, the basic shapes alone, using recursion, using variables, and
using both. We also combined all these manually generated rules to create even more
complex graph grammars.

Another concern about grammar rules is their number of occurrence in the graph
generated. We would like to find out how the number of embedded instances affects
SubdueGL’s ability to discover them. Therefore, we will not predetermine a fixed
number, but rather run experiments using varying number of instances to experimentally
determine their effect.

We corrupted the generated input graph by deleting edges and vertices, and re-
labeling (introducing label noise) both vertices and edge. We added noise from 0% up to
100% in 5% increments. The noise introduced was defined as the combination of two
parameters: the percentage of instances embedded into the graph to be corrupted, and the
percentage of a single instance to be corrupted. For example, if we intend to introduce
10% overall noise, we corrupt 31.6% of 31.6% of the instances (31.6% squared being
10%).

Figure 8 shows the error plots for a specific experiment, but these results are quite
typical. The five error curves represent trials using different number of embeddings of
each rule. We used 2, 4, 8, 16, and 32 instances. The curves represent the average of
thirty trials, which was sufficient for producing accurate results with a confidence
interval of 1.0 error with 95% confidence. In other words, there was a 5% chance that the
error was greater than 1.0 transformations. In some cases, however, many more runs
would have been necessary to obtain the same confidence. This number could be as high
as 200 runs for certain experiments. Since the number of runs necessary varies for each
experiment, it was infeasible to compute this number for each experiment in a reasonable
amount of time. Instead, the number of runs necessary were computed only for the
experiments included in figure 8. For the remaining experiments thirty runs were used,
which are actually good enough to give an idea of the shape of the curves. More runs
would have made the curves look smoother, but for our purposes they sufficiently depict
the performance behavior.

At 0% noise SubdueGL always found the original grammar exactly. We found that in
the presence of noise the algorithm has a tendency to add extra values to variables. An
argument to SubdueGL that specifies a minimum support for variable values reduces its
sensitivity to noise. The minimum support specifies the percentage of instances in which
a unique variable value has to appear to be included in a variable production.
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Results from 2-instance experiments easily explained that with no noise, SubdueGL
will always find the original grammar, but with one instance corrupted, most of the
regularity is gone. Therefore, it becomes impossible for SubdueGL to find the original
grammar. A single small substructure can still be found close to 25% noise, where one of
the instances (50%) is corrupted by 50% (the total noise being 50%> = 25%). For a large
enough grammar rule size the other 50% of the noisy instance that is left intact may still
be found, having 2 instances (one in the noisy instance and one in the noise-free
instance). All of this 50%, however, would have to be connected, such that a connected
substructure can be found. The probability of this is low. And even when it does happen,
the error associated with a rule found in these circumstances is still very high. This is the
reason why we see the 2-instance experiments go from zero error to very close to the
maximum error very fast, at 25% noise.

—2
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—32
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Figure 8. Typical error curves on artificial domains by SubdueGL

We have explained the shape of the error curve associated with the 2-instance
experiments. Looking at the experiments with more instances, the general shape of the
curves emerge, although their values change relative to each other. Figure 9 gives a
schematic view of the general error curve, where significant features are also marked. As
we can see, the curve is not a monotonically increasing or decreasing one. It has local
minima and maxima. We show four of these features in the figure, but in reality there
may be any number of these. The typical curve can be imagined as a stair-like curve with
varying number of steps. The closest to the general curve is the one for 8-instances in
figure 8. On the other curves, these features are less pronounced, because these local
extremes are exaggerated, seemingly taking over the overall shape of the curve.

The local extremes are due to tradeoffs that happen in the leamed grammar while
SubdueGL is attempting to minimize the description length. To review, the MDL
heuristic provides a tradeoff between substructure frequency and size. If SubdueGL was
only to look for frequent substructures, it would terminate at single-vertex substructures,
as adding to a substructure will most likely reduce its frequency. The MDL heuristic
rewards for increased substructure size, driving the search towards a substructure that
best trades off size and frequency.
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Figure 9. General error curve

Let us look at what is happening in the typical error curve in figure 8. Let us start
from 0% noise, where SubdueGL recovers the original grammar exactly. Introducing a
small amount of error corrupts a small number of instances in a small amount. Such error
prompts SubdueGL to prefer slightly smaller substructures in exchange for the added
instances. The more SubdueGL gives up of the substructure in exchange for more
instances, the more error it will incur when the learned grammar is compared to the
original one.

As more noise is introduced, the noise starts tipping the balance of the tradeoff
towards favoring larger substructures, which are closer to the original grammar. The error
starts to decrease until the balance is tipped again. This happens when the number of
noiseless instances are in rare supply and SubdueGL finds more frequent patterns that are
smaller in size. Given enough instances and a large enough substructure to begin with,
the balance can tip many times to form a stair-like error curve until 100% noise is
introduced and the maximum error is incurred. Figure 10 depicts a scenario in which
SubdueGL must determine whether to favor a smaller, more frequent substructure over a
larger, less frequent one. Learned patterns in both figure 10a and figure 10b are drawn in
bold lines. In figure 10a, there are two instances of a pattern that has a total size of 19
vertices and edges, for a total coverage of 38 vertices and edges in the input graph. In
figure 10b, there are four instances of a pattern that has 10 vertices and edges, for a total
coverage of 40. Although the description length calculation is more involved, this gives
us a good idea of the type of tradeoff SubdueGL has to make in terms of size and
frequency.

If error was introduced in a different way such that a small number of instances were
corrupted by a large percentage, SubdueGL would not be able to make the tradeoff of
smaller structures for more instances. The error curve would be modified such that no
error would be incurred for a small amount of noise. In fact, if many of the noisy
instances were corrupted, SubdueGL would recover the original grammar accurately even
with a large amount of noise. In other words, looking at the 32-instance experiment in
figure 8, the curve would remain flat up to about 70% noise.

Additionally, more instances can be added if they are structurally identical to the other
instances and differ only in vertex labels. In those cases variable productions are created.
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If the vertex was originally not a variable, this tactic for more instances leaves SubdueGL
with lower accuracy.

()

Figure 10. a) Tradeoff 1: few large patterns b) Tradeoff 2: many small patterns

Looking at the error curves, we may notice that the actual error does not reach 100%.
This happens because vertex labels that are to be corrupted by noise are replaced with
labels from the pool of already available labels. Even though its original label is not
assigned to any vertex, the label that is assigned to a vertex comes from the original
specification of the grammar. Any grammar rule found will have vertices in it with labels
that will match the original grammar. At least these vertices will not have to be changed,
and that is a deduction from the match cost of the induced and the original grammars.
The smaller the rule the more likely that edges are reconnected to vertices in a way that is
found in the original grammar.

We may notice a sudden jump in the error curves at 100% noise. The number of
instances unaffected by noise at 100% is zero. Even though typicaily only one of the
instances is noiseless at 95% noise, it gives a small pattern a chance to be found
elsewhere in the input graph, that was left unaffected by noise elsewhere in the graph. At
100% noise everything is randomized and the smallest patterns disappear as well.

42. Real-world experiments

As a real-world example, we applied SubdueGL to protein sequence data. Specifically,
we analyzed the primary and secondary structure of the proteins myoglobin and
hemoglobin, respectively. These proteins are used widely to illustrate nearly every
important feature of protein structure, function, and evolution'>.
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$ 5 $;,>8;>8,>8->8—>87->8—>8-—>810—>811—>812>813>814—>845—> ALA —>$

S VAL | LEU | SER | GLU | GLY | TRP | GLN | HIS |
ALA | LYS | ASP | ILE | PHE | THR | ASN
83— VAL | LEU | SER | GLU | GLN | HIS | ALA | ASP | ILE | ARG | THR | MET | ASN

S20 > S21—> S22 —> 823 —> 824 —> 825 —> 825 —> Sz7 —> LEU —> Sy
821> VAL | GLY | GLN | ALA | LYS | ASP | PHE | MET | S
S2— VAL | LEU | GLU | GLY | GLN | HIS | ALA | LYS |ILE | PHE | THR | MET | §

830> S31 —> S32 —> Sg3 > Sy —> S35 > S35 —> Sg7 —> Sg3 > 5LY > Sy
S35 1Ys | S | Sy

832> SER | GLU | HIS | LYS | ASP | 8
S33— VAL | GLU | HIS | ILE | PRO | THR
S31— VAL | GLU | TRP | ALA | ASP | PRO
S3s— GLY | ALA | THR

83— GLY | HIS | LYS | ASP | PHE | PRQ
837> VAL | GLY | LYS | PHE | PRO | TYR
83— VAL | GLN | HIS | ALA | LYS | THR

S40—> S3p—> 83— Sy —> 8 —>» HIS —> LYS —> LYS —> LYS

Figure 11. Partial grammar induced by SubdueGL on protein primary-sequence data.

The primary structure of myoglobin is represented as a sequence of amino acids,
which have a three letter acronym. These compose the vertices of the input graph, which
are connected by edges labeled ‘next’. The grammar induced by SubdueGL is shown in
figure 11, where graph vertices are only shown by their labels. The arrow — is the
production operator, while —> signifies the edge ‘next’ in the graph. For lack of space, we
omitted a few variables (84 through S4s, and Sy; through S,7). The expressive power of
the grammar is apparent at the first glance. Productions S, Sjg, and Sy are recursive,
while S49 contains all these recursive rules followed by a static sequence of amino acids.
Rules S, Sz, and S3p each contain a single amino acid at the end of the chain which
signifies a recurrence of these amino acids with various combinations of other amino
acids in between. Productions Sjq, S22, 831, and S3; are also interesting, as they describe
regularities among single amino acids, and a recursive sequence of amino acids. In the
case of S3q, it can be replaced by LYS, S (a recurrent sequence) or Syg (another variable).

For the next example we use the secondary structure of the above mentioned proteins,
which is represented in graph form as a sequence of helices and sheets along the primary
sequence. Each helix is a vertex which is connected via edges labeled ‘next’. Each helix
is encoded in the form ‘h t I’, where 4 stands for helix, ¢ is the helix type, and [ is the
length. Part of the grammar identified by SubdueGL is shown in figure 12. This grammar
only involves helices of type 1 (right-handed a-helix). This grammar can generate the
most frequently occurring helix sequences that are unique to hemoglobin. It can also
generate others as well, for instance, ones that also occur in myoglobin. The grammar
generated for myoglobin secondary sequence is shown in figure 13. We can see that the
two sequences have the same length and the languages generated by them intersect in the
sequence

h115->h115—>h16-—>h16->h119->h18->h1l18—>h1 23
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This is interesting, since researchers have long been speculating that a common
evolutionary path exists for these proteins. Hou and colleagues'® reported on myoglobin-
like proteins that are prime candidates to be common ancestors.

S 5 8$;>8;3>h 1 6>8—>h_119->h 1 8->h 1 18->8s
S$; > h 114 | h 115
S3 > h 114 | h 115
S$4> hile6 | ki1l
Ss > h 120 | h 123
Figure 12. Partial grammar by SubdueGL on hemoglobin secondary structure.
S — h115->h 1 15->h 1 6->h 1 6—>h 1 19->S,->h 1 18->S;
S » h 19| h1l38

S; = h 125 | h 123

Figure 13. Partial grammar by SubdueGL on myoglobin secondary structure.

Brazma and colleagues' presented a survey of approaches to automatic pattern
discovery in biosequences. Context-free grammars are superior to approaches surveyed
there in their ability to represent recursion and relationships among variables.

5. Conclusions and Future Work

In this paper we introduced an algorithm, SubdueGL, which is able to infer graph
grammars from examples. The algorithm is based on the Subdue system which has had
success in structural data mining in several domains. SubdueGL focuses on context-free
graph grammars. Its current capabilities include finding static structures, finding
variables, relationships, recursive structures, and numeric label handling.

Despite the advantages of SubdueGL’s expressive power, there is room for
improvement. As mentioned before, recursive productions can only be formed out of
recurring sequences using a single edge. At this point, variable productions can only have
single vertices on the right side of the production. Even though the vertex can be a non-
terminal, there might be advantages to allowing arbitrary graphs as well.

QOur experiments show that the algorithm is somewhat susceptible to noise when
forming variable productions. Specifying a minimum support can alleviate this problem,
but human judgment is needed in specifying the support.

Our future plans include work on second-order graph grammar inference, where
preliminary results show promise. We may also consider work on probabilistic graph
grammars. As future results warrant, we may allow variables to take on values that are
not restricted to be single vertices. We also plan to investigate other ways to identify
recursive structures, with focus on allowing the recursive non-terminal to be embedded in
a subgraph, connecting with more than a single edge. We also plan to compare our
approach to ILP and other competing systems.
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