
Faster Computation of the Direct Product Kernel for
Graph Classification

Nikhil S. Ketkar, Lawrence B.Holder, Diane J. Cook

Abstract— The direct product kernel, introduced by Gärtner
et al. for graph classification, is based on defining a feature for
every possible label sequence in a labelled graph and counting
how many label sequences in two given graphs are identical.
Although the direct product kernel has achieved promising results
in terms of accuracy, the kernel computation is not feasible for
large graphs. This is because computing the direct product kernel
for two graphs is essentially computing either the inverse of or by
diagonalizing the adjacency matrix of the direct product of these
two graphs. For two graphs with adjacency matrices of sizes m
and n, the adjacency matrix of their direct product graph can be
of size mn in the worst case. As both matrix inversion or matrix
diagonalizing in the general case is O(n3), computing the direct
product kernel is O((mn)3). Our survey of data sets in graph
classification indicates that most graphs have adjacency matrices
of sizes in the order of hundreds which often leads to adjacency
matrices of direct product graphs (of two graphs) having sizes
in the order of thousands.

In this work we show how the direct product kernel can be
computed in O((m + n)3). The key insight behind our result
is that the language of label sequences in a labeled graph is a
regular language and that regular languages are closed under
union and intersection.

I. OVERVIEW

In the past, machine learning research has focused on
attribute-valued data or data that is naturally expressed as
a single table. Although these methods have achieved great
success in a variety of real world domains, data in a majority of
domains has an inherent structure which prevents it from being
expressed as attribute-valued data and hence new approaches
for dealing with such data have been developed. The two
main approaches for dealing with such data are based on
representing such data in first-order logic and graphs. A variety
of problems based on graphical representation of structured
data have been studied in the past. The problem that this work
focuses on is that of graph classification which is learning to
classify separate, individual graphs in a graph database into
two or more categories.

The problem of graph classification was first studied by
Gonzales et al. [1] who proposed the SubdueCL algorithm for
the task and had promising initial results. The approach was
based on a greedy search for sub-graphs which distinguish one
class of graphs from all other classes. Since then, a variety of
new algorithms and approaches based on extending existing
attribute-valued algorithms have been studied. Deshpandey et
al. [2] applied the FSG system to mine frequent sub-graphs
in a graph database which were represented as a feature
vector, and support vector machines were then applied to
classify these feature vectors. Nguyen et al. [3] proposed the
DT-CLGBI algorithm which learns a decision tree for graph

classification in which each node is associated with a sub-
graph and represents an existence/nonexistence test. Kudo
et al. [4] proposed an approach based on boosting decision
stumps where a decision stump is associated with a sub-graph
and represents an existence/nonexistence test. Gärtner et al.
[5] proposed an approach based on using support vector ma-
chines for the task of graph classification by developing graph
kernels. Two kernels, namely, the walk-based (direct product)
kernel and the cycle-based graph kernel were proposed in this
work. Kashima et al. [6] recently proposed another walk-based
graph kernel.

In this work we focus on the direct product kernel proposed
by Gärtner et al. [5]. The direct product kernel takes as input
two graphs and returns an inner product of the vectors of label
sequences corresponding to walks in the two input graphs.
Intuitively, this can be seen as a count of the identical walks
that can be taken in both of the graphs. Computing the direct
product kernel for two graphs is essentially computing either
the inverse of or by diagonalizing the adjacency matrix of the
direct product of these two graphs.

While this kernel has achieved promising results in terms
of accuracy, the kernel computation is not feasible for large
graphs. Our survey of data sets in graph classification indicates
that most graphs have adjacency matrices of sizes in the order
of hundreds which often leads to adjacency matrices of direct
product graphs (of two graphs) having sizes in the order of
thousands. For two graphs with adjacency matrices of sizes m
and n, the adjacency matrix of their direct product graph can
be of size mn in the worst case. As both matrix inversion or
matrix diagonalizing in the general case is O(n3), computing
the direct product kernel is O((mn)3).

Our contribution in this work is that we show how the
direct product kernel can be computed in O((m + n)3). The
key insight behind our result is that the language of label
sequences in a labeled graph is a regular language and that
regular languages are closed under union and intersection.

The rest of the paper is organized as follows. First, we
present a formulation of the graph classification problem and
survey the various approaches to address the problem. The next
section deals with the alternative feasible kernel computation.
Next, the current method for this kernel computation and the
lack of its feasibility is discussed by surveying various graph
data sets.

II. GRAPH CLASSIFICATION: PROBLEM AND APPROACHES

First, we formulate the graph classification problem. A
directed edge-labeled graph is a triple g = (V,E, α) where

978-1-4244-2765-9/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:46 from IEEE Xplore. Restrictions apply.

V is the set of vertices, E ⊆ V × V is a set of directed
edges and α is the edge labelling function α : E → Σ
where Σ is the alphabet of edge labels. Note that, although
our formulation and results are based on directed, edge label
graphs for simplicity, they are trivially extended to undirected,
mixed (directed and undirected edges), vertex labelled and
various other types of graphs. Given a set of training examples
T = {〈xi, yi〉}L

i=0 where xi ∈ X is a vertex labeled graph and
yi ∈ {+1,−1}, the graph classification problem is to induce
a mapping f : X → {+1,−1}.

A. SUBDUE

The SubdueCL algorithm proposed by [7] is the pioneer-
ing algorithm for the graph classification problem. The key
aspect of the algorithm is the greedy, heuristic search for
subgraphs present in positive examples and absent in the
negative examples. The hypothesis space of Subdue consists of
all the connected subgraphs of all the example graphs labeled
positive.

Subdue performs a beam search which begins from sub-
graphs consisting of all vertices with unique labels. The
subgraphs are extended by one vertex and one edge or one
edge in all possible ways, as guided by the input graphs, to
generate candidate subgraphs. Subdue maintains the instances
of subgraphs (in order to avoid subgraph isomorphism) and
uses graph isomorphism to determine the instances of the
candidate substructure in the input graph. Candidate substruc-
tures are evaluated according to classification accuracy or the
minimum description length principle introduced by [8].

The length of the search beam determines the number of
candidate substructures retained for further expansion. This
procedure repeats until all substructures are considered or the
user imposed computational constraints are exceeded. At the
end of this procedure the positive examples covered by the best
substructure are removed. The process of finding substructures
and removing positive examples continues until all the positive
examples are covered.

The model learned by Subdue thus consists of a decision
list each member of which is connected graph. Applying
this model to classify unseen examples involves conducting a
subgraph isomorphism test; if any of the graphs in the decision
list are present in the example, it is predicted as positive, if
all the graphs in the decision list are absent it the example, it
is predicted as negative.

Two additional features of the algorithm are inexact graph
matching and incorporation of background knowledge. Subdue
can perform an inexact graph isomorphism in the candidate
evaluation stage. Here, two candidate subgraphs are evaluated
to be identical if they differ by a value which falls below the
user specified threshold. The intuition behind this feature is
to make the algorithm more robust to noise in the examples.
The incorporation of background knowledge involves provid-
ing SubdueCL with predefined substructures as background
knowledge. Subdue uses this background knowledge by pre-
processing the examples and compressing each of the user
defined substructures which form the background knowledge

into a single vertex. The intuition behind this feature is to
efficiently search the space of subgraphs by utilising the
information provided by a domain expert about important
structural features.

B. Frequent Subgraph Mining in Conjunction with SVMs

The approach introduced by [9] for graph classification
involves the combination of work done in two diverse fields of
study, namely, frequent subgraph mining and support vector
machines. First, we present a quick overview of the work done
on the frequent subgraph mining problem.

The frequent subgraph mining problem is to produce the
set of subgraphs occurring in at least ε of the given n input
example graphs (which are referred to as transactions). The
initial work in this area was the AGM system proposed by
[10] which uses the apriori level-wise search approach. The
FSG system proposed by [11] takes a similar approach and
further optimizes the algorithm for improved running times.
The gSpan system proposed by [12] uses DFS codes for
canonical labeling and is much more memory and compu-
tationally efficient than the previous approaches. The most
recent work on this problem is the Gaston system proposed by
[13] which efficiently mines graph datasets by first considering
frequent paths which are transformed to trees which are further
transformed to graphs. Contrasting to all these approaches to
frequent subgraph mining which are complete, the systems
Subdue by [14] and GBI by [15] are based on heuristic, greedy
search.

The key idea in combining frequent subgraph miners and
SVMs in order to perform graph classification is to use a fre-
quent subgraph mining system to identify frequent subgraphs
in the given examples, then to construct feature vectors for
each example where each feature is the presence or absence
of a particular subgraph and train a support vector machine to
classify these feature vectors.

The model produced by this approach thus consists of a
list of graphs and a model produced by the SVM. Applying
this model to classify unseen examples involves conducting a
subgraph isomorphism test; a feature vector for the unseen
example is produced wherein each feature represents the
presence or absence of a graph in the list in the unseen example
and this feature vector is classified as positive or negative by
the model produced by the SVM.

C. Frequent Subgraph Mining in Conjunction with AdaBoost

The approach proposed by [16] involves combining aspects
of frequent subgraph miners and AdaBoost in a more inte-
grated way that FSG+SVM approach by [9] discussed before.
Broadly speaking, the approach involves boosting decision
stumps where a decision stump is associated with a graph
and represents an existence/nonexistence test in an example
to be classified.

The novelty of this work is that the authors have adapted
the search mechanism of gSpan which is based on canonical
labelling and the DSF code tree for the search for such decision
stumps. The key idea behind canonical labelling and the DSF

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:46 from IEEE Xplore. Restrictions apply.

code tree in gSpan is to prune the search space by avoiding
the further expansion of candidate subgraphs that have a
frequency below the user specified threshold as no supergraph
of a candidate can have a higher frequency than itself. This
idea cannot be directly applied to graph classification as the
objective of the search is not to find frequent subgraphs but
subgraphs whose presence or absence distinguishes positive
examples form the negative ones. [16] prove a tight upper
bound on the gain any supergraph g′ of a candidate subgraph
g can have. Using this result, the proposed algorithm uses
the search mechanism of gSpan, calculates and maintains
the current highest upper bound on gain τ and prunes the
search space by avoiding the further expansion of candidate
subgraphs that have a gain lower that τ . The boosting of these
decision stumps is identical to the meta learning algorithm
AdaBoost introduced by [17].

D. DT-CLGBI

The approach proposed by [18] involves combining as-
pects of frequent subgraph mining system GBI [15] and
decision trees. The approach induces a decision tree where
every node is associated with a graph and represents an
existence/nonexistence test in an example to be classified.

As described before, the GBI system performs a heuristic,
greedy search. In this approach, a variant of the GBI sys-
tem, B-GBI proposed by [19] which deals with overlapping
candidate subgraphs is used for feature generation. Broadly
speaking, the approach involves a typical decision tree algo-
rithm except that B-GBI is invoked to generate features at each
node, the gain of each feature is computed on the basis of how
the existence the feature graph splits the examples at that node
and this the procedure is recursively applied until pure nodes
with examples only from a single class are reached. In order
to avoid over fitting, pessimistic pruning identical to C4.5 by
[20] is performed.

III. DIRECT PRODUCT KERNEL

Intuitively, the direct product kernel is is based on defining
a feature for every possible label sequence in a labelled graph
and counting how many label sequences in two given graphs
are identical. So basically, the direct product kernel takes as
input two graphs and outputs a count of the identical walks
that can be taken in both of the graphs (refer Figure 1).

To define the direct product kernel we need some more
notions and notation. A walk w in a graph g is a sequence
of edges e1, e2, ...en such that for every ei = (u, v) and
ei+1 = (x, y), v = x is obeyed. Every walk is associated
with a sequence of edge labels α(e1), α(e2), ...α(en)

An adjacency matrix Mg of graph g is defined as,

[Mg]ij =

{
1, if (vi, vj) ∈ E

0, otherwise

A direct product of two graphs g1 = (V1, E1, α1) and g2 =
(V2, E2, α2) (with identical edge label alphabet Σ) g1 × g2 is
defined as,

1) Vg1×g2 = {(v1, v2) ∈ V1 × V2}

w1 w2

01
11

.

g1

g2
Inner Product

Unique walks that can be
 taken in either of the graphs

Present

Absent

Fig. 1. Feature Space

2) Eg1×g2 = {((u1, u2), (v1, v2)) ∈ E1 × E2} such that,
a) (u1, v1) ∈ E1

b) (u2, v2) ∈ E2

c) α1((u1, v1)) = α2((u2, v2))
An important observation here that taking a walk on a direct
product graph g1×g2 is equivalent to taking an identical walk
on graphs g1 and g2. Stated differently, this means that we
can take a certain walk on g1×g2 if and only if there exists a
corresponding identical walk in both g1 and g2. For two graphs
g1 = (V1, E1, α1) and g2 = (V2, E2, α2) (with identical edge
label alphabet Σ) let Mg1×g2 be the adjacency matrix of their
direct product graph g1 × g2. With a sequence of weights
λ0, λ1, ... such that λi ∈ R and λi ≥ 0 for all i ∈ N, the
direct product kernel k×(g1,g2) is defined as,

k×(g1,g2) =
|Vg1×g2 |∑

i,j=1

[∞∑
`=0

λ`M
`
g1×g2

]
ij

if the limit exists.
Intuitively, the direct product kernel computes the powers of

the adjacency matrix of the direct product graph Mg1×g2 and
sums them. This is equivalent to counting the identical walks
that can be taken in both the input graphs. This is because
any walk in g1 × g2 corresponds to an identical walk in both
g1 and g2 and the `th power of Mg1×g2 captures all walks of
length ` in Mg1×g2 .

IV. FASTER ALTERNATIVE COMPUTATION

In this section we present, our main contribution, a faster
alternative to computing the direct product kernel. The key
insight behind this is based on showing that the language of
edge label sequences corresponding to walks in a graph is a
regular language.

Lemma 1 Let w = e1, e2, ...en be a walk in graph g =
(V,E, α) and let s = α(e1), α(e2), ...α(en) be the sequence
of edge labels corresponding to each of the edges in the walk.
Let L be the language of all such sequences corresponding to
walks in g. Then, L is a regular language.

Proof: Construct a finite automaton M = (Q,Σ, δ, q, F)
as follows.

The set of states Q is constructed by introducing a state
sv corresponding to every vertex v in g. Additionally, two

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:46 from IEEE Xplore. Restrictions apply.

states s0 and sF are introduced in Q. The alphabet Σ is the
same as the alphabet of the edge labels. The set of transitions
δ is constructed by introducing a transition from state su to
sv on symbol α(e) for every directed edge e = (u, v) in g.
Additionally, ε-transitions are introduced from the state s0

to every other state in sv in Q except sF each of which
corresponds to a vertex in g. Also, ε-transitions are introduced
from every state in Q except for s0 and sF , each of which
corresponds to a vertex in g to the state sF . Set the start state
q = s0 and the final state F = sF .

By construction, M accepts L and hence L is regular.
We now show that the language of edge label sequences

corresponding to walks in a direct product graph is basically
the intersection of the two regular languages of edge labels
corresponding to walks in the two graphs and is itself a regular
language as regular languages are closed under intersection.

Lemma 2 Let gg1×g2 be the direct product graph of g1 and
g2. Let Lg1×g2 be the language of all sequences of edge labels
corresponding to walks in gg1×g2 . Similarly, let Lg1 and Lg2

be languages of all sequences of edge labels corresponding to
walks in g1 and g2 respectively. Then, Lg1×g2 = Lg1 ∩Lg2 is
regular.

Proof: From the definition of direct graph product, taking
a walk on a direct product graph g1×g2 is equivalent to taking
an identical walk on graphs g1 and g2. Each of these walks
has a corresponding edge label sequence associated with it.
As Lg1×g2 is the language of all sequences of edge labels
corresponding to walks in gg1×g2 , Lg1 and Lg2 are languages
of all sequences of edge labels corresponding to walks in g1

and g2 respectively, thus Lg1×g2 = Lg1 ∩ Lg2 follows.
We now introduce the notion of union of the two languages

corresponding to the sequence of edge labels corresponding
to walks in the two graphs. Let g1 = (V1, E1, α1) and g2 =
(V2, E2, α2) (with identical edge label alphabet Σ) then the
union of the corresponding languages Lg1 and Lg2 is denoted
by Lg1∪g2 .

Lemma 3 Lg1∪g2 is regular.
Proof: Follows from the definitions and the property the

regular languages are closed under union.
We can now show a result that gives us a relation between

the sizes of the languages considered so far.
Lemma 4 Let gg1×g2 be the direct product graph of g1

and g2. Let Lg1×g2 be the language of all sequences of edge
labels corresponding to walks in gg1×g2 . Let gg1∪g2 be the
union graph of g1 and g2. Let Lg1∪g2 be the language of all
sequences of edge labels corresponding to walks in gg1∪g2 .
Similarly, let Lg1 and Lg2 be languages of all sequences of
edge labels corresponding to walks in g1 and g2 respectively.
Then, |Lg1×g2 | = |Lg1 |+ |Lg2 | − |Lg1∪g2 |.

Proof: Follows from Lemmas 1, 2 and 3 and the property
that regular languages are closed under union and intersection.

This result can be easily extended to subsets of these lan-
guages which place a restriction on the size of the sequences
in the language.

Lemma 5 Let L`
g1

, L`
g2

L`
g1×g2

and L`
g1∪g2

be subsets of

languages Lg1 , Lg2 Lg1×g2 and Lg1∪g2 such that they do not
contain sequences longer than `. Then L`

g1
, L`

g2
L`

g1×g2
and

L`
g1∪g2

are regular and |L`
g1×g2

| = |L`
g1
| + |L`

g2
| − |L`

g1∪g2
|

holds.
Proof: Clearly L`

g1
, L`

g2
L`

g1×g2
and L`

g1∪g2
are finite

languages by definition and hence regular. The result follows
from Lemma 4 and the property that regular languages are
closed under union and intersection.

The problem thus reduces to counting the number of strings
in a regular language of length no more than `. It has been
shown that this problem can be solved in O(n3) [21] where
n is the number of states in the finite automata for the regular
language. This approach is also based on diagonalising the
adjacency matrix of the finite automata. Note here that in order
to compute |L`

g1×g2
| we compute |L`

g1
| + |L`

g2
| − |L`

g1∪g2
|.

The largest finite automata and hence the largest adjacency
matrix to be diagonalized is |L`

g1∪g2
|. The previous approach

in essence dealt with |L`
g1×g2

|. The key difference from the
previous computation is that now we are dealing with finite
automata corresponding to the union of two regular languages
which grows as O(m + n) for automatas with sizes m and
n (for the two input graphs) instead of the finite automata
corresponding to the intersection of the two languages which
grows as O(mn). This implies that direct product kernel can
be computed in O((m + n)3) instead of O((mn)3).

V. EXPERIMENTS

We compare the proposed alternative kernel computation
to the approximation of the kernel by matrix multiplication.
Figure 9 shows the training time for the Mutagenesis and PTC
datasets while approximating the kernel value using matrix
multiplication. Figure 10 shows the time for the alternative
computation (evaluation the inverse of the union matrix). The
results indicate that although the alternative computation is
expensive as compared to approximation for small walks, it is
comparable when compared to approximation for long walks.
Longer walks, in general, lead to higher accuracy(refer Figure
8) but after a certain walk length, we have diminishing returns
in the sense that the extra expense of computation does not
buy us better predictive accuracy. So the predictive accuracy
flattens out at a particular walk length where approximation by
matrix multiplication turns to be cheaper. In general, it must be
noted that approximation of the kernel by matrix multiplication
may turn out to be cheaper that the alternative computation in
practice for smaller walk sizes.

VI. SIGNIFICANCE OF FASTER KERNEL COMPUTATION

In this section we focus of how the direct product kernel is
currently computed and how this is infeasible for real world
data sets.

Gärtner et al., 2003, describe two ways in which the direct
product kernel can be computed, the first based on matrix
diagonalizing and the second based on matrix inversion. The
key issue in computing the kernel is that of computing the
powers of the adjacency matrix of the direct product graph.

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:46 from IEEE Xplore. Restrictions apply.

FM FR MM MR NRBLvsESP PSPvsESP PSPvsNRBL cell_growth cytoplasm mutagenesis nucleus transcription

0
2
0
0

6
0
0

1
0
0
0

1
4
0
0

Fig. 3. Number of vertices

FM FR MM MR NRBLvsESP PSPvsESP PSPvsNRBL cell_growth cytoplasm mutagenesis nucleus transcription

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

Fig. 4. Number of edges

FM FR MM MR NRBLvsESP PSPvsESP PSPvsNRBL cell_growth cytoplasm mutagenesis nucleus transcription

1
0

2
0

3
0

4
0

5
0

Fig. 5. Number of vertex labels

FM FR MM MR NRBLvsESP PSPvsESP PSPvsNRBL cell_growth cytoplasm mutagenesis nucleus transcription

5
1
0

1
5

Fig. 6. Number of edge labels

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:46 from IEEE Xplore. Restrictions apply.

Task

Pos

Neg

Vertices
(Total)

Average
Vertices

(Per
Example)

Edges
 (Total)

Average
Edges
(Per

Example)

Average
Degree

Vertex
Lables

Edge
 Lables

Mutag

125

63

4893

26.02

5243

27.88

1.07

8

4

 MR

152

192

8792

25.55

8931

25.96

1.01

19

4

 FR

121

230

9115

25.96

9312

26.52

1.02

20

4

 MM

129

207

8416

25.04

8533

25.39

1.01

21

4

FM

143

206

8811

25.31

8941

25.69

1.01

19

4

PSP vs
ESP

13

42

19349

351.8

390755

7104.64

20.19

20

2

NRBL vs
ESP

21

42

24131

383.032

445665

7074.05

18.46

20

2

Dataset Mutag PTC Proteins
Gene

Cell
Growth

Transcrip. Nucleus Cyto.

275 271 367 192

587 591 495 670

18258 18258 18258 18258

21.81 21.81 21.81 21.81

19149 19149 19149 19149

22.21 22.21 22.21 22.21

1.04 1.04 1.04 1.04

339 339 339 339

10 10 10 10

Function Localization

Labels

Labels

Fig. 7. Properties of graph classification data sets

The approach based on matrix diagonalizing involves diag-
onalizing the adjacency matrix of the direct product graph.
If Mg1×g2 can be expressed as Mg1×g2 = T−1DT , then
Mn

g1×g2
= (T−1DT)n. Then, Mn

g1×g2
= T−1DnT and

computing arbitrary powers of the diagonal matrix D can
be performed in linear time. It follows that the hardness
of computing the direct product kernel is equivalent to that
of diagonalizing the adjacency matrix of the direct product
graph. Matrix diagonalizing is O(m3) where m is the size of
the matrix. The second approach based on matrix inversion
involves inverting a matrix equal in size to the product graph
(for details refer to Gärtner et al., 2003). The point to note
here is that this approach involves inverting a matrix equal in
size to the adjacency matrix of the direct product graph, and
matrix inversion is O(m3) where m is the size of the matrix.

Now, as the kernel computation involves either the diago-
nalizing or the inversion of a matrix equal to the size of the
adjacency matrix of the direct product graph, the complexity
of this computation depends on the size of the direct product
graph. From the definition of the direct product graph in
the previous section it can be seen that the size of the
adjacency matrix of the direct product graph for two graphs
with adjacency matrices of sizes m and n, is m×n in the worst

case. It follows that the complexity of the kernel computation
is O((mn)3).

In order to investigate if this computation is feasible for
real world graph classification tasks, we conducted a survey of
graph classification data sets and studied their properties. Our
survey included chemical compounds from the Mutagenesis
data set [22] and the PTC data set, protein data from SCOP
[23] and gene interaction data from the KDD Cup 2001
dataset.

The Mutagenesis data [22] set has been used as a benchmark
data set in graph classification for many years. The data set has
been collected to identify mutagenic activity in a compound
based on its molecular structure.

The Predictive Toxicology Challenge (PTC) [24] data set
has also been used in the literature for several years. The PTC
carcinogenesis databases contain information about chemical
compounds and the results of laboratory tests made on rodents
in order to determine if the chemical induces cancer. The data
consists of four categories: male rats MR, female rats FR, male
mice MM, or female mice FM.

The Proteins data set comes from the Structural Clas-
sification of Proteins (SCOP) and has also been used to
evaluate graph-based supervised learning methods. The graph

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:46 from IEEE Xplore. Restrictions apply.

Webpage

Webpage

Webpage

Link

Link

#Outgoing

#Incoming

Outgoing

Incoming

Link

Link

Link

Link

Link
Link

(a)

Movie

Actor

Director

Writer

Actress

Language

Genre

ActedActed

Language

Genre

Directed

Wrote

Acted
Acted

Directed

Directed

Wrote
Wrote

Acted Acted

(b)

Gene

Class

Complex

Phenotype Motif

Cromosome

Gene
Type

Class

Complex

Phenotype Motif

Type

Gene

Type

Type

(c)

Figure 2: Graph representations of the datasets.

Webpage

(a)

Movie

Movie Movie

(b)

Gene

(c)

Figure 3: Sites in the representations of the datasets.

atom atom
bond

amino
acid

amino
acid

peptide

amino
acid

proximity

Representation for Mutagenesis and PTC

Representation for Gene Data

Representation for Proteins

Fig. 2. Graph Representation

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Length of walks

A
cc
ur
ac
y

Mutagenesis
MR
FR
MM
FM

Fig. 8. Accuracy vs. Length of Walk

2 4 6 8 10

0
50

10
0

15
0

Length of walks

R
un
tim
e(
s)

Mutageneis
MR
FR
MM
FM

Fig. 9. Approximation using matrix multiplication

Mutagenesis MR FR MM FM

Dataset

R
un
tim
e(
s)

0
50

10
0

15
0

20
0

Fig. 10. Alternative Computation

classification data sets studied were constructed from three
SCOP protein families. [25] The first family is the nuclear
receptor ligand-binding domain of proteins (NRBL) from the
all-alpha class. The second family is the prokaryotic serine
proteases (PSP) from the all-beta class. The third family is
the eukaryotic serine proteases (ESP). PSP and ESP belong to
the same superfamily.

The Gene interaction data comes from the 2001 KDD Cup
[26]. The data set consists of information about the various
genes of a particular organism. There are two tasks: predict
the functions and localizations of the proteins encoded by
the genes. For the function prediction task, we use only two
functions: cell growth and transcription. For the localization
task, we use only two locations: nucleus or cytoplasm.

Each of the data sets were represented as graphs and the
schematic representation of the representation is shown in
Figure 2. Box-and-whisker plots of the number of vertices,
number of edges, number of vertex labels and number of edge
labels of the graphs in these datasets are illustrated in Figures
3, 4 and 5, 6 respectively. Additional properties of the data
sets are shown in Figure 7. Note that SCOP graphs have more
than 300 vertices on average, which will definitely make the

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:46 from IEEE Xplore. Restrictions apply.

computation of the kernel for these graphs infeasible. Also,
note the high average degree for SCOP and the high number
of unique labels in the Gene data set which might lead to an
increased number of unique walks.

Although there can be a number of ways in which to
represent this data with a graph-based representation it can be
seen that most graphs will have adjacency matrices of sizes in
the order of hundreds which will lead to adjacency matrices
of direct product graphs (of two graphs) having sizes in the
order of thousands. It is therefore not feasible to compute the
kernel using the approaches described in this section for most
real world data sets.

An argument against the infeasibility of this computation
is that although computing the kernel for longer walks is
infeasible, the kernel can be easily computed for shorter
walks by direct matrix multiplication which might lead to a
sufficiently high accuracy. Such an approximation was also
used by Gärtner et al. for all the experiments in the original
paper that introduced this kernel. We performed experiments to
analyse the effect of the length of the walk on the classification
accuracy. Experiments were performed of two of the four data
sets discussed above namely, Mutagenesis and PTC. The result
of these experiments are shown in Figure 8. As it can be
seen, longer walks can lead to higher accuracy in certain cases
and hence faster computation is essential in achieving higher
accuracy.

VII. CONCLUSION

In this work we show how the direct product kernel can be
computed in O((m+n)3) instead of O((mn)3) for two graphs
with adjacency matrices of sizes m and n. As real world
datasets in graph classification have graphs with adjacency
matrices of sizes in the order of hundreds this result is
important in applying the direct product kernel to real world
data sets.

The observation that the language of label sequences in a
labeled graph is a regular language is important as it can be the
starting point for applying a number of results from automata
theory to compute graph kernels. We pursue this as a part of
our future work.

REFERENCES

[1] J. A. Gonzalez, L. B. Holder, and D. J. Cook, “Graph-based relational
concept learning.” in ICML, 2002, pp. 219–226.

[2] M. Deshpande, M. Kuramochi, G. Karypis, and M. U. M. D. O. C.
SCIENCE, “Frequent Sub-Structure-Based Approaches for Classifying
Chemical Compounds,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 8, pp. 1036–1050, 2005.

[3] P. Nguyen, K. Ohara, A. Mogi, H. Motoda, and T. Washio, “Constructing
Decision Trees for Graph-Structured Data by Chunkingless Graph-Based
Induction,” Proc. of PAKDD, pp. 390–399, 2006.

[4] T. Kudo, E. Maeda, and Y. Matsumoto, “An application of boosting to
graph classification.” in NIPS, 2004.

[5] T. Gärtner, P. A. Flach, and S. Wrobel, “On graph kernels: Hardness
results and efficient alternatives,” in COLT, 2003, pp. 129–143.

[6] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between
labeled graphs.” in ICML, 2003, pp. 321–328.

[7] J. Gonzalez, L. Holder, and D. Cook, “Graph-based relational concept
learning,” Proceedings of the Nineteenth International Conference on
Machine Learning, 2002.

[8] J. Rissanen, Stochastic Complexity in Statistical Inquiry Theory. World
Scientific Publishing Co., Inc., River Edge, NJ, 1989.

[9] M. Deshpande, M. Kuramochi, and G. Karypis, “Frequent Sub-
Structure-Based Approaches for Classifying Chemical Compounds,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 8,
pp. 1036–1050, 2005.

[10] A. Inokuchi, T. Washio, and H. Motoda, “An Apriori-Based Algorithm
for Mining Frequent Substructures from Graph Data,” Principles of Data
Mining and Knowledge Discovery: 4th European Conference, PKDD
2000, Lyon, France, September 13-16, 2000: Proceedings, 2000.

[11] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” Proceed-
ings of the 2001 IEEE International Conference on Data Mining, pp.
313–320, 1929.

[12] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,”
Proc. 2002 Int. Conf. on Data Mining (ICDM02), pp. 721–724, 2002.

[13] S. Nijssen and J. Kok, “A quickstart in frequent structure mining can
make a difference,” Proceedings of the 2004 ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp. 647–
652, 2004.

[14] D. Cook and L. Holder, “Substructure Discovery Using Minimum
Description Length and Background Knowledge,” Journal of Artificial
Intelligence Research, vol. 1, pp. 231–255, 1994.

[15] H. Motoda and K. Yoshida, “Machine learning techniques to make
computers easier to use,” Artificial Intelligence, vol. 103, no. 1-2, pp.
295–321, 1998.

[16] T. Kudo, E. Maeda, and Y. Matsumoto, “An application of boosting
to graph classification,” Advances in Neural Information Processing
Systems, vol. 17, pp. 729–736, 2005.

[17] Y. Freund and R. Schapire, “Experiments with a new boosting algo-
rithm,” Machine Learning: Proceedings of the Thirteenth International
Conference, vol. 148, p. 156, 1996.

[18] P. Nguyen, K. Ohara, A. Mogi, H. Motoda, and T. Washio, “Constructing
Decision Trees for Graph-Structured Data by Chunkingless Graph-Based
Induction,” Proc. of PAKDD, pp. 390–399, 2006.

[19] T. Matsuda, H. Motoda, T. Yoshida, and T. Washio, “Mining Patterns
from Structured Data by Beam-Wise Graph-Based Induction,” Discovery
Science: 5th International Conference, DS 2002, Lübeck, Germany,
November 24-26, 2002: Proceedings, 2002.

[20] J. Quinlan, C4. 5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[21] B. Ravikumar and G. Eisman, “Weak minimization of dfa: an algorithm
and applications,” Theor. Comput. Sci., vol. 328, no. 1-2, pp. 113–133,
2004.

[22] A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King,
“Theories for mutagenicity: A study in first-order and feature-based
induction.” Artif. Intell., vol. 85, no. 1-2, pp. 277–299, 1996.

[23] L. L. Conte, B. Ailey, T. J. P. Hubbard, S. E. Brenner, A. G. Murzin,
and C. Chothia, “Scop: a structural classification of proteins database.”
Nucleic Acids Research, vol. 28, no. 1, pp. 257–259, 2000.

[24] C. Helma, R. King, S. Kramer, and A. Srinivasan, “The Predictive
Toxicology Challenge 2000-2001,” pp. 107–108, 2001.

[25] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, and
A. Tropsha, “Mining protein family specific residue packing patterns
from protein structure graphs.” in RECOMB, 2004, pp. 308–315.

[26] J. Cheng, C. Hatzis, H. Hayashi, M.-A. Krogel, S. Morishita, D. Page,
and J. Sese, “KDD cup 2001 report,” SIGKDD Explorations, vol. 3,
no. 2, pp. 47–64, 2002.

Authorized licensed use limited to: Washington State University. Downloaded on January 13, 2010 at 15:46 from IEEE Xplore. Restrictions apply.

