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ABSTRACT
We perform an experimental comparison of the graph-based
multi-relational data mining system, Subdue, and the induc-
tive logic programming system, CProgol, on the Mutagene-
sis dataset and various artificially generated Bongard prob-
lems. Experimental results indicate that Subdue can signif-
icantly outperform CProgol while discovering structurally
large multi-relational concepts. It is also observed that
CProgol is better at learning semantically complicated con-
cepts and it tends to use background knowledge more effec-
tively than Subdue. An analysis of the results indicates that
the differences in the performance of the systems are a result
of the difference in the expressiveness of the logic-based and
the graph-based representations. The ability of graph-based
systems to learn structurally large concepts comes from the
use of a weaker representation whose expressiveness is inter-
mediate between propositional and first-order logic. The use
of this weaker representation is advantageous while learn-
ing structurally large concepts but it limits the learning of
semantically complicated concepts and the utilization back-
ground knowledge.

1. INTRODUCTION
Multi-relational data mining (MRDM)[7] is a subfield of
data mining which focuses on knowledge discovery from rela-
tional databases comprising multiple tables. Representation
is a fundamental as well as a critical aspect in the process
of discovery and two forms of representation, namely the
graph-based representation and the logic-based representa-
tion, have been used for MRDM.

Logic-based MRDM popularly known as Inductive Logic
Programming (ILP)[16], is the intersection of Machine
Learning and Logic Programming. ILP is character-
ized by the use of logic for the representation of multi-
relational data. ILP systems represent examples, back-
ground knowledge, hypotheses and target concepts in Horn
clause logic. ILP systems such as FOIL [20], CProgol[17],
Golem[18], SMART+[4], G-Net[1], CHILLIN[26], TILDE[2]
and WARMR[6] have been extensively applied to supervised
learning and to a certain extent to unsupervised learning.
The core of ILP is the use of logic for representation and the
search for syntactically legal hypotheses constructed from
predicates provided by the background knowledge. The ILP
process is basically a search wherein the states are hypothe-
ses and the goal is the hypothesis that is frequent or which

distinguishes positive and negative examples.
An ILP system can be characterized by the way the hypoth-
esis space is structured and the search strategy used to ex-
plore the hypothesis space. ILP systems may be classified on
the basis of four key factors. ILP systems may learn a single
concept or multiple concepts. ILP systems may be batch or
incremental depending on how they accept examples. ILP
systems may be interactive or non-interactive depending on
whether they use human advice in the process of learning.
Lastly, ILP systems may revise a theory or may learn con-
cepts from scratch, the former being known as theory revi-
sion systems. Although the factors are independent, most
ILP systems are either non-interactive, single concept batch
learners that build concepts from scratch or are incremen-
tal, interactive theory revisers that learn multiple concepts.
The former are known as empirical ILP systems while the
later are called incremental ILP systems.
Graph-based approaches are characterized by representation
of multi- relational data in the form of graphs. Graph-based
MRDM systems have been extensively applied to the task
of unsupervised learning, popularly known as frequent sub-
graph mining and to a certain extent to supervised learning.
Graph-based approaches represent examples, background
knowledge, hypotheses and target concepts as graphs. These
approaches include mathematical graph theory based ap-
proaches like FSG[14] and gSpan[24], greedy search based
approaches like Subdue [5] or GBI[15], and kernel function
based approaches[12]. The core of all these approaches is
the use of a graph-based representation and the search for
graph patterns which are frequent or which compress the
input graphs or which distinguish positive and negative ex-
amples.
Mathematical graph theory based approaches mine a com-
plete set of subgraphs mainly using a support or frequency
measure. The initial work in this area was the AGM[11]
system which uses the Apriori level-wise approach. FSG
takes a similar approach and further optimizes the algo-
rithm for improved running times. gFSG [13] is a vari-
ant of FSG which enumerates all geometric subgraphs from
the database. gSpan uses DFS codes for canonical label-
ing and is much more memory and computationally efficient
than previous approaches. Instead of mining all subgraphs,
CloseGraph[25] only mines closed subgraphs. A graph G
is closed in a dataset if there exists no supergraph of G
that has the same support as G. Gaston[19] efficiently mines
graph datasets by considering frequent paths. These fre-
quent paths are first transformed to trees and these trees
are then transformed to graphs. FFSM[9] is a graph mining
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system which uses an algebraic graph framework to address
the underlying problem of subgraph isomorphism.
In comparison to mathematical graph theory based ap-
proaches which are complete, greedy search based ap-
proaches use heuristics to evaluate the solution. The two
pioneering works in the field are Subdue and GBI. Subdue
uses MDL-based compression heuristics, and GBI uses an
empirical graph size-based heuristic. The empirical graph
size definition depends on the size of the extracted patterns
and the size of the compressed graph.

Lastly, the kernel function based approaches have been used
to a certain extent for mining graph datasets. The kernel
function defines a similarity between two graphs. When high
dimensional data is represented in linear space, the function
to learn is difficult in that space. We can map the linear data
to nonlinear space and the problem of learning in that high
dimensional space becomes the learning of scalar products.
Kernel functions make computation of such scalar products
very efficient. The key to applying the kernel function based
approach to mining graph data is finding efficient mapping
functions and good feature vectors. The pioneering work
that applied kernel functions to graph structures is the dif-
fusion kernel [12].

We perform an experimental comparison of graph-based and
logic-based MRDM. We identify three key factors for com-
paring graph-based and logic-based multi-relational data
mining; namely, the ability to discover structurally large
concepts, the ability to discover semantically complicated
concepts and the ability to effectively utilize background
knowledge. CProgol is selected as a representative of logic-
based approaches and Subdue is selected as a representa-
tive of graph-based approaches. Experiments are performed
on the Mutagenesis dataset which is a benchmark dataset
for MRDM. In most of the experiments, transformations
are applied to the Mutagenesis dataset or distinct types of
background knowledge are provided to Subdue and CProgol.
The rationale behind doing so is to perform lesion studies
and gain insight on the specific abilities of the approaches.
Additional experiments are performed on artificially gener-
ated Bongard problems to reinforce the findings from the
experiments on the Mutagenesis dataset. We analyze the
experimental results and present the insights and future di-
rections drawn from them.

Our analysis of the experimental results indicates that the
differences in the performance of the systems are a result of
the difference in the expressiveness of the logic-based and the
graph-based representations. The insights from this compar-
ison are pertinent to various tasks involving learning from
multi-relational data like inductive databases[10] and link
mining[8].
The rest of the paper is organized as follows. In Section 2
we describe the experimental setup, comprising of the logic-
based MRDM system CProgol, the graph-based MRDM
system Subdue, the Mutagenesis dataset and the Bongard
problems used for artificial experiments. In Section 3, we
identify the factors for comparing graph-based and logic-
based MRDM. Section 4 describes the experiments with the
Mutagenesis dataset. Sections 5 describes the artificial do-
main experiments with Bongard problems. In Section 6, we
analyze the experimental results. Conclusions and future
work are presented in Section 7.

2. EXPERIMENTAL SETUP
In this section we describe the experimental setup, compris-
ing of the logic-based MRDM system CProgol, the graph-
based MRDM system Subdue, the Mutagenesis dataset and
the Bongard problems used for artificial experiments.

2.1 CProgol
CProgol[17] is an ILP system, characterized by the use of
mode-directed inverse entailment and a hybrid search mech-
anism. Inverse entailment is a procedure which generates a
single, most specific clause that, together with the back-
ground knowledge, entails the observed data. The inverse
entailment in CProgol is mode-directed that is, it uses mode
definitions. A mode declaration is a constraint which im-
poses restrictions on the atoms and their arguments appear-
ing in a hypothesis clause by,

1. Determining which atoms can occur in the head and
the body of hypotheses.

2. Determining which arguments can be input variables,
output variables or constants.

3. Determining the number of alternative solutions for
instantiating the atom.

The user-defined mode declarations aid the generation of the
most specific clause. CProgol first computes the most spe-
cific clause which covers the seed example and belongs to the
hypothesis language. The most specific clause can be used
to bound the search from below. The search is now bounded
between the empty clause and the most specific clause. The
search proceeds within the bounded θ-subsumption lattice in
a general-to-specific manner. The search is a hybrid search,
because it is a general-to-specific search bounded from be-
low with respect to the most specific clause. The search
strategy is an A* algorithm which is guided by a weighted
compression and accuracy measure. The A* search returns
a clause which covers the most positive examples and max-
imally compresses the data.
Any arbitrary Prolog program can serve as background
knowledge for CProgol. The mode definitions and the back-
ground knowledge together define a hypothesis language.
The hypothesis space explored by CProgol consists of ev-
ery hypothesis defined by the hypothesis language.

2.2 Subdue
Subdue[5] is a graph-based MRDM system capable of un-
supervised and supervised learning. When operating as a
supervised learner, Subdue accepts a set of example graphs
labeled as positive or negative and finds subgraphs distin-
guishing the positive graphs from the negative graphs. The
hypothesis space of Subdue consists of all the connected sub-
graphs of all the example graphs labeled positive.

Subdue performs a beam search which begins from substruc-
tures consisting of all vertices with unique labels. The sub-
structures are extended by one vertex and one edge or one
edge in all possible ways, as guided by the input graph,
to generate candidate substructures. Subdue maintains the
instances of substructures (in order to avoid subgraph iso-
morphism) and uses graph isomorphism to determine the
instances of the candidate substructure in the input graph.
Candidate substructures are evaluated according to classifi-
cation accuracy or the minimum description length principle
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Figure 1: Bongard Problems. (a) Example of a Bongard
Problem. (b) Concept to be learned in the Bongard prob-
lem. (c) Instances of the concept in the Bongard problem.

[22]. The length of the search beam determines the number
of candidate substructures retained for further expansion.
This procedure repeats until all substructures are considered
or the user imposed computational constraints are exceeded.
At the end of this procedure the positive examples covered
by the best substructure are removed. The process of find-
ing substructures and removing positive examples continues
until all the positive examples are covered.

Subdue can be provided with predefined substructures
as background knowledge. Subdue uses this background
knowledge by preprocessing the examples and compressing
each of the user defined substructures which form the back-
ground knowledge into a single vertex.

2.3 Mutagenesis Dataset
The Mutagenesis dataset[23] has been collected to identify
mutagenic activity in a compound based on its molecular
structure and is considered to be a benchmark dataset for
MRDM. The Mutagenesis dataset consists of the molecu-
lar structure of 230 compounds, of which 138 are labeled
as mutagenic and 92 as non-mutagenic. The mutagenicity
of the compounds has been determined by the Ames Test.
The task is to distinguish mutagenic compounds from non-
mutagenic ones based on their molecular structure. The Mu-
tagenesis dataset basically consists of atoms, bonds, atom
types, bond types and partial charges on atoms. The dataset
also consists of the hydrophobicity of the compound (logP),
the energy level of the compound’s lowest unoccupied molec-
ular orbital (LUMO), a boolean attribute identifying com-
pounds with 3 or more benzyl rings (I1), and a boolean
attribute identifying compounds which are acenthryles (Ia).
Ia, I1, logP and LUMO are relevant properties in determin-
ing mutagenicity.

2.4 Bongard Problems
Bongard problems[3] were introduced as an artificial domain
in the field of pattern recognition. A simplified form of Bon-
gard problems has been used as an artificial domain in the
field of ILP[21]. We use a similar form of Bongard problems
for our artificial domain experiments. We use a Bongard

problem generator to generate datasets. Each dataset con-
sists of a set of positive and negative examples. Each exam-
ple consists of a number of simple geometrical objects placed
inside one another. The task is to determine the particular
set of objects, their shapes and their placement which can
correctly distinguish the positive examples from the nega-
tive ones. Figure 1(a) shows a Bongard problem, while (b)
and (c) show the concept to be learned and their instances
in the positive examples respectively.

3. FACTORS FOR COMPARISON
By performing a comparison of the graph-based and logic-
based approaches to MRDM, we intended to analyze the
ability of the approaches to efficiently discover complex
multi-relational concepts and to effectively utilize back-
ground knowledge. For doing so it is essential to estab-
lish some intuitive notions on the complexity of a multi-
relational concept and to identify the types of background
knowledge generally available in the task of MRDM.
The complexity of a multi-relational concept is a direct con-
sequence of the number of relations in the concept. A multi-
relational concept is more complicated to learn than some
other multi-relational concept if learning that concept in-
volves learning more relations than the other concept. For
example learning the concept of arene (six member ring as
in benzene) which comprises learning six relations, involves
the exploration of a larger hypothesis space than learning
the concept of hydroxyl (oxygen connected to hydrogen as in
methanol), which comprises learning one relation. The con-
cept of arene is thus more complicated than that of hydroxyl.
Although the number of relations in the multi-relational con-
cept is a key factor in the complexity of the multi-relational
concept, there are also other factors such as the number
of relations in the examples from which the concept is to
be learned. For example, learning the concept of hydroxyl
from a set of large molecules (e.g., phenols, etc.) involves
the exploration of a larger hypothesis space than learning
the same hydroxyl concept from a set of small molecules
(e.g., methanol, etc.). The concept of hydroxyl group is
thus more complicated to learn from phenols than it is from
a set of alcohols. We identify this complexity as structural
complexity.

In order to learn a particular concept, it is essential that
the representation used by a multi-relational data mining
system is able to express that particular concept. For a rep-
resentation to express a particular concept, it is beneficial
to have both the syntax which expresses the concept and
the semantics which associates meaning to the syntax. The
concepts which cannot be represented by the representation
used by the MRDM system can be explicitly instantiated
in the examples . A relational concept can be said to have
a higher complexity than some other relational concept if
representing that concept requires a more expressive rep-
resentation. For example to learn numerical ranges, it is
essential to have the syntax and the semantics for repre-
senting notions like ‘lesser than’, ‘greater than’ and ‘equal
to’. We identify this complexity as semantic complexity.

A relational learner can be provided background knowledge
which condenses the hypothesis space. For example if the
concept to be learned is ‘compounds with three arene rings’
(six member ring as in benzene) and the concept of an arene
ring is provided as a part of the background knowledge, then
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Figure 2: Representations of the Mutagenesis dataset. (a) Graph-based representation while comparing the ability to learn
structurally large concepts. (b) Graph-based representation while comparing the ability to learn semantically complicated
concepts. (c) Graph-based representation while comparing the ability to utilize background knowledge in the form of indicator
variables. (d) Graph-based representation while comparing the ability to utilize background knowledge in the form of generic
chemical concepts. (e) Logic-based representation while comparing the ability to learn structurally large concepts. (f) Logic-
based representation while comparing the ability to learn semantically complicated concepts. (g) Logic-based representation
while comparing the ability to utilize background knowledge in the form of indicator variables. (h) Logic-based representation
while comparing the ability to utilize background knowledge in the form of generic chemical concepts.

the arene rings in examples could be condensed to a single
entity. This would cause a massive reduction in the hy-
pothesis space required to be explored to learn the concept
and the relational learner would perform more efficiently
than without the background knowledge. We identify such
background knowledge as background knowledge intended to
condense the hypothesis space.
A relational learner can be provided background knowledge
which augments the hypothesis space. For example con-
sider that the relational learner is provided with background
knowledge which allows it to learn concepts like ‘lesser
than’,‘greater than’ and ‘equal to’. In this case, the rela-
tional learner would explore a hypothesis space larger than
what it would explore without the background knowledge.
Thus introducing background knowledge has augmented the
hypothesis space and has facilitated the learning of concepts
which would not be learned without the background knowl-
edge. We identify such background knowledge as background
knowledge intended to augment the hypothesis space.

Using these notions, we can identify three key factors
for comparing graph-based and logic-based multi-relational
data mining,

1. The ability to discover structurally large concepts.

2. The ability to discover semantically complicated con-
cepts (or the ability to utilize background knowledge
which augments the hypothesis space).

3. The ability to effectively utilize background knowledge
(which condenses the hypothesis space).

4. EXPERIMENTS ON THE
MUTAGENESIS DATASET

In this section we present our experiments on the Mutagen-
esis Dataset. We compared the performance of Subdue and
CProgol on four different representations of the Mutagen-
esis Dataset. Each representation was selected in order to
analyze a specific ability of the systems.
In first case, we compare the ability of the approaches to
learn large structural concepts. Both the relational learners
were provided only with the basic information of the atoms,
the elements and the bonds without any other information
or background knowledge. The relational learners are not
provided with any additional information or any form of
background knowledge, because we intended to compare the
ability to learn large structural concepts. The partial charge
information was not provided to either system because this
information would contribute to the accuracy and make it
difficult to analyze how the approaches compare while learn-
ing structurally large concepts. The atom type and bond
type information was also not provided to either system.
The reasoning behind doing so is that we view the atom
type and bond type information as a propositional repre-
sentation of relational data. Such information allows the
relational learners to learn propositional representations of
relational concepts instead of the true relational concept.

Consider for example the rule found by CProgol on the Mu-
tagenesis dataset[23],atom(A,B,c,195,C). This rule denotes
that compounds with a carbon atom of type 195 are muta-
genic. The atom type 195 occurs as the atom shared by 3
fused rings 6 member rings. Therefore all compounds with
3 fused 6 member rings are labeled active. It is interest-
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Table 1: Results on experiments with the Mutagenesis dataset.
Structurally Semantically Indicator Generic
Complicated Complicated Variables Chemical

Concepts Concepts Concepts
CProgol Subdue CProgol Subdue CProgol Subdue CProgol Subdue

Training Set Accuracy 60.00% 86.00% 67.00% 64.00% 82.00% 80.00% 62.00% 64.00%
Training Set Runtime 2010s 1876s 1180s 2876s 960s 848s 2130s 1910s
10-fold CV Accuracy 61.74% 81.58% 66.53% 63.91% 78.91% 77.39% 61.74% 63.84%

10-fold CV Runtime (average) 1940s 2100s 1330s 2900s 810s 878s 2212s 2010s
CProgol - Subdue, ∆Error±σ 20.84%±12.78% 2.16%±3.5% 1.52%±11.54% 1.74%±25.12%
CProgol - Subdue, Confidence 99.94% 95.77% 31.38% 16.86%

ing to note that a rule involving 15 relations (3 fused 6
member rings) has been learned by learning a single rela-
tion. Learning such a rule has allowed CProgol to learn a
propositional representation of a relational concept rather
that the true relational concept. Providing atom type and
bond type information would allow both systems to learn
propositional representations of structurally large relational
concepts rather than the true relational concepts. We do
not consider the learning of such concepts equivalent to the
learning of structurally large relational concepts. We there-
fore do not provide either system with the atom type and
bond type information. This is depicted in Figure 2(a) and
(e).

In the second case we compare the performance of the sys-
tems while learning semantically complicated concepts, we
ran Subdue and CProgol on the Mutagenesis dataset. Each
system was provided with background knowledge so that
numerical ranges could be learned. For CProgol this was
achieved by introducing Prolog based background knowl-
edge. For Subdue this was achieved by explicitly instantiat-
ing the background knowledge, i.e., additional structure was
added to the training examples. This is depicted in Figure
2(b) and (f).

In the third case we provide each system with the back-
ground knowledge indicating the presence of benzyl rings
(I1) and identifying compounds which are acenthryles (Ia).
This is depicted in Figure 2(c) and (g).
In the fourth case, each system was provided with the back-
ground knowledge indicating certain generic chemical con-
cepts like benzene rings, nitro groups, etc. This is depicted
in Figure 2(d) and (h).
The results of these experiments are shown in Table 1.
For the training set, the accuracy for one run on the en-
tire dataset and the learning time are shown. For 10-fold
cross validation (CV), average learning time over 10 folds is
shown.

From these experiments we can observe the following.

1. Subdue performs significantly better than CProgol in
the first case, i.e. while learning structurally large con-
cepts.

2. CProgol outperformed Subdue in the second case, i.e.
while learning semantically complicated concepts.

3. In the third and the fourth cases i.e. while utilizing
background knowledge in the form of indicator vari-
ables and generic chemical concepts respectively, the
performance the systems is found to be comparable.

It must be noted that in the second case i.e while learning
semantically complicated concepts, Subdue has achieved an
accuracy lower than what was achieved without the back-
ground knowledge to process ranges. Manual inspection of
the concepts learned by Subdue and CProgol (not shown
here) indicate that Subdue did not learn any concept involv-
ing ranges as learned by CProgol. We performed additional
experiments (not reported here) with different graph-based
representations for learning ranges. In all these experiments,
Subdue had similar performance.

5. ARTIFICIAL DOMAIN EXPERIMENTS
We performed additional experiments using artificially gen-
erated Bongard problems to reinforce the insights from the
experiments on the Mutagenesis dataset. We now discuss
the results of these experiments.

We systematically analyzed the performance of Subdue and
CProgol on artificially generated Bongard problems with in-
creasing numbers of objects in the concept and increasing
numbers of objects in the examples in order to compare
the abilities of the systems to learn structurally large con-
cepts. Figure 3(a) shows a Bongard example, while (b) and
(c) show the graph-based and logic-based representations of
the example, respectively. In this experiment, the number
of objects in the Bongard concept was varied from 5 to 35.
The number of additional objects in each example (objects
which are not a part of the concept) were kept constant at
5. For every concept size from 5 to 35, 10 different concepts
were generated. For each of the 10 concepts a training set
and a test set of 100 positive and 100 negative examples was
generated.

Figure 4(a) shows the average accuracy achieved by CPro-
gol and Subdue on 10 datasets for every concept size ranging
from 5 to 35. In order to further analyze the performance of
the systems we reran the same experiment but in this case
the systems were iteratively given increased resources (this
was achieved by varying the nodes parameter in CProgol and
the limit parameter in Subdue) so that we could determine
the number of hypotheses each system explored before it
learned the concept (a cutoff accuracy of 80% was decided).
Figure 4(b) shows the number of hypotheses explored by
each system so as to achieve an accuracy of 80% (this ex-
periment was only performed for concept size varying from
5 to 18 as a significantly large amount of time was required).
A snapshot of the experiment (Accuracy vs. Number of Ex-
plored Hypotheses) for concept size 10 is shown in Figure
4(c). A similar experiment for increased example size was
performed where the concept size was kept constant at 5
and the example size was varied from 10 to 35. Figure 4(d)
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Figure 3: Representation for Bongard Problems. (a) A Bon-
gard example. (b) Graph-based representation of the Bon-
gard problem. (c) Logic-based representation of the Bon-
gard problem. (d) Graph-based representation for the in-
troduction of background knowledge in Bongard problems.
(e) Logic-based representation for the introduction of back-
ground knowledge in Bongard problems.

shows the average accuracy achieved by CProgol and Sub-
due on 10 datasets for every example size ranging from 10
to 35. Figure 4(e) shows the hypotheses required to be ex-
plored to learn the concept (a cutoff accuracy of 80% was
decided) determined by iteratively increasing the resources
for each system. A snapshot of the experiment (Accuracy
vs. Number of Explored Hypotheses) for example size 15 is
shown in Figure 4(f).

Experimental results indicate that,

1. Subdue achieves increasingly higher accuracy than
CProgol as the size of the concept (number of rela-
tions in the concept) grows.

2. CProgol has to explore an increasingly larger number
of hypotheses than Subdue as the size of the concept
grows.

3. Subdue achieves increasing higher accuracy than
CProgol as more hypotheses are explored, on large
concept sizes.

4. Subdue achieves increasingly higher accuracy than
CProgol as the size of the examples (number of re-
lations in the example) grows.

5. CProgol has to explore an increasingly larger num-
ber of hypotheses than Subdue while learning from
increasingly larger examples.

6. Subdue achieves increasing higher accuracy than
CProgol as more hypotheses are explored, on large ex-
ample sizes.

Experiments were also performed to analyze the ability to
utilize background knowledge. Figure 3(d) and (e) show the

representations used for CProgol and Subdue respectively.
We systematically analyzed the performance of Subdue and
CProgol on artificially generated Bongard problems with in-
creasing amounts of background knowledge while learning a
large concept (more objects in the concept) and with in-
creasing amounts of background knowledge while learning a
concept from a large example (more objects in each exam-
ple). In this experiment, for a concept of size 10 and addi-
tional objects in each example equal to 5, 10 concepts were
generated. For each of these concepts a training set and test
set of 100 positive and 100 negative examples were gener-
ated. Figure 4(g) shows the accuracies achieved by Subdue
and CProgol (Note that both the systems were given less re-
sources than the experiments which analyzed the ability to
learn structurally large concepts so that the effect of back-
ground knowledge could be analyzed). Figure 4(h) shows
the hypotheses required by each system to learn the con-
cept (a cutoff accuracy of 80% was decided). A similar
experiment for a concept of size 5 and example size of 15
was performed. Figure 4(i) shows the accuracies achieved
by Subdue and CProgol (Note that both the systems were
given less resources than the experiments which analyzed
the ability to learn structurally large concepts so that the
effect of background knowledge could be analyzed). Figure
4(j) shows the hypotheses required by each system to learn
the concept (a cutoff accuracy of 80% was decided).
Experimental results indicate that when increasing amounts
of background knowledge are introduced,

1. CProgol achieves increasingly higher accuracy than
Subdue in the case of large concepts,(number of re-
lations in the concept).

2. Subdue has to explore an increasingly larger number of
hypotheses than CProgol in the case of large concepts.

3. CProgol achieves increasingly higher accuracy than
Subdue in the case of large examples (number of rela-
tions in the example).

4. Subdue has to explore an increasingly larger number of
hypotheses than CProgol in the case of large examples.

6. ANALYSIS
The results of the experiments performed in Sections 4 and
5 indicate that Subdue significantly outperforms CProgol
while learning structurally large concepts. It is also observed
that CProgol performs better than Subdue while learning
semantically complicated concepts and utilizing background
knowledge. Here we first attempt to explain the empirical
results based on the representational and algorithmic differ-
ences between the two systems and then analyze whether
these findings are applicable, in general to all graph-based
and logic-based approaches.
An analysis of the representations used by Subdue and
CProgol indicates that the graph-based representation used
by Subdue has much less expressiveness than that of CPro-
gol which can accept any Prolog program as background
knowledge. The expressiveness of the graph-based repre-
sentation used by Subdue is intermediate between propo-
sitional and first-order logic. This difference can explain
the differences between the performances of the two sys-
tems. Learning structurally large concepts involves learning
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Figure 4: Results on experiments with artificially generated Bongard problems. (a) Accuracy vs Concept Size. (b) Hypotheses
required to reach accuracy of 80% vs Concept size. (c) Accuracy vs Number of hypotheses explored, for fixed concept size.
(d) Accuracy vs Example Size. (e) Hypotheses required to reach accuracy of 80% vs Example Size. (f) Accuracy vs Number
of hypotheses explored, for fixed example size. (g) Accuracy vs Amount of background knowledge, for large concept size. (h)
Hypotheses required to reach accuracy of 80% vs Amount of background knowledge, for large concept size. (i) Accuracy vs
Amount of background knowledge,for large example size. (j) Hypotheses required to reach accuracy of 80% vs Amount of
background knowledge, for large example size.

a large number of relations explicitly present in the exam-
ples. In this case, the less expressive representation used by
Subdue leads to an efficient exploration of the hypothesis
space. An example of this is the massive number of redun-
dant hypothesis which are not generated and evaluated by
Subdue.
Learning semantically complicated concepts involves learn-
ing relations which are not explicitly present in the examples
but which must be implicitly derived from the examples. In
this case CProgol which uses a more expressive representa-
tion not only performs more efficiently but also can learn
concepts which may not be expressed by Subdue’s mecha-
nism of explicit instantiation. An example of this is Sub-
due’s explicit instantiation to learn ranges in Figure 2(b).
Explicit instantiation is cumbersome in most cases and also
not a generalized methodology to learn complicated seman-
tic concepts. For example, suppose a domain expert were to
suggest that the ratio of the number of carbon atoms to the
number of hydrogen atoms in a molecule has an effect on the
mutagenicity. CProgol with some added background knowl-
edge could use this information to classify the molecules.
Subdue on the other hand would require making changes
to the representation such that the pattern would be found
in terms of a graph. CProgol allows the exploration of hy-
potheses through implicitly defined background knowledge
rather than explicit instantiation in the examples.
The difference between the expressiveness of the represen-
tations can also explain the difference in the abilities of the
systems to utilize background knowledge. In Subdue, back-
ground knowledge is introduced as a vertex which is con-

nected to all the entities which comprise the background
knowledge for example,in the Mutagenesis dataset as in Fig-
ure 2(d) and Bongard problems as in Figure 3(d). In the case
of CProgol, similar background knowledge is introduced in
the form of a predicate, as in Figure 2(h). Subdue’s graph-
based representation does not allow any specific mechanism
to express that a set of entities (objects and atoms in the
case of Bongard problems and Mutagenesis respectively) are
known to be a part of a group which is relevant in classify-
ing the examples. Such a group of entities is to be added in
a single refinement step to generate candidate hypothesis,
and benefit from the background knowledge. Subdue gen-
erates candidate hypotheses by extending the sub-graph by
an edge and a vertex or just an edge in all possible ways
as in the examples. Subdue’s candidate hypothesis genera-
tion adds the entities known to be a part of the background
knowledge one at a time and this leads to a massive increase
in the hypothesis space. This may cause the introduction of
background knowledge to deteriorate performance in some
cases.

Subdue does provide an alternate way of introducing back-
ground knowledge by preprocessing the examples and com-
pressing each of the user defined substructures which form
the background knowledge into a single vertex. This tech-
nique has the drawback of information loss and Subdue will
not be able to learn a concepts that contain only a partial
portion of the background knowledge substructure.
The differences between the performance of the two systems
can thus be explained by the difference in the expressive-
ness of the representations used by the two systems. Any
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graph-based and logic-based system will tend to behave sim-
ilarly due to this underlying difference in expressiveness.
The use of a less expressive representation will facilitate an
efficient search and lead to a superior performance while
learning structurally large concepts. The use of a weaker
representation would also limit the learning of semantically
complicated concepts and the effective use of background
knowledge. It is important to note that these characteristics
are the result of the difference in the expressiveness of the
two representations and are not inherent to graph-based and
logic-based representations in general. It would be possible
to introduce the syntax and semantics in graph-based repre-
sentations to express semantically complicated concepts us-
ing ordered graphs, hyper-graphs or graph rewriting rules.
In this case, a graph-based system would tend to have a
performance similar to a logic-based system.

7. CONCLUSIONS AND FUTURE WORK
We performed an experimental comparison of the graph-
based multi-relational data mining system, Subdue, and the
inductive logic programming system, CProgol. From this
comparison we conclude that the use of a less expressive
representation, like the present graph-based representation
can achieve superior performance while learning structurally
large multi-relational concepts. The use of a less expressive
representation limits the learning of semantically compli-
cated multi-relational concepts and the utilization of back-
ground knowledge.

Developing methodologies for using the less expressive
graph-based systems and more expressive logic-based sys-
tems in combination may achieve the learning of struc-
turally large concepts and semantically complicated con-
cepts. It may also allow better utilization of background
knowledge. For example, the structurally complicated hy-
potheses learned by a graph-based system could then be
used as background knowledge by a logic-based system. We
plan to pursue this as part of our future work.
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